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Background: Molecular typing based on deoxyribonucleic acid (DNA) methylation and gene expression 
can extend understandings of the molecular mechanisms involved in lung adenocarcinoma (LUAD) and 
enhance current diagnostic, treatment, and prognosis prediction approaches.
Methods: Gene expression and DNA methylation data sets of LUAD were obtained from The Cancer 
Genome Atlas (TCGA), and the differential gene and methylation expression levels were analyzed.
Results: We successfully divided the LUAD samples into 2 clinically relevant subtypes with significantly 
different survival times and tumor stages according to the transcriptome and methylation data. We found 
significant differences in the survival status, age, gender, tumor stage, node stage, and clinical stage between 
the 2 subtypes. The hub genes identified in the subnetworks, including NCAPG, CCNB1, DLGAP5, 
HLA-DQA1, HLA-DPA1, HLA-DPB1, SFTP, SCGBA1A, and SFTPD, were correlated with the cell 
cycle and immune system. The Gene Ontology annotation of the hub genes showed that the biological 
processes included organelle fission mitotic nuclear division, and sister chromatid segregation. The cellular 
components included chromosomal region, spindle, and kinetochore. The molecular functions included 
tubulin-binding, microtubule-binding, and DNA replication origin binding. The Kyoto Encyclopedia of 
Genes and Genomes signaling pathways related to the hub genes mainly included the cell cycle, human 
T-cell leukemia virus (type 1) infection, inflammatory bowel disease, and the intestinal immune network for 
immunoglobulin A production. The clinical stage difference was also confirmed in the validation group using 
the GSE32863 data set.
Conclusions: Our findings extend understandings of the pathogenesis of LUAD and can be used to 
improve current diagnosis, treatment, and prognosis prediction strategies.
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Introduction

Lung cancer is the leading cause of death and morbidity 
globally, and accounts for 18.4% of cancer-related deaths 
and 11.6% of total cancer cases (1). Non-small cell lung 
carcinomas (NSCLCs) and small-cell carcinomas represent 
85% of lung cancers. Lung adenocarcinoma (LUAD) 
represents up to 40% of NSCLCs (2) and is highly invasive 
and metastatic, with a dismal 5-year survival rate of  
19.5% (3). Despite substantial improvements in computed-
tomography imaging, bronchoscopy, sputum cytology, and 
therapy (4), patient survival rates remain unsatisfactory. 
Thus, it is necessary to explore the key factors and 
molecular mechanisms associated with lung cancer to refine 
current diagnostic and therapeutic strategies.

In cancer, deviant epigenetic regulation includes miRNA 
gene silencing, DNA methylation, mRNA and non-
coding RNA methylation, histone methylation, and histone 
acetylation (5). Deoxyribonucleic acid (DNA) methylation is 
an important mechanism of gene epigenetics and is involved 
in regulating gene expression and cell differentiation. 
DNA methylation regulates gene expression by recruiting 
proteins involved in gene repression or by inhibiting the 
binding of transcription factor(s) to DNA (6). Methylation 
at the 5th carbon atom of cytosine residues is the most 
widely studied epigenetic modification in plants and 
mammals. In mammals, DNA methylation mainly occurs 
in cytosine-phosphoric acid-guanine (CpG) islands (i.e., 
300–3,000 bp DNA fragments rich in CpG dinucleotide), 
and 40% of the gene promoter regions contain CpG 
islands (7). Studies have shown that many tumors, including 
LUAD, undergo methylation at an early stage (8,9), and 
the progression of tumors is positively correlated with the 
accumulation of aberrant DNA methylation (10). DNA 
methylation is a genetic modification that does not change 
the DNA sequence and is associated with the subtypes 
and prognosis of LUAD. Although cumulating evidences 
have demonstrated the abnormal DNA methylations level 
in LUAD, the comprehensive regulatory network and 
pathways analyses of DNA methylation levels and miRNA 
epigenetic alterations have not yet been conducted (11).

Previous studies have reported different LUAD subtypes 
based on methylation or gene expression (12,13). Moreover, 
methylation and gene expression have been combined to 

identify the pathologic subtypes of NSCLC, including 
small cell lung cancer and LUAD, instead of molecular  
typing (14). However, it has been established that 
methylation and gene expression are intrinsically linked, and 
most importantly, methylation can affect gene expression. 
Thus, this study sought to classify LUAD samples by 
integrating methylation and transcriptome data to find a 
novel typing approach and identify novel genes that affect 
prognosis and diagnosis to provide a theoretical basis for 
individualized treatment. We present the following article in 
accordance with the STREGA reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-3340/rc).

Methods

Study design

This is a bioinformatics analysis study and the molecular 
subtypes of LUAD were identified based on DNA 
methylation and gene expression profiling. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Data download and preliminary process

Gene expression and DNA methylation data sets of LUAD 
(comprising 59 normal and 526 tumor samples) were 
obtained from The Cancer Genome Atlas (TCGA) (https://
www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga). The differential methylation sites 
were identified using the ChAMP package based on paired 
tumor and non-tumor samples (n=24). The differentially 
expressed genes (DEGs) were screened using the R package 
limma [the screening criteria were a |log fold change (FC)| 
value >0.5 and a P value <0.05 for the gene expression and 
methylation sites].

Identification of molecular subtypes related to prognosis

In total, 454 LUAD samples with prognostic information, 
gene expression, and methylation data from TCGA data 
sets were used for the molecular typing. Methylation sites 
with missing values were removed from the data set before 
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analysis. First, feature selection was applied to select the 
most variable genes based on their expression, and a Cox 
regression analysis was conducted to predict the methylation 
sites. The LUAD samples were also classified into different 
subtypes using the non-negative matrix factorization (NMF) 
method using the R package CancerSubtypes. NMF (15) is 
currently recognized as one of the most effective clustering 
methods based on omics features. The effectiveness of the 
clustering was measured by the silhouette width, which 
ranges from –1 to 1. The larger the silhouette width, the 
better the degree of separation. The default number of runs 
was set to 30. The DEGs between the molecular subtypes 
were screened using the following criteria: a |logFC| value 
>0.8 and a false discovery rate (FDR) <0.05 in the limma 
package, and an FDR <0.01 for the methylation sites in the 
ChAMP package.

Analysis of differences among different subtypes and 
validation

The clinical characteristics and prognostic data between 

the clusters were compared using the t-test, chi-square test, 
or rank-sum test as appropriate in the R package tableone. 
A P value <0.05 was considered statistically significant. 
We downloaded the GSE32863 data set (tumor samples, 
n=58), which included gene expression, methylation sites, 
and clinical data, such as recurrence and tumor stage data, 
from the Gene Expression Omnibus (GEO) database as 
a validation set. The GSE32863 data set was classified 
according to the expression of the DEGs and methylation 
sites, and the clinical data among the different subtypes 
were compared (see Table 1). The “Complex Heatmap” 
package was then used to draw heatmaps.

Gene Ontology (GO) term enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses

GO and KEGG pathway enrichment analyses were 
performed to identify the key genes and pathways involved 
in LUAD. The GO functional annotation was composed 
of cellular components (CCs), molecular functions (MFs), 

Table 1 The clinical characteristics of the 2 subtypes from the validation data set

Characteristics Subtype 1 (n=37) Subtype 2 (n=21) P

Age (years), mean (SD) 69.41 (9.05) 66.29 (9.06) 0.213

Gender (male), n (%) 8 (21.6) 5 (23.8) 1.000

Smoking status (never), n (%) 22 (59.5) 7 (33.3) 0.101

Stage, n (%) 0.003

Stage I 28 (75.7) 6 (28.6)

Stage II 3 (8.1) 8 (38.1)

Stage III 6 (16.2) 6 (28.6)

Stage IV 0 (0.0) 1 (4.8)

Recurrence (yes), n (%) 10 (27.0) 9 (42.9) 0.345

KRAS mutation type, n (%) 0.757

G12A 1 (2.9) 1 (4.8)

G12C 5 (14.3) 2 (9.5)

G12D 4 (11.4) 1 (4.8)

G12E 0 (0.0) 1 (4.8)

G12V 3 (8.6) 2 (9.5)

G13V 1 (2.9) 0 (0.0)

WT 21 (60.0) 14 (66.7)

SD, standard deviation; WT, wild type.
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and biological processes (BPs). KEGG is a public database 
used to analyze gene-related pathways to explore biological 
systems (16). The “clusterProfiler” and “ggplot2” R packages 
were used to visualize the enrichment results.

Construction of protein-protein interaction (PPI) network 
and analysis of representative genes

The PPI network of the representative genes and 
methylation sites was generated using Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING; http://
string-db.org) (17). To obtain the best results, the minimum 
required interaction score was set to 0.4. The PPI network 
was visualized with Cytoscape 3.9.0 (18) and the MCODE 
plug-in was used to build subnetworks using the following 
parameters: a MCODE score >5, degree cutoff =2, node 
score cutoff =0.2, node density cutoff =0.1, k-score =2, and 
maximum depth =100 (19).

Statistical analysis

The distribution of the differentially expressed genes was 
shown by heatmap and volcano map. The differences of 
gene expression between the two groups were compared by 
t-test and expressed by boxplot. All the statistical analyses 
were performed by using R software (Version 4.1.1). A P 
value <0.05 was considered as statistical significance. 

Results

Data download and preliminary process

The data sets of LUAD expression and methylation 
obtained from TCGA included 59 normal and 526 tumor 
samples. The workflow of the data analysis conducted 
in this study is shown in Figure 1. First, we analyzed the 
difference in gene expression using the R package limma. 
The number of dysregulated genes was 2,874. The ChAMP 

  LUAD expression datasets from TCGA LUAD methylation datasets from TCGA

 Differentially expressed genes  Differentially methylation sites

LUAD subtypes 

Representative genes and 

methylation sites between subtypes

GO analysis and

 KEGG pathway analysis

 Development group 

(GSE32863)

The correlation  between subtypes 

and clinical features

limma ChAMP

Cox regression feature selection

NMF methods

Figure 1 The work flow for the data analysis in this study. LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; NMF, non-
negative matrix factorization; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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package was used to identify the differential methylation 
sites based on paired tumor and non-tumor samples (n=24). 
The number of dysregulated methylation sites was 453 (for 
further details see Figure 2A,2B). After feature selection by 
Cox regression, 1,622 genes and 83 methylation sites were 
selected for molecular typing.

Identification of 2 subtypes by an unsupervised hierarchical 
cluster analysis

The average silhouette showed that the optimal number 
of cluster K was 2 (see Figure 3A,3B). We successfully 
divided LUAD into 2 subtypes using the NMF method, 
and the specific results are shown in Figure 3. The average 

silhouette width of the 2 subtypes was 0.98 (see Figure 4A). 
The survival rate differed significantly between the 2 groups 
(see Figure 4B). The heatmap of the sample similarity 
matrix is shown in Figure 4C. The relationships between 
stage, methylation site, and gene expression are shown in  
Figure 5.  We next identified 379 DEGs genes (see  
Figure S1A) and 67 methylation sites (see Figure S1B) 
between the subtypes. The DEGs between the subtypes 
were screened using the limma package (criteria: a |logFC| 
value >0.8 and an FDR <0.05), and the methylation sites 
were screened using the ChAMP package (criteria: an 
adjusted P value <0.01). The corresponding genes of the 
methylation sites are shown in Table S1, included BCAT1, 
CDC42, DLX5, HOXA5, and OTX1, and were closely 

Figure 2 The number of aberrant regulated genes and regulated methylation sites. FC, fold change; PCA, principal component analysis.

Figure 3 The optimal number of cluster K and TCGA-ID for each subtype. (A) The optimal number of cluster K. (B) TCGA-ID for each 
subtype. TCGA, The Cancer Genome Atlas; ID, identity document.
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associated with the development of LUAD.

Analysis of differences among different subtypes

We also explored the differences in age, survival status, 
gender, recurrence, and tumor, node, metastasis (TMN) 
stage between the molecular subtypes. The survival rates 
were 0.18% and 0.25% for subtypes 1 and 2, respectively, 
with a mean survival time of 27.0 and 33.3 months, 
respectively (P=0.02) (see Table 2). With the exception of 
recurrence status, there were significant differences in the 
survival status, age, gender, pathologic M stage, pathologic 

N stage, pathologic T stage, and clinical stage between the 
2 subtypes (see Table 2). Significant differences were found 
in the proportions of patients between subtype 1 (of whom 
46.7%, 29.2%, 18.8%, and 5.0% had tumor stage I, II, 
III, and IV, respectively) and subtype 2 (of whom 64.5%, 
18.2%, 11.7%, and 3.7% had tumor stage I, II, III, and IV, 
respectively) (P=0.001).

GO and KEGG enrichment analysis and PPI network 
construction of hub genes

The DEGs and corresponding genes of the methylation 

Figure 4 A total of 2 subtypes were obtained by unsupervised learning. (A) Silhouette plots for the identified cancer subtypes. (B) Survival R 
package cancer subtypes. (C) Heatmap of the sample similarity matrix. LUAD, lung adenocarcinoma.
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sites were used to perform an enrichment analysis and 
construct a PPI network. The GO annotation showed the 
MFs included tubulin-binding, microtubule-binding, and 
DNA replication origin binding (see Figure S2A). The CCs 
included chromosomal region, spindle, and kinetochore 
(see Figure S2B). The BPs included organelle fission 
mitotic nuclear division, and sister chromatid segregation 
(see Figure S2C). The KEGG signaling pathways related 
to the hub genes mainly included the cell cycle, human 
T-cell leukemia virus (type 1) infection, inflammatory 
bowel disease, and the intestinal immune network for 
immunoglobulin A (IgA) production (see Figure S2D).

A PPI network was constructed using STRING to 
identify the hub genes (see Figure S3). The PPI network 
was imported into Cytoscape, and 3 subnetworks were 
generated using the MCODE plug-in. Hub genes in each 
subnetwork were defined by the degree of neighborhood 
connectivity. The hub genes of cluster 1, which included 
NCAPG, CCNB1, and DLGAP5, were correlated with cell 
cycle regulation. The hub genes of cluster 2, which included 
HLA-DQA1, HLA-DPA1, and HLA-DPB1, were correlated 
with T cell recruitment and anti-programmed death-1 
(PD-1) therapy. Finally, the hub genes of cluster 3, which 
consisted of SPTPA, SFTPB and SFTPC, were correlated 

Figure 5 Heatmap of the correlations between the DEGs and methylation sites and clinical characteristics in each subtype. Pathologic_M: 
pathological metastasis; Pathologic_T: primary pathological tumor; Pathologic_N: pathological lymph node status. DEGs, differentially 
expressed genes.
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Table 2 The clinical characteristics of the 2 subtypes from the training data set

Characteristics Group 1 (n=240) Group 2 (n=214) P

Patient status (death), n (%) 102 (42.5) 61 (28.5) 0.003

Survival time (months), mean (SD) 27.0 (27.9) 33.3 (32.4) 0.02

Age (years), mean (SD) 63.40 (10.57) 66.63 (9.62) 0.001

Sex (male), n (%) 129 (53.8) 82 (38.3) 0.001

Recurrence 0.22

Missing 39 (16.3) 33 (15.4)

No 129 (53.8) 131 (61.2)

Yes 72 (30.0) 50 (23.4)

Pathologic_M 0.38

Missing 72 (30.0) 75 (35.0)

M0 156 (65.0) 132 (61.7)

M1 12 (5.0) 7 (3.3)

Pathologic_N 0.001

Missing 2 (0.8) 9 (4.2)

N0 143 (59.6) 157 (73.4)

N1 52 (21.7) 28 (13.1)

N2 42 (17.5) 20 (9.3)

N3 1 (0.4) 0 (0.0)

Pathologic_T 0.007

Missing 1 (0.4) 2 (0.9)

T1 65 (27.1) 91 (42.5)

T2 145 (60.4) 94 (43.9)

T3 21 (8.8) 19 (8.9)

T4 8 (3.3) 8 (3.7)

Tumor_stage 0.001

Missing 1 (0.4) 4 (1.9)

Stage I 112 (46.7) 138 (64.5)

Stage II 70 (29.2) 39 (18.2)

Stage III 45 (18.8) 25 (11.7)

Stage IV 12 (5.0) 8 (3.7)

SD, standard deviation; Pathologic_M, pathological metastasis; Pathologic_T, primary pathological tumor; Pathologic_N, pathological 
lymph node status.
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with anti-inflammatory processes (see Figure S4).

Validation of subtypes and the correlation between subtypes 
and clinical data in LUAD

Among the DEGs and corresponding genes of the 
methylation sites, the validation group (i.e., the GSE32863 
data set) only comprised 298 genes and 2 methylation sites. 
Next, we classified the 58 samples into 2 subtypes using 
the NMF method (see Figure S5). Consistent with subtype 
2 from the training data set, subtype 1 in the validation 
data set similarly exhibited high expressions of E2FB, 
CENPU, NDC80, TYMS, SC14L6, PLA2G1B, LHFPL3-
AS1, C8orf34-AS1, and DMBT1. The gene corresponding 
to methylation site cg0544326 was downregulated in 
subtype 2 in the training data set and subtype 1 in the 
validation data set. Additionally, the hub genes of NCAPG, 
CCNB1, and DLGAP5 were overexpressed in subtype1 
in the training data set (see Figure 5) and subtype 2 in the 
validation data set (see Figure S5). Consistent with the 
literature, we found that DLGAP5 overexpression in tumor 
patients was associated with a poor prognosis (20,21). The 
clinical data of the LUAD patients were also analyzed. 
In the validation group, the proportions of patients with 
stage I, II, III, IV were 28.6%, 38.1%, 28.6% and 4.8% in 
subtype 2, respectively, and 75.7%, 8.1%, 16.2% and 0.0% 
in subtype 1, respectively. Group 2 in the validation data set 
and subtype 1 in TCGA data set shared a similar expression 
pattern and advanced clinical stage.

Discussion

We successfully stratified LUAD into 2 clinically relevant 
subtypes with a high silhouette width (0.98) using 
unsupervised multi-omics integration methods. Subtype 
1 in TCGA data set had a worse prognosis and higher 
tumor stage than subtype 2 (P<0.05). We also identified 
the representative genes and genes corresponding to the 
methylation sites for the 2 molecular types and validated 
our molecular typing results using an external validation 
data set. Group 2 in the validation data set exhibited a 
similar expression pattern to subtype 1 in TCGA data set, 
consisting of samples associated with more advanced tumor 
staging. Interestingly, the functional enrichment analysis 
showed that the representative genes and the corresponding 
genes of the methylation sites were enriched in GO terms, 
including “cell cycle” and “immune”, which are significantly 
correlated with the development of LUAD. The PPI 

network analysis generated 3 subnetworks. The identified 
hub genes in these subnetworks, including NCAPG, 
CCNB1, DLGAP5, HLA-DQA1, HLA-DPA1, HLA-DPB1, 
SPTPA, SFTPB and SFTPC, were correlated with cell cycle 
regulation, T cell recruitment, anti-PD-1 therapy, and 
anti-inflammatory processes. This study identified some 
candidate molecules and pathways associated with the 
prognosis of LUAD, providing potential therapeutic targets 
for the comprehensive treatment of this subtype of lung 
cancer.

The high expression of the DEGs of E2FB, CENPU, 
NDC80, and TYMS in subtype 1 was related to higher 
mortality and more advanced tumor stage, consistent with 
the literature (22,23). For example, CENPU downregulation 
significantly inhibited lung adenocarcinoma cell (LAC) 
proliferation, migration, and invasion, mediated by 
phosphatidylinositide 3-kinases (PI3K)/protein kinase B 
pathway inactivation (23). Further, TYMS downregulation 
has been found to be associated with sensitivity to 
pemetrexed in lung cancer cell lines (24). Thus, genes can 
also be used to predict responses to therapeutic drugs.

The tumor microenvironment plays an important role 
in supporting tumor growth. A number of studies have 
investigated the effect of DNA methylation on the behavior 
of tumor-associated stromal cells. DNA methylation 
is involved in the activation of stromal cells, and the 
methylation of certain genes contributes to the precancerous 
activity of stromal cells (25). The genes corresponding to 
the methylation sites included BCAT1, CDC42, DLX5, 
HOXA5, and OTX1. The alteration of methylation levels 
is reportedly involved in the development and progression 
of lung cancer (26,27). BCAT1 has been shown to induce 
proliferation and invasion in lung cancer (28), while CDC42 
has been shown to be involved in cell transformation, 
proliferation, survival, invasion, and metastasis in multiple 
cancer types (29). Further, it has been shown that DLX5 
promotes cell proliferation by upregulating MYC (30) and 
upregulated OTX1 can enhance the proliferation, invasion, 
and migration of lung cancer cells by activating the JAK/
STAT signaling pathway (31).

In the present study, HLA-DQA1, HLA-DPA1, and HLA-
DPB1 were the hub genes in subnetwork 2. As previously 
reported, the DR and DQ isotypes of the human leukocyte 
antigen (HLA) class II heterodimeric molecules (32) are 
strongly associated with autoimmune diseases. Further, the 
overall survival time of patients with LUAD has been shown 
to be affected by HLA-DR (33).

The upregulated genes of SPTPB and SFTPD in 

https://cdn.amegroups.cn/static/public/ATM-22-3340-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3340-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3340-Supplementary.pdf
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subnetwork 3 have been reported to be immune- and 
inflammation-related genes (34,35). Notably, the signaling 
pathways related to the hub genes mainly include human 
T-cell leukemia virus (type 1) infection, the intestinal 
immune network for IgA production, and inflammatory 
bowel disease, which are also related to the immune system. 
Consistent with previous studies, our findings suggest that 
the prognosis of LUAD is closely related to immunity, 
which is the basis of immunotherapy (22,36). For example, 
the mechanism of the immunosuppressive effect of anti-
PD-1 involves the inhibition of cell signal transduction 
and activity by mediated PD-1 in immune cells. This 
revolutionary breakthrough has played an important part in 
improving LUAD treatment efficacy (22,36).

A major limitation of this study is the lack of prognostic 
data in the validation group, which could not be solved, as 
the data was downloaded from a public database. Subtype 1 
in the training data set had a relatively worse prognosis as 
compared with subtype 2. No prognostic information was 
available; however, it can be concluded that a poor prognosis 
could be associated with subtype 2 in the validation data set, 
as both subtypes exhibited similar expression patterns and 
were associated with a more advanced tumor stage. Further, 
other critical parameters such as non-coding ribonucleic 
acid (RNA) data and clinical characteristics were not 
considered when the molecular typing was conducted in our 
study, such as micro-RNA.

Conclusions

In summary, using the NMF method and the multi-omics 
information of gene expression and DNA methylation sites, 
we successfully divided LUAD into 2 clinically relevant 
subtypes. The representative genes and the corresponding 
genes of the methylation sites were identified. The 
functional analysis showed significant enrichment in GO 
terms “cell cycle” and “immune”, which were significantly 
correlated with the development of LUAD. Our research 
highlights the prognostic role of DNA methylation sites 
and extends understandings of the mechanisms underlying 
LUAD tumorigenesis.
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Supplementary

Figure S1 Heatmap of the DEGs or methylation sites among the different subtypes in the training data set. (A) Correlations between 
the representative DEGs and clinical characteristics among different subtypes. (B) Correlations between the representative differential 
methylation sites and clinical characteristics among the different subtypes. Pathologic_M: pathological metastasis; Pathologic_T: primary 
pathological tumor; Pathologic_N: pathological lymph node status. DEGs, differentially expressed genes.
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Table S1 The corresponding genes of methylation sites 

Methylation sites Gene

cg23019935 CDC42

cg06679878 TMEM132D

cg04414975 TMEM132D

cg05384697 TMEM132D

cg22092126 AFF3

cg21037008 PRRT1

cg25138553 HSPG2

cg05726239 SOBP

cg02429905 PRRT1

cg12483545 SKI

cg05501617 IRF2

cg13035743 PRRT1

cg05445326 TM4SF19

cg05970721 HS3ST2

cg23149881 IL1B

cg17164954 ARID1B

cg17066349 CIT

cg11091914 LRP12

cg26165146 ARNTL2

cg01577755 TRIP13

cg01581084 OSR2

cg00640314 SNORD87

cg05634376 PC

cg11940177 PGAM1

cg26107890 SLC12A8

cg01044293 ITGA6

cg25136495 LPAR5

cg19050555 TUBA1C

cg17975443 TBX4

cg00277165 TRIP13

cg21031917 KHDRBS2

cg17495130 HOXD13

cg17510385 TRIP13

cg19643053 HOXA5

Table S1 (continued)

Table S1 (continued)

Methylation sites Gene

cg09015973 ARHGEF4

cg04389897 TFAP2A

cg02466815 HOXD1

cg14499678 TRIP13

cg02409878 OSR2

cg19962750 DLX5

cg17432857 HOXA5

cg09803262 DLX6AS

cg19319037 TTF2

cg06389019 SLC9A3R1

cg03130248 KIF26B

cg19766988 EIF3G

cg21472506 OTX1

cg06890747 LOC646999

cg17582100 GPR87

cg09359114 DLX5

cg02531439 SMURF1

cg07974511 OTX1

cg09542210 SHOX2

cg10122865 OTX1

cg09181792 CFTR

cg17174023 KLHDC7B

cg13677149 EVX1

cg20399616 BCAT1

cg17916835 DLX5

cg23005797 C2orf48

cg07443717 TMCC1

cg12606911 CD8A

cg02773086 HOXD3

cg04415798 PAX9

cg27071152 LOC646999

cg11718162 TPM3

cg06809252 ALX3
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Figure S2 MF analysis and pathway analysis of representative genes and the corresponding genes of the methylation sites. (A) MFs. (B) 
CCs. (C) BPs. (D) KEGG pathway analysis. BP, biological process; CC, cellular component; IgA, immunoglobulin A; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; MF, molecular function; MHC, major histocompatibility complex.
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Figure S3 The PPI network of the representative genes and methylation sites and hub genes. The PPI networks were generated by 
STRING and then visualized with Cytoscape. Using the MCODE plug-in, 3 clusters were generated, and the degree value was used to 
define the hub gene. PPI, protein-protein interaction.
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Figure S4 The PPI network was generated by STRING. PPI, protein-protein interaction.

RFC4

SPAG5

KIF4A

KIFC1

PKMYT1

KIF14

MCM10

HJURP

CENPF

NCAPH

RAD54L

EXO1

TOP2A

DLGAP5

ATAD2

CENPA

CDK1

FAM64A

SKA3

PLK4

ASPM

NCAPG

UBE2T

SHCBP1

FEN1

SPC25

CKS2

BIRC5

CEP55

CCNB1

FANCI

NUF2

BUB1

KIF23

NCAPG2

KIF15

KIF20A

KIF11

KIAA0101

BUB1B

ECT2

NDC80

CHEK1

RRM2

RACGAP1

MCM4

ARHGAP11A

NEK2

ANLN

MCM6

CDCA5

TTK

TRIP13

CLSPN

CDCA2

UBE2C

TROAP

DEPDC1B

ASF1B

CDC20

CDC6

MCM2

TYMS

PLK1

ESPL1

CENPE

KPNA2

NUSAP1

AURKA

DSCC1

CENPM

MAD2L1

MYBL2

TACC3

CDC45

CCNB2

OIP5

CKS1B

ZWINT

CDCA8

RAD51AP1

CDT1

CKAP2L

CCNA2

SGOL1

CDC25A

CDC25C

MELK

RAD51

DTL

ORC1

NCAPD2

FAM83D

KIF2C

GTSE1

CENPU

HMMR

CDCA3

GINS2

UHRF1

KIF18B

PTTG1

AURKB

E2F8

MKI67

TK1

SKA1

FOXM1

PBK

CENPN

DEPDC1

TPX2

WDHD1

CDKN3

PRC1

A B C



© Annals of Translational Medicine. All rights reserved.  https://dx.doi.org/10.21037/atm-22-3340

cg05445326
cg13035743

WFDC2
CLSPN
CH25H
S100B

ATP8A1
TSPAN7

GCLC
OIP5

PRR11
HMGA1

UCK2
S100P
CPS1

ARHGAP11A
WDHD1

TXNRD1
NEIL3

SLC7A5
CCT5

GAL
EGLN3
KCNQ1
MYBL2
BUB1B
KPNA2
HMMR

CCNB1
DEPDC1B

ECT2
ANLN

RAD51AP1
TROAP

RACGAP1
PBK

NUF2
KIF14
NEK2
ASPM

CDCA4
DTL

RFC4
TMPRSS11E

CCNE1
IQGAP3

IGF2BP3
RPL39L
RAD54L

PLK1
SPC24

CENPM
TIMELESS

PRC1
CCNB2

NUSAP1
CENPF

CDC25A
CDCA2

KIF11
CEP55

NCAPG2
RRM2
ATAD2

LMNB1
AURKA
UBE2S
ESPL1
PTTG1
UBE2C
TACC3
LMNB2
ASF1B

RNASEH2A
CDT1

CDC20
KIF2C
MCM4

PKMYT1
TPX2

CDCA8
CDC25C

AURKB
BIRC5

CDCA5
FOXM1

TK1
MCM2
ZWINT
TYMS

UHRF1
FEN1

MCM6
CHEK1

CKS2
SPAG5

MAD2L1
CCNA2

PLK4
CENPE
TOP2A
KIF4A
MELK
BUB1

KIF20A
KIFC1
EXO1

UBE2T
MCM10
CDKN3
CDCA3

DEPDC1
SPC25

TTK
KIF15

GTSE1
MKI67
KIF23

CENPA
INCENP
PSRC1

CDC6
GGH

CKS1B
C19orf48

DTYMK
MTHFD2

RHOV
ARNTL2
FKBP10

CYP24A1
PMAIP1
TNNT1
KRT6A

GJB2
FSCN1
LYPD3

ANGPTL4
PLOD2

FAM111B
E2F8

GREM1
COL1A1
POSTN

OGN
SLC2A1
GAPDH

PFKP
FAM83A

C15orf48
STEAP1

PITX1
MYEOV

HSD17B6
PRDM16

CD302
SNX30

TPSAB1
CPA3

CX3CR1
CLDN18

VSIG2
DUOX1

GGT6
TMPRSS2

COL4A3
SLC15A2

SELENBP1
TMEM125

FOLR1
SCGB3A1

C4BPA
NFIX

RNASE1
CTSH
TLR2

RASGRF1
DNALI1

RRAD
HABP2
MAOB

CYP4B1
MYH11
FBLN5

PLA2G1B
NR3C2

CYP4X1
TBX4

SCNN1B
TNS1

TNNC1
CLIC5

IL6R
CHIA
WIF1

SCGB3A2
PEBP4

AQP4
CYB5A
SFTPC
SFTPD
ABCA3

TSC22D3
TPPP

NDRG2
FCER1A

CD1C
DPYSL2

HLA−DRB1
HLA−DRB5

BTG2
MAOA

SFTPB
PGC

CACNA2D2
RHOBTB2

KLF15
SLC34A2

NAPSA
NPC2

CGNL1
SHE

ITGA9
GPD1L

LMO3
ATP13A4

HLF
IRX2

PLA2G4F
SUSD2

DLC1
SCN7A
VIPR1
PIGR

KCNK5
BMP3

GDF15
CLIC6
CENPI

NEDD9
METTL7A
SHCBP1

RAD51
ITGA8

PXMP4
CPAMD8

CAPS
SCGB1A1

C9orf24
LOXL2

SPATA18
CLDN2
CXCL5

SERPINB5
BTNL9

CHRDL1
FAM107A

SCN4B
FHL1

MFAP4
C7

A2M
ADAMTS8

AOC3
SPARCL1

MGP
MAMDC2

SLIT3
PLAC9

DES
GDF10

ELN
ECRG4
DMBT1

CFTR
INMT

CLEC3B
TCF21
ADH1B

IL33
AGER

ABI3BP
FMO2
KLF2

CRTAC1
LPL

PTGDS
NAPSB

CD52
CYP27A1

HLA−DPA1
HLA−DRA

CD74
HLA−DQA1
HLA−DMA
HLA−DOA

HLA−DPB1
HLA−DQB1

CX3CL1
TRIM22

Group
Age

Gender
Smoking.status

Stage
Recurrence

Kras.mutation.type

C
la

ss

matrix_8

−4
−2
0
2
4

Class
Expression
Methylation

Group
1
2

Age

40

60

80

100

Gender
Female
Male

Smoking.status
Current
Never

Stage
Stage I
Stage II
Stage III
Stage IV

Recurrence
No
Yes

Kras.mutation.type
G12A
G12C
G12D
G12E
G12V
G13V
WT

Figure S5 Heatmap of the representative DEGs or genes corresponding to the methylation sites and immune cells among the different 
subtypes in the training data set. DEGs, differentially expressed genes; WT, wild type.


