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Background and Objective: Transient receptor potential (TRP) channels are a superfamily of
functionally diverse and widely expressed cation channels which exhibit complex regulatory patterns and
sensitivity to multiple environmental factors. The involvement of these ion channels is critical in various
physiological functions and pathophysiological conditions. In recent decades, a growing number of studies
have identified the essential role that TRP channels play in many ocular diseases. In this study, we performed
a narrative review of research on the expression and function of TRP channels in various eye diseases.
Methods: PubMed, Google Scholar, and Web of Science were searched for all relevant original papers and
reviews published from database inception to January 31, 2022. Searches were conducted using the related
keywords ‘“transient receptor potential channels’, “TRPs’, ‘Ca’* signaling’, ‘iron channel’, “TRPV4’, “TRPMI’,
‘retina’, ‘optic nerve’, ‘cornea’, ‘retinal ganglion cells’, ‘ON-bipolar’, “TRPs and retina’, “TRP channel and
retinal ganglion cells’, “TRPs and cornea’, ‘diabetes’, ‘glaucoma’, ‘dry eye disease’, ‘cataract’, ‘retinopathy of
prematurity’, ‘retinoblastoma’, and ‘congenital stationary night blindness’.

Key Content and Findings: In this narrative review, we summarize the history of TRP channels and
introduce the TRP channel-related literature in eye disease. Next, we discuss the molecular mechanisms of
TRP channels in various eye diseases and suggest future research directions.

Conclusions: The relevant studies indicate that TRP channels play vital roles in various eye diseases.
However, considerable work is needed to more fully understand the functional and mechanistic aspects of
how TRP channels contribute to the pathophysiology of eye disease, especially in the context of animal
models and patients. Further investigations will aid in the development of future drugs targeting TRP

channels for eye diseases.
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Introduction

Transient receptor potential ('RP) channels were first
discovered in Drosophila phototransduction (1). Over the
past 30 years, research has demonstrated the importance of
these sensory transducer molecules in numerous biological
and pathophysiological processes. Belonging to a large
and diverse family of nonselective cation channels, TRP
channels are considered to be polymodal signal integrators
that respond to various mechanical forces and chemical
stimuli. The mammalian genome encodes approximately 20
TRP channels (2,3). Based on primary amino acid sequence
homology, the TRP superfamily can be subdivided into
seven main subfamilies: TRPC (canonical; seven members),
TRPV (vanilloid; six members), TRPM (melastatin; eight
members), TRPA (ankyrin; one member), TRPN (Drosophila
no mechanoreceptor potential C, NOMPC-like; one
member), TRPP (polycystin; three members), and TRPML
(mucolipin; three members) (4). All TRP channels comprise
six transmembrane domains (T'Ms), a pore-forming loop,
and cytosolic amino (N) and carboxy (C) termini. They
can assemble as tetramers present and activated on the
membranes of intracellular organelles in a large variety of
organ systems, in both vertebrates and invertebrates (5).
Arguably, TRP channels can act as coincidence detectors
by directly controlling the flux of Ca® across the plasma
membrane. Ca®™ concentration induced by TRP channels
affects other ion channels that are sensitive to Ca™, such as
voltage-gated Ca™* channels and Ca’*-activated K* channels,
and that translate changes in cytosolic Ca’ into cation flux
and electrical activity (6-9).

TRP channels regulate a plethora of cellular processes
related to photo-, chemo-, thermo-, and mechanosensation
and ion homeostasis. Research has revealed that TRP
channelopathies lie at the origin of diverse pathological
states, including central nervous system dysfunction, cancer,
asthma, cardiac hypertrophy, lower urinary tract disorders
(LUTd), diabetes mellitus (DM), obesity, and pain (10-17).
Several recent studies have advanced our understanding
of the role of TRP channels in ocular diseases (Table 1). A
few key functional themes and promising preclinical data
highlighting the potential of small molecules targeting
TRPA1, TRPMS (for dry eye), TRPV4 (for diabetic
macular edema), and TRPV1 (for glaucoma) have also
begun to emerge. Nevertheless, the function and biological
relevance of TRP channels in ocular diseases have remained
largely unexplored. Understanding how TRP channels
respond to angiogenesis and nerve injury is of direct clinical
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relevance to patients with diseases that affect visual function,
and these channels may become valuable alternatives for
the pharmacological treatment of ocular diseases. In this
study, we summarize recent insights into the roles of TRP
channels in eye tissue. In particular, we discuss what is
known about the physiological roles of these channels in
vasculature and neural networks. We also reflect on how the
recent interest in TRP channels is deeply rooted in biology’s
longstanding concern with the evolution of chronic eye
diseases. We present the following article in accordance
with the Narrative Review reporting checklist (available at
https://atm.amegroups.com/article/view/10.21037/atm-21-
6145/r0).

Methods

Relevant articles published in English from database
inception up to November 2021 were retrieved from
PubMed, Google Scholar, and Web of Science. The cited
references in published articles were also searched. The
search method was a systematic search of the databases
using Boolean operators (e.g., AND, OR) and combinations
of the following search terms: ‘transient receptor potential
channels’, “TRPs’, ‘Ca’" signaling’, ‘iron channel’, “TRPV#4’,
“TRPMY’, ‘retina’, ‘optic nerve’, ‘cornea’, ‘retinal ganglion
cells’, ‘ON-bipolar’, “TRPs and retina’, “TRP channel
and retinal ganglion cells’, “I'RPs and cornea’, ‘diabetes’,
‘glaucoma’, ‘dry eye disease’, ‘cataract’, ‘retinopathy of
prematurity’, ‘retinoblastoma’, and ‘congenital stationary
night blindness’. The final reference list was generated
based on the relevance and originality of articles concerning
the topics covered in this review. The detailed search
strategy is listed in Table 2.

The expression of TRP channels in ocular
tissues and the pathophysiological roles of TRP
channels in ocular disease

Mammalian TRP channels are expressed in several ocular
tissues. Serving as sensors, they respond to a wide range
of chemical and biophysical intracellular and extracellular
stimuli and, in turn, permit cation entry. The influx of
Ca’ through TRP channels enables individual cells to
sense changes in their local environment, alters enzymatic
activities, and provides a pivotal way to impact cellular
behavior. Given the unique importance of [Ca™]; in all cell
types, it is unsurprising that dysfunctions in TRP channels
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Disease

TRP

Tissue/cell type

Experiment

Effects

Dry eye

Allergic conjunctivitis

Cataracts

Glaucoma

Diabetic retinopathy

TRPA1 (18)

TRPV1 (19-21)

TRPMS (22-24)

TRPA1 (25,26)

TRPV1 (26)
TRPMS (27)

TRPMS (28-30)

TRPV1 (31-33)

TRPA1 (34)

TRPA1 (35)

TRPV4 (36-38)

TRPC1/3/4/5/6
(39,40)

Mouse cornea

Trigeminal ganglia
Mouse/rat cornea
Trigeminal ganglia

Human cornea

Mouse/rat cornea

Trigeminal ganglia
Mouse blood
Conjunctival

Cervical lymph nodes
Mouse conjunctiva

HConEpiC

Mouse lens/eye

Head/blood

Human blood
HEK293T

Mouse retina/brain

Optic nerve

Rat retina

RGCs

Mouse retina/DRGs
Human retina

Chick retina

Mouse retina

RPEs

Bovine RMECs

Mouse retina

HRECs

In vivo

In vivolin vitro

Phase /11
clinical trials

In vivolin vitro

In vivo

In vivo

In vivo

In vivolin vitro

In vivolin vitro

In vivo

In vivo

In vivolin vitro

In vivolin vitro

Lacrimal functional unit produced Fos-like immunoreactivity

at the ventrolateral pole of trigeminal interpolaris/caudalis
transition region in a TRPA1-dependent manner

Corneal cold nociception; promoted tear film instability

Increased the production of tears under non-noxious
cooling stimuli; modulated cold-pain sensation

Interacted with histamine receptor H1

Regulated histamine-dependent ocular itch signaling

Interacted with TRPV1; suppressed TRPV1-induced IL-6
release

TRPM3 deficiency impaired lens growth and eye
development

TRPMS3 dysfunction resulted in progressive lens
degeneration

Responded to disease-relevant stressors by enhancing
activity necessary for axonal signaling

Contributed to RGC apoptosis and increased [Ca2+]i with
exposure to hydrostatic pressure

Mediated the oxidative stress burden and inflammation

Contributed to cell death under ischemic condition in early
stages

Increased microvascular endothelial permeability

Endothelial dysfunction; aggravated water diffusion and
BRB breakdown in the retina

Mediated endothelial function in a VEGF-dependent
manner under HG

Regulated glyoxalase 1 enzyme activity

Table 1 (continued)
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Table 1 (continued)
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Disease TRP Tissue/cell type Experiment Effects

ROP TRPV1/4 (41)  Mouse retina In vivo/in vitro  TRPV1 and TRPV4 formed a functional heteromeric channel

to deliver pro-angiogenics in a VEGF-independent manner

Bovine RMECs

TRPCS5 (42) Mouse retina In vivol/in vitro  Triggered angiogenic activities in response to the ischemic

condition by regulating ca” entry

HEK293
CSNB TRPM1 Mouse retina/eye In vivo/in vitro  TRPM1 mutations were a major cause of autosomal
(85,43-46) recessive CSNB
Horse retina/skin TRPM1 was gated by the mGIuR6 signaling cascade
Human blood Clinical trial
Retinoblastoma TRPV1 RB tumor tissue In vivo Interacted with cannabinoid receptor 1 in etoposide-
sensitive RB cells
TRPA1 WERI-Rb1
TRPM8 (47)
TRPM?7 (48) RB cells derived from In vivo Formed a heterooligomeric complex with other TRPM
patients members to regulate RB cell viability through increasing

. 2+,
intracellular Ca  influx

BRB, blood-retinal barrier; CSNB, congenital stationary night blindness; DRG, dorsal root ganglion; HEK293T, human embryonic kidney

cells; HG, high glucose; HRECs, human retina

vascular endothelial cells; HConEpiC, human conjunctival epithelial cells; IL-6, interleukin

6; mGluR6, metabotropic glutamate receptor; RB, retinoblastoma; RGCs, retinal ganglion cells; RMECs, retinal microvascular endothelial
cells; ROP, retinopathy of prematurity; RPEs, retinal pigment epithelial cells; TRP, transient receptor potential; VEGF, vascular endothelial

growth factor.

Table 2 Summary of the search strategy

ltems

Specification

Dates on which the search was performed
Databases and other sources searched

Search terms used

Timeframe
Inclusion and exclusion criteria

Selection process

From August 17, 2021, to April 5,2022
PubMed, Google Scholar, and Web of Science

‘transient receptor potential channels’, ‘TRPs’, ‘ca” signaling’, ‘iron channel’, ‘TRPV4’,
‘TRPM1’, ‘retina’, ‘optic nerve’, ‘cornea’, ‘retinal ganglion cells’, ‘ON-bipolar’, ‘TRPs and
retina’, “TRP channel and retinal ganglion cells’, “TRPs and cornea’, ‘diabetes’, ‘glaucoma’,
‘dry eye disease’, ‘cataract’, ‘retinopathy of prematurity’, ‘retinoblastoma’, ‘congenital
stationary night blindness’

From July 1954 to November 2021
All study types were included; language was restricted to English

TJ Yang and Y Yu conducted the study selection together. They selected literature based
on criteria including correlation with subjects, time of publication, and experimental design

are causal to, or at least involved in, pathological processes human biology. However, exploration of the function of
in several diseases. Our knowledge of diseases that involve TRP channels in ocular disease is only in its infancy. Recent
TRP channel dysfunction has increased impressively during work has demonstrated that TRP channels contribute to
the last 10 years, which underscores their importance in a variety of eye diseases, including dry eye disease (DED),
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cataracts, glaucoma, diabetic retinopathy (DR), and
congenital stationary night blindness (CSNB).

TRP channels in the cornea and DED

The cornea is an avascular connective tissue that acts as the
eye’s primary infectious and structural barrier. The cornea
must have a perfectly defined shape and optical clarity, and
in humans, consists of five recognized layers: two cellular
layers (a stratified epithelium and a single-cell layered
endothelium), two interface layers (Bowman’s membrane
and Descemet’s membrane), and the collagenous stroma.
In most mammals, the cornea contains a wide variety of ion
channels and pumps to detect noxious stimuli, such as TRP
channels.

The epithelial surface is the anterior-most structure
of the cornea; it functions as a semi-permeable, highly
electrically-resistant membrane which protects the
underlying stroma from pathogenic invasion. The first TRP
channel subtype to be identified in human corneal epithelial
cells (HCECs) was TRPC4 (49). Functional expression of
TRPV1-4 has been detected in the epithelial layer (50,51).
Studies have also shown that TRPV1, TRPV3, TRPAI1, and
TRPMBS are expressed in corneal nerve fibers (46,52-55). In
recent years, corneal innervation has become an increasingly
important topic, and we have gained critical insights into
how TRP channels can be generated and regulated, and
how they function, in sufficient detail.

The TRPV family is best known for several well-
characterized thermosensitive channels. One of the most
important and well-understood representative subsets of
the family is TRPV1 (56,57), which is expressed on the
nasociliary branch of the ophthalmic division trigeminal
sensory axons terminating in the corneal epithelial layer
(58,59). This cation channel can be activated by noxious
heat (>43 °C), protons (extracellular pH <6), animal toxins
(centipede, tarantula), resiniferatoxin, and capsaicin (60-63).

Initially known as the capsaicin receptor, TRPV1
was later recognized as a unique molecule entity and
formally named transient receptor potential vanilloid
1 (64). Knockout (KO) mice for TRPVI1 represent an
important approach to understanding the functions of this
receptor in normal physiology and disease. In a seminal
work that examined vanilloid sensitivity in cultured dorsal
root ganglion (DRG) neurons from wild-type (WT) and
TRPV1™ mice, both capsaicin and resiniferatoxin (a
thermogenesis and pain-related molecule) were reported to
evoke rapid, robust calcium inward currents of around 20%
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WT neurons; however, significantly reduced responses were
observed in TRPV1 KO mice (65). These observations
demonstrate that disruption of TRPV1 expression in mice
eliminates responses to noxious stimuli. In an alkali burn
model study, the incidence and degree of corneal haze and
opacification in the burned cornea were more severe in
WT mice than in TRPV1™ mice at 1, 2, 5, 10, and 20 days.
Findings from real-time quantitative reverse transcription-
polymerase chain reaction (QRT-PCR) showed that a lack
of TRPVT significantly suppressed the mRNA levels of
myeloperoxidase (MPO, polymorphonuclear marker) and
F4/80 (macrophage marker) staining in the burned cornea
at each time point (66). The study therefore demonstrated
that TRPV1 is essential for mediating the inflammatory
process in vivo and that it is involved in regulating corneal
thermal-mechanical acute pain and tissue injury.

An increasing amount of evidence suggests that corneal
epithelial cells release a variety of neurotrophic cytokines,
including nerve growth factor (NGF), neurotrophin-3
(NT3), and glial cell-derived neurotrophic factor (GDNF),
to maintain neurite extension and survival (67-69). One
study used qRT-PCR to measure the TRPAl mRNA
expression profile in developing sensory nerves from the
ophthalmic division of the trigeminal ganglion (OTG) in
the embryonic chicken cornea. Results showed a progressive
increase in TRPA1 mRNA from embryonic days 6 to 12.
Treatment with N'T3 produced a 100-fold increase in
TRPA1 mRNA, while the responses to NGF and GDNF
were slight (58). These results support the hypothesis that
NT3 regulates TRPAL expression. However, future work
is needed to determine the mechanism between N'T3 and
TRPALI regulation.

Research has demonstrated that TRPA1 is temperature
sensitive and is activated by painful cold (<17 °C) (70,71).
However, at present, cold-induced activation of TRPAI
in ocular nociception remains contentious. Li er a/. (19),
for example, argued that the ocular responses of TRPAI
KO mice to cold were not significantly different from
those of WT mice. Research has also shown that TRPMS8
is widely expressed in corneal afferent fibers (72). This
thermosensitive TRP channel is activated by moderate cold
and cooling agents such as menthol and icilin (73,74). Parra
et al. (22) recorded cold and menthol-evoked nerve terminal
impulse (NTI) activity in the corneas of TRPM8” mice.
In WT mice, ongoing activity was detected in only scarce
nerve endings, and the firing frequency was extremely low.
In contrast, no NTT activity could be evoked in TRPMS8™"
corneas with 50 pM menthol at 34 °C or during cooling.

Ann Transl Med 2022;10(15):839 | https://dx.doi.org/10.21037/atm-21-6145



Page 6 of 25

The same study also found that the basal tear fluid volume
of TRPM8™" mice was significantly lower than that of
their WT counterparts. These findings suggest that the
cold responsiveness of TRPMS may allow it to serve as a
‘humidity detector’ to regulate basal tearing. Although the
detailed mechanism underlying corneal ulcers and chronic
ocular pain is associated with different conditions, these
findings demonstrate the functional significance of TRP
channels in the cornea and their potential clinical relevance.
Dry eye disease is a chronic multifactorial syndrome
characterized by a loss of tear film homeostasis and ocular
surface inflammation. Patients with DED experience
typical ocular symptoms of dryness, irritation, debris
sensation, blurred or fluctuating vision, and ocular fatigue,
and are often accompanied with burning, tenderness, and
aching. The disease is among the most common ocular
conditions that lead patients to seek eye care, with estimates
of the presence of DED in the global adult population
ranging from 5% to 50% (75). Ocular surface (cornea,
conjunctiva, lacrimal and meibomian glands) abnormalities
may prevent basal tear secretion and can accompany or
affect DED. Recent studies have identified several TRP
channels associated with DED, thus providing a putative
pathogenetic mechanism of ocular surface disease.
Approximately three TRP channels (TRPMS, TRPV1,
and TRPA1) are expressed on the cornea. Corneal cold
thermoreceptors number approximately half of all corneal
sensors, which play a major role in detecting ocular dryness
and maintaining tear homeostasis (76). Functioning as
master regulators, TRPMS8 channels exert the electrical
activity of corneal cold receptors to maintain basal tearing
and spontaneous blinking. One study identified the critical
role of TRPMS channels in ocular surface sensitization in
response to moderate, non-noxious cooling stimuli. Under
cool corneal temperatures and topical menthol application,
cold-evoked N'TT activity, evaluated by electrophysiological
recording, was largely absent in TRPM8” mice compared to
WT mice. The study also revealed that under basal thermal
conditions (18-34 °C), the tearing flow values of TRPMS8™"
mice were significantly decreased. These findings suggested
that TRPMS in corneal cold receptors contributes to
maintaining the basal tear secretion at normal corneal
temperatures (22). Two prospective pilot studies indicated
that topical application of the TRPMS agonist cryosim-3
in patients with dry eye could stimulate basal tear secretion
and relieve neuropathic pain, suggesting that this TRPMS8
agonist could be a promising treatment for irritation and

pain related to DED (23,77). Fakih er al. (78) confirmed that
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TRPMS is implicated in corneal inflammation in a severe
mice model of DED via extraorbital lacrimal gland and
Harderian gland excision. However, although their study
showed that TRPMS blockage diminished inflammation in
the cornea and the trigeminal ganglion, it did not directly
test the influences of the TRPMS8 antagonist M8-B on
tear production, and further exploration is needed. Of
note, TRPMS is required for ocular cold nociception,
and it is a promising drug target for dry eye management
because it regulates basal tearing and maintains the ocular
surface wetness. However, TRPMS is not the only channel
responsive to DED.

Animal models of DED typically use corneal fluorescein
staining to evaluate the expression, distribution, and
changes of TRPs in ophthalmic nerve bundles, fibers, or the
corneal epithelium. In a study using mice with genetically
marked TRPMS loci (TRPM8"“*""* mice), whole-mount
immunohistochemistry of nerve fibers showed that
approximately half of corneal TRPMS8-positive neurons
expressed TRPV1 (19). This overlap between TRPMS and
TRPV1 in cornea-projecting sensory neurons suggests that
TRPV1 is also necessary and sufficient for cold nociception
in the cornea. The authors demonstrated that capsaicin-
sensitive TRPM8-positive neurons (identified by calcium
imaging) displayed increased amplitude of calcium responses
to cold. In contrast, pharmacological blockade of TRPV1
significantly suppressed depolarization and neuronal firing
upon subsequent cold treatments. In a surgical dry eye
mouse model established in the same study, the percentage
of TRPMS® cold-sensing neurons did not change; however,
TRPV1 was significantly upregulated in TRPMS8" cold-
sensing neurons in mice with dry eye compared with sham-
operated mice. This observation further corroborates the
finding of another study that TRPV1 protein levels were
increased in anterior eye samples and trigeminal ganglia
from rats with dry eye, while values for the TRPMS8
protein were similar between the sham group and dry eye
group (20). Furthermore, the upregulation of TRPV1 in
TRPMS" neurons led to severe cold allodynia, as shown by
significant reflex blinking; however, this could be effectively
attenuated by genetic TRPV1 deletion or selective TRPV1
antagonist treatment (19). Although TRPV1 has long been
believed to serve as the primary heat and capsaicin sensor
in the skin and cornea of mammals (79,80), the above
results further support the indispensable role of TRPV1
in enhancing the neuronal excitability of TRPMS8" neurons
to cold and generating cold allodynia in the cornea. Also,
TRPV1™ mice were found to lack the eye-closing response
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to cold stimulation entirely, which suggests that TRPV1
is a more promising drug target than TRPMS is for pain
management in DED. Some researchers consider TRPV1
to be the primary DED facilitator. However, experiments
have proposed that TRPV1 is the primary osmoreceptor
of the organum vasculosum lamina terminalis (OVLT)
neurons and arginine-vasopressin-releasing neurons (AVP,
an antidiuretic hormone) (81,82). In TRPV1™" mice,
osmosensory transduction of supraoptic nucleus neurons
is abolished, evidencing a role of TRPVI in osmotic
control (81). Transduction channels that are TRPV1
dependent may be a potential mechanism of ocular
osmoregulation. Benitez-Del-Castillo ez 4/. (21) developed a
small interfering oligonucleotide RNA (siRNA) compound
targeting TRPV1 and evaluated its efficacy and safety
for DED treatment in one phase I and two phase II
clinical trials. The data demonstrated that topical TRPV1
siRNA could extend tear break-up time and prevent tear
hyperosmolarity, with an improvement in the ocular surface
disease index score. These results showed that TRPV1 has a
function in tear film instability. Although additional studies
are required to define the mechanisms responsible for the
hyperosmolarity, corneal damage, and inflammation in
DED, TRPV1 may act as a candidate transducer in sensing
osmotic stimuli during corneal drying.

Involvement of TRPA1 in DED has been reported in
rats (18). In an extraorbital lacrimal gland excision model of
murine tear-deficient DED, the TRPA1 agonist mustard oil
(0.02-0.2%) caused dose-related increases in eyeblink and
forelimb eye-wipe nocifensive behavior. In a recent study,
Fakih et al. (83) demonstrated that TRPA1 channels are
present in mouse corneas, with higher TRPA1 mRNA levels
being observed in mice with DED. This finding might
lead to a better understanding of the important correlation
between TRPA1 and DED. Nonetheless, more studies are
needed to verify the specific effects of TRPA1 in DED.

TRP channels in the conjunctiva and conjunctivitis

The conjunctiva is a transparent mucous membrane.
It is a continuous barrier that provides immunological
defense and sustains the equilibrium of the tear film. In
human conjunctival epithelial cells (HCJECs) and normal
human conjunctiva tissues, studies using qRT-PCR
experiments and immunohistochemistry have detected
TRPVI1, TRPV2, and TRPV4 expression (84,85). These
findings have been further confirmed by qRT-PCR and
western blot analysis of the immortalized HCJEC line (86).
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An immunocytochemistry study also showed TRPMS8
protein localization in both the endoplasmic reticulum
compartment and the plasma membrane of HGJECs (27).

The thyronamine 3-iodothyronamine (T,AM) has
been found to be a novel putative thyroid hormone
derivative that can exert remarkable hypothermia (87,88).
Khajavi et al.’s novel theory (27) described the interactions
between T \AM and TRPMS. Treatment of HCJECs
with T AM increased the fluorescence ratio (f340 nm/
£380 nm), a relative index of changes in intracellular free Ca™
concentration ([Ca’"];), within minutes. After administration
of N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)-
tetrahydropyrazine-1(2H)-carbox-amide (BCTC, TRPMS8
blocker) for 20 minutes, the T,AM-induced Ca’* rise was
abolished, indicating that T;AM can act as a potent activator
of TRPMS. However, the biosynthetic and deiodinase
pathway of T AM should also be taken into account, and
the role of this endogenous amine in regulating TRP
channels remains to be established.

Conjunctivitis, or inflammation of the conjunctiva, is a
common ocular ailment that typically presents as widening
of the conjunctival vessels and cellular infiltration leading to
hyperemia and edema of the conjunctiva. The typical signs
of conjunctivitis are a red eye and discharge. Conjunctivitis
can be classified based on infectious and noninfectious
causes. Infectious conjunctivitis has diverse causes, with
20-70% of all cases being caused by viruses (89-91). The
etiologies of noninfectious conjunctivitis include allergy,
toxicity, mechanical trauma, immune response, and the
neoplastic process (92). Although several TRP channels
appear to be linked to conjunctivitis, little is known about
how these channels contribute to the development of the
condition. To date, only two channels, TRPV1 and TRPALI,
have been reported to mediate conjunctivitis; both are
proposed to play an important role in allergic conjunctivitis
(AC) (25,20).

AC is mainly caused by immunoglobulin E (IgE) and
mast cells (MCs), which trigger the type I hypersensitivity
response, resulting in MC degranulation and the release
of a cascade of histamine, leukotrienes, neutral proteases,
proteoglycans, and other inflammatory mediators (93,94).
These molecules, especially histamine, contribute to
symptoms such as tearing, redness, conjunctival edema,
and itching, which characterize the early-phase response
in AC. In the late-phase reaction, increased expression of
the high-affinity receptor for IgE (FceRI) on dendritic cells
in the conjunctiva and the limbus aids in the maturation
and differentiation of T-lymphocytes into effector T cells
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(Th1 or Th2 lymphocytes). Th2 cells are the primary
contributors to MC growth, eosinophil accumulation,
and mucus hyperproduction, which lead to chronic
inflammation of the ocular surface and severe forms of
ocular allergic disorders (95,96). MC IgE-FceRI signaling
activation also results in the phosphorylation of enzymes,
including mitogen-activated protein kinase, protein kinase
C (PKC), and phospholipase C, which causes Ca** to be
released from the endoplasmic reticulum. Depletion of
intracellular Ca’* stores activates store-operated Ca™ entry
(SOCE) and allows extracellular Ca* influx. In an allergic
reaction, the increase in Ca’* permeation activates TRPAI1
and TRPV1, and opened TRPV1 and TRPAI channels, in
turn, induce infiltration by inflammatory cells and a rise in
Th2 cytokine levels (97).

Studies have found that TRPV1 is the downstream
transduction channel of the histamine H1 receptor in
sensory neurons that are sensitive to capsaicin (98).
The TRPVI1 channel contributes to chronic allergic
inflammation in animals, such as that seen in irritable
bowel syndrome and asthma (99-101). In Kwon er a/.’s
study, topical treatment with a TRPVI antagonist in the
AC murine model significantly reduced blinking and
tearing. Cell counts also showed sparse MCs and eosinophil
infiltration, with decreasing levels of interleukin (IL)-4
and IL-13 in ipsilateral cervical lymph nodes quantified
by enzyme-linked immunosorbent assay; in contrast, no
significant change was found in the TRPA1 antagonist
treatment group (25). These results indicated that
TRPV1 antagonist treatment could potentially be widely
used to alleviate ocular discomfort associated with AC.
It should be noted that TRPAI antagonist treatment is
involved in the regulation of blinking but has no effect on
tearing or inflammatory cell infiltration. Unlike TRPAI,
TRPV1 might mediate itch-scratching behavior in AC by
attenuating associated inflammation.

Itching is the cardinal feature of AC. Data indicate
that this symptom results from a series of different
pathological mechanisms, which may overlap or crossover.
The ovalbumin-induced AC mouse model is insufficient
for analyzing the function of TRPs in AC because of the
complexity of neuropathic pain and itch. Huang ez a/. (26)
applied the genetic channel deletion technique to analyze
TRPV1 and TRPALI function in AC. Examination of the
itch responses after histamine treatment suggested that
TRPV1 KO mice showed fewer wiping bouts than did
WT and TRPA1 KO mice, while no difference was found
between WT and TRPA1 KO mice. Loss of TRPV1 was
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found to inhibit the conduction of the histamine-associated
itch pathway, which confirmed the earlier conclusion that
TRPV1 is one of the downstream transduction channels
of the histamine receptor. The same researchers also
demonstrated that TRPAI might represent a histamine-
independent itch pathway contributing to bradykinin
excitatory effects (26). They evaluated the anti-hyperalgesic
effect of TRPV1 antagonist alone or complexed with
TRPA1 antagonist in their ovalbumin-induced AC model
established in TRPA1 KO and TRPV1 KO mice, showing
that targeting both TRPA1 and TRPVI may achieve a
better therapeutic outcome for ocular itch.

Current pharmacologic measures for AC include
antihistamines, membrane-stabilizing agents, MC stabilizers,
vasoconstrictors, nonsteroidal anti-inflammatory drugs, and
topical corticosteroids (102). Ocular itch management relies
heavily on antihistamines and immunosuppressive drugs,
but these often have limited efficacy. Among the TRP
channels, TRPV1 and TRPALI appear to offer alternative
analgesic approaches to suppress or regulate the immune
response triggered by allergens.

TRP channels in the lens and ciliary body, and cataracts

The lens is a transparent tissue that fine-tunes the passage
of light onto the retina. The critical importance of Ca’™*
to lens clarity, hydration, and crystallin degradation
and aggregation has long been recognized (103). New
information is emerging on the regulation of Ca™ levels in the
lens by mechanisms that rely on TRP channels. The presence
of TRPV1, TRPV4, and TRPM3 has been found in the
lenses of various species, including humans (28,85,104,105).
Nakazawa et a/. (104) confirmed that TRPV1 and
TRPV4 are expressed in all regions of the mouse lens
(the epithelium, outer cortex, inner cortex, and inner
core). They reported that TRPV1 and TRPV4 might act
as mechanosensors that transduce hydrostatic pressure
changes into dynamic signaling to regulate lens ion
transport activity and cellular osmosis. Mechanical stimuli,
such as hyposmotic shock, can activate TRPV4 channels,
which trigger hemichannel-mediated ATP release from
the lens and regulate the transport function in the lens.
Also, TRPV1 is involved in hyperosmotic lens shrinkage
and modulates the overall lens volume by activating Ca**/
PKC-dependent ERK1/2 signaling. Previous research has
shown that TRPV4 activation can lead to ATP release, but
the biological mechanism has yet to be identified at the
molecular level (105). One very recent study indicated that
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germline knockdown of TRPM3 impaired lens growth,
while TRPM3 dysfunction resulted in progressive anterior
pyramid-like cataracts and microphthalmia (29). These
findings underline the need to better define the function of
TRP channels in the lens.

The ciliary body, the anterior continuation of choroid,
and the retina are composed of smooth muscle cells. The
ciliary epithelium mediates the production and secretion of
aqueous humor, and visual accommodation. The contractile
state of the ciliary muscle requires a sustained influx of
Ca’ through the cell membrane. Intracellular free calcium
([Ca™];) is mainly mediated by nonselective cation channels,
which serve as a major Ca’ entry pathway in various
smooth muscles. Takai ez #/. (106) detected the existence
of TRPCI1, TRPC3, TRPC4, and TRPC6 mRNAs in
the bovine ciliary body through reverse transcription-
polymerase chain reaction (RT-PCR) experiments, which
indicated that TRPCs are a possible alternative pathway for
Ca’" entry. However, there is limited information on the
functional and biological relevance of TRP channels in the
ciliary body, and these results need further confirmation.

Cataracts, or lens clouding, is the leading cause of
reversible vision loss worldwide. Among the more than
2.2 billion cases of near or distance vision impairment globally,
recent figures estimate that 94 million people are affected by
cataracts (107). Cataractogenesis is a multifactorial process
closely associated with lens chronological aging, presbyopia,
oxidative stress, calcium imbalance, hydration, and crystallin
modifications (108-111). Due to its avascularity, the lens
primarily relies on its circulation system to maintain its
transparency and homeostasis. Unregulated Ca’" is well
documented to be a major contributor in almost all types
of cataracts, and elevated levels of Ca’™ range from 0.1 to
64 mM (110,112-114). However, reports regarding the
association of TRP channels with cataracts are scarce.
Bennett et al. (28) detected abundant levels of TRPM3
reference transcripts in postmortem human lens analysis by
RT-PCR. Among them, TRPM3 transcript variant-9 was
predicted to be associated with isoleucine-to-methionine
change, with deleterious effects on protein function that led
to lens opacity. Zhou et al. (29) confirmed this finding in
homozygous Tipm3-M/M mutant mice, which developed
severe, progressive, anterior pyramid-like cataracts.
Emerging evidence suggests that the Pax6 gene, a master
transcription regulator of eye development in vertebrates,
upregulates Tipm3 and miR-204 during eye development
in mice (30,115,116). Further insights on the TRPM3
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mutation in cataracts, especially congenital cataracts, await
discovery.

TRP channels in the optic nerve and trabecular meshwork
(TM), and glaucoma

The optic nerve, an integral part of the central nervous
system, contains approximately 1 million axons that
originate from multiple retinal ganglion cell (RGC)
subtypes (117). These axons project to the brain, transmitting
visual signals and ultimately relaying image-forming
information onto the cortex.

Previous studies have shown that most TRP subfamilies
(TRPC, TRPM, TRPV, TRPA, and TRPP) are expressed
in the optic nerve head of mice (118). An analysis using
gRT-PCR indicated the rank order of TRP-channel subtype
expression to be TRPM3 >>> TRPM7 > TRPC1 > TRPV2
> TRPC3 > TRPMS, with little evidence of developmental
regulation between the postnatal and adult optic neuronal
array (119). Through calcium signaling, TRP channels
mediate various neuronal responses to physiologic and
pathogenic stimuli. However, past studies examining TRP
channel functions in neuronal circuits have mainly explored
the roles of Ca™ signals originating from intracellular stores.
These studies assume that the main mechanism is SOCE
in astrocytes and oligodendrocytes, which is important for
axon-myelin maintenance and integrity (120). The primary
channel for SOCE is TRPM3, which is also the most highly
expressed TRP channel in the optic nerve. Papanikolaou
et al. (119) illustrated that a high concentration (50 pM)
of TRP inhibitor completely blocked [Ca’"]; recovery in
optic nerve astrocytes, oligodendrocytes, and optic nerve
explants. In contrast, SOCE was found to be essential for
glial Ca™ signaling in this typical white-matter tract, which
indicated that replenishment of intracellular Ca’" stores was
entirely dependent on [Ca™]; from the extracellular milieu
via SOCE. Moreover, TRPV1 and TRPV4 were found
in the optic nerve head, which supports the idea that Ca’™*
handling could be relevant to optic nerve function (118,121).

The TM is a complex three-dimensional porous tissue
located at the iridocorneal angle. The TM and the adjacent
Schlemm’s canal play a key role in regulating the outflow
of aqueous humor and controlling intraocular pressure
(IOP). The cells in the TM are excitable and display
contractile properties (122,123). Expression of TRPC1
and TRPC4 has been discovered in bovine TM cells and
has been found to behave as the SOCE pathway (124).
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A growing body of evidence confirms the presence of
TRPV4 in cultured human TM cells, primary human TM
cells, and mouse and human TM tissues (51,125). There
was a significant decrease in TRPV4-induced calcium
flux in human TM cells treated with hydrostatic pressure.
Lowe syndrome, or oculocerebrorenal syndrome, is a rare
X-linked recessive disorder that causes bilateral congenital
cataracts and glaucoma. The OCRLI gene is mutated
in Lowe syndrome; this mutation leads to abnormal
intracellular trafficking to the primary cilium, which is a
single hair-like membrane structure found in almost every
cell type (126,127). Coimmunoprecipitation assays showed
that TRPV4 interacts with the OCRLI gene, with both
localizing within the primary cilium of human TM cells.
Further, siRNA OCRL1 knockdown in human TM cells was
found to significantly reduce the Ca’ influx in the presence
of TRPV4 agonist (125). Therefore, OCRL is required
for TRPV4-mediated calcium signaling, and TRPV4
trafficking to the primary cilium is important in human
TM cells. Importantly, in mice with TM-specific TRPV4
channel KO, Patel ez 4/. observed a significant increase in
IOP (128). The same study found that TRPV4 activation
could enhance nitric oxide release via endothelial nitric
oxide synthase signaling, thus revealing a novel mechanism
to suppress IOP elevation. Another study also showed that
pharmacological activation of TRPV4 channels in mouse
eyes improved the aqueous humor outflow facility and
reduced IOP (51), supporting the finding that TRPV4
channels have a crucial role in IOP regulation.

Glaucoma is a panoply of chronic progressive optic
neuropathy characterized by progressive degeneration of
the optic nerve and retinal nerve fiber layer, with loss of
RGCs and their axons, and is accompanied by visual field
damage. It affects more than 76 million people worldwide
and has become the most common cause of irreversible
blindness globally (129-132). In approximately 10% of
cases, glaucoma results in bilateral blindness, but in 10% to
50% of cases, the individual is unaware of their condition,
because the disease often remains asymptomatic early in its
course (133,134).

Glaucoma is a complex, multifactorial disorder, the
underlying pathological mechanism of which is still under
investigation. Elevated IOP is usually considered to be the
main reason for enhanced apoptosis and loss of RGCs in
glaucoma. Reducing IOP is currently the only method to
treat glaucoma approved by the United States Food and
Drug Administration (135). However, therapeutic IOP
control is insufficient to ensure the visual function and
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prognosis of patients with glaucoma, because some patients
with relatively normal eye pressure still exhibit damage
to RGCs and the optic nerve. Evidence suggests that
neurotrophin signaling, oxidative stress, protein misfolding,
mitochondrial damage, and hypoxic and ischemic
phenomena may all contribute to glaucoma-related cell
death.

In mice and in humans, TRPA1 is widely expressed
throughout the retinal layers (34). In an ischemia and
reperfusion (I/R) mouse model and the ischemic event
exposed-chick retina, pharmacological blockade of TRPA1
was found to reduce retinal cell death and attenuate the
reductions in retinal thickness and the total number of
RGCs (35). Thus, the inhibition of a TRPAl-dependent
pathway may be a noninvasive therapeutic approach to limit
glaucoma-related retinal damage.

Studies have revealed that TRPC6 participates in
glaucoma retinopathy. In normal rat retinas, TRPC6 was
found by Wang ez 4. to mainly be localized in the RGC
layer. In the same study, TRPC6 expression was further
elevated in the retinal I/R model at 12 and 24 hours after
reperfusion. Progressive RGC loss was also observed after
I/R, and this effect was inhibited by pretreatment with
SKF96365 (a TRPC channel antagonist) (136). However,
since SKF96365 lacks specificity, additional contributions
from other Ca’* entry channels cannot be ruled out;
therefore, the results of Wang et 4/l.’s study were not strong
enough to determine the early neuroprotective effects of
this TRPC6 antagonist on RGCs. The same research team
found specific alterations of TRPC6 gene expression in
the peripheral blood samples from patients with primary
open-angle glaucoma. The gene expression pattern was
also correlated with IOP and the cup-to-disc ratio (137).
In chronic glaucoma, optic disc cupping may stretch
RGC axons (138); consequently, TRPCs, which are stress
and mechanosensitive cation channels, can be activated.
Although Wang et al’s work supported the finding that
TRPC6 may serve as a biomarker for glaucoma, it did not
evaluate RGC layer thickness. Further assessment of the
role of TRPC6 during RGC loss in clinical trials is needed
to confirm the results found in the I/R animal model. Thus,
further research is still required to analyze the effect of
TRPCG in the process of glaucoma.

Optic nerve degeneration in glaucoma involves early
stress to RGC axons caused by sensitivity to IOP. Voltage-
gated sodium channel (NaV) subunits normally function
in initiating and propagating action potentials, especially
Navl.6 and 1.2. Studies of glaucoma progression in mice
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using microbead-induced IOP elevation suggest that NaVs
are expressed in the RGC soma and axons as part of an
early adaptive role in the condition (139,140). Early axon
dysfunction after IOP elevation often precedes outright
morphologic degeneration. Over 2 weeks of IOP elevation
in mice, McGrady et 4/. found that Nav1.6 increased in
RGC axons. In this context, excitability included increased
depolarization of the resting membrane potential, which
reduced the threshold for excitation. In their experimental
glaucoma mouse model, genetic deletion of TRPV1 was
found to increase NaV1.6 in RGC axons (141). However,
that result cannot exclude the possibility that additional
voltage-dependent mechanisms can enhance excitability,
since the Navl.2 subunit is also located in RGC axons.
Ward er al. (31) established a glaucoma rodent model
using anterior chamber polystyrene microbead occlusion
in rats and TRPV1” mice to test the role of TRPV1 in
RGC damage evoked by 4 to 5 weeks of IOP elevation.
Data showed that KO or pharmacological inhibition of
TRPVI accelerated RGC degeneration, which presented
as an accumulated loss of RGC axonal terminals, a thinner
retinal nerve fiber layer, attenuated axon density, and overt
hypertrophy of astrocytes. Accordingly, IOP elevation may
provide a preconditioning stimulus early in glaucoma to
slow RGC axonal degeneration. However, further studies
are needed to assess whether this mechanism is protective
or ultimately deleterious to survival.

A growing bank of studies state that different glaucoma-
relevant stressors, such as ischemic insult, oxidative stress
by-products, and pressure, can activate TRPV1 and other
channels, thus increasing intracellular Ca™, and contribute
to RGC damage or modulate RGC survival indirectly
via signaling pathways (32,142-144). A study that used
qRT-PCR measurements showed that enhanced TRPV1
expression was transient under pressure both iz vive and
in vitro (145). Primarily, TRPV1 is located in the large cell
bodies of RGCs in the ganglion cell and inner plexiform
layers of rat and mouse retinas (146). There are two general
types of RGCs in mammalian retinas: ON-RGCs, which
respond to light increments, and OFF-type RGCs, which
are excited by decrements of light. Both ON- and OFF-
RGCs have transient and sustained subtypes based on
whether they respond to light that is offset with a transient
or sustained burst of spikes (147,148). At 15 to 30 days after
IOP elevation, OFF-transient RGCs show a progressive
reduction in their dendritic arbor size and complexity, and
enhanced RGC excitability (139,145). One study reported
that, with short-term IOP elevation, TRPV1 decreased
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excitability for ON-sustained RGCs but increased it
for OFF-sustained RGCs (149). Results demonstrated
that ON-sustained RGCs in TRPV1™" retinas exhibited
sustained but robust light-evoked activity, as shown by the
increased mean and peak firing rates compared to WT
retinas. Regarding OFF-sustained RGCs, TRPV1 deletion
produced a less robust response to light offset, and blocking
NaV channels abolished the differences in light response
between WT and TRPV1” RGCs (149). These results
suggest that TRPV1 activity involves multiple voltage-
sensitive mechanisms that control the excitability of RGCs.
Except for physiological criteria, TRPV1 has morphological
influences on how RGCs respond to pressure-related
stress, which are shown by shorter dendrite length, reduced
dendritic branch points, and RGC body loss with TRPV1
deletion 77 vivo or with capsaicin treatment iz vitro (33,143).
Thus, a future area of research interest is whether the
TRPVI channel contributes to retinal osmoregulation and
intrinsic responsiveness to pathological conditions, such as
IOP and mechanical trauma.

Another channel through which ganglion cell apoptosis
may be mediated is TRPV4. Immunochemistry has shown
that a substantial amount of TRPV4 is localized in RGCs
and the plexiform layers in the rat and porcine retinas
(150,151). In many species, TRPV4 has been observed
in RGC dendrites, somas and axon bundles in the retina,
the optic nerve head, and the laminar region of the optic
nerve (121,150,152-154). Activation of TRPV4 increases
the spontaneous firing rate and excitability of RGCs,
which causes membrane depolarization and Ca’* influx,
and sustained activation of these channels leads to RGC
death (121). Inhibition of TRPV4 channels within the retina
has been reported to improve the survival of RGCs (150).
Also, intraocular injection of TRPV4 antagonists has
been found to lower IOP in glaucomatous mouse eyes
and to protect retinal neurons from IOP-induced cell
death by mediating the JAK2/STAT3/NF-«B signaling
pathway (151). These findings indicate that inhibition
of TRPV4 could be used as a potential treatment for
glaucoma.

Together, the TRPV1 and TRPV4 channels may be
involved in several aspects of glaucoma, such as the direct
response of ganglion cells to increased IOP and astrocyte
activation. Although existing reports support the idea
that TRPV4 is a promising molecular target of glaucoma,
pharmacological modulators of TRPV4 for treating
pressure-induced retinal disorders have yet to be tested in
clinical trials. We still need to better elucidate the normal

Ann Transl Med 2022;10(15):839 | https://dx.doi.org/10.21037/atm-21-6145



Page 12 of 25

roles of TRPV1/4 in interactions between different types
of channels and effective channel modification capable of
reducing IOP.

TRP channels in the retina and retinal disease

Retinas contain a large diversity of distinct cell types,
each of which responds to endogenous stimuli, sets the
intracellular ion concentrations, and carries out specific
functions (155). Several studies have demonstrated that
TRP channels are important in the mammalian retina. In
one study, RT-PCR confirmed that mRNAs of 28 TRP
channel genes were present in the mouse retina, of which 16
were weakly expressed, with TRPC6 and TRPC7 mRNAs
being detected at very low levels (156).

Visual processing of information begins with synaptic
input driven by the rod and cone photoreceptors.
Downstream of these outer photoreceptors are numerous
RGC types that convey visual information from the retina
to the brain. In the mouse retina, TRPV4 antibodies
labeled somata, axons, and dendrites of RGCs (157).
Ryskamp ez al. reported that TRPV4 could directly mediate
the osmotransduction and mechanotransduction of RGCs,
and sustained exposure to TRPV4 agonists prompted RGC
apoptosis or cell death pathways (121). Various other TRPs
have also been detected in RGCs, including TRPC1/3/4,
TRPM3, TRPMLI, TRPP2, and TRPV2. In particular,
TRPV1 was recently implicated in mediating [Ca®"];
increases and hydrostatic pressure-induced autophagy and
apoptosis in human induced pluripotent stem cell-derived
RGCs (158,159).

Retinal bipolar cells serve as the only neural link
between photoreceptors and ganglion cell retinal output.
Photoreceptors release only one neurotransmitter:
glutamate. In response to light, all photoreceptors
hyperpolarize and release less glutamate (160). More than
ten distinct types of bipolar cells have been described in
mammals, and these morphologically and functionally fall
into two separate major groups: OFF- and ON-bipolar
cells (161). Anatomical differences between bipolar cells
and different glutamate receptors (GluRs) expressed
on their dendrites generate the functional diversity of
bipolar cells. OFF-bipolar cells express ionotropic AMPA/
kainate receptors (iGluRs), while ON-bipolar cells express
metabotropic GluR (mGluR6), an ON-bipolar cell-
specific glutamate receptor (162,163). In response to
glutamate reduction at the onset of light, OFF-bipolar cells
hyperpolarize, whereas ON-bipolar cells, by virtue of sign-
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inverting synapses, depolarize. Unlike iGluRs, mGluR6
does not form ion channels; it is negatively coupled to a
cation-permeable channel to mediate visual transduction
(164-166). The transduction cation channel of retinal ON-
bipolar cells was once hypothesized to be a cyclic guanosine
monophosphate (cGMP)-gated channel (167,168); however,
research ultimately identified TRPMI1 as the ON-bipolar-
cell ion channel downstream of the mGluR6 transduction
pathway (44,169-171). Studies suggest that glutamate binds
to the mGluR6 receptor and activates a heterotrimeric
G-protein, Go (composed of Ga,, GB;, and Gy,;), and
keeps TRPM1 channels mostly closed in darkness. Light
decreases mGluR6 activation and allows the channels to
open, depolarizing the cell and inverting the photoreceptor
signal (169-172). Miiller cells are the only cell type that
spans all retinal layers and exert multiple functions, such
as controlling the ionic balance in the extracellular space,
monitoring retinal homeostasis, and aiding trophic factors.
Studies have reported that the sentinels for osmotic signals
are partly mediated by TRP channels, and various TRP
channels have been detected in Miiller cells (85,173). In
the mouse retina, TRPM3 antiserum was found to be
punctuated and distributed throughout the plexiform and
ganglion cell layers and to be distributed at a lower density
throughout the inner nuclear layer and outer plexiform
layer (174). Da Silva et al. (173) reported that the mRNA
and protein of TRPC1 and TRPC6 were present in mouse
Miiller cells, and also found TRPV4 staining of Miiller cells
in mouse retinal vertical sections.

Miiller cells and astrocytes are the principal glia of
the mammalian retina. Astrocytes are almost exclusively
confined to the innermost retinal layers and are mainly
localized in the nerve fiber and ganglion cell layers.
Astrocytes envelop and support the axons of RGCs by
connecting them to retinal blood vessels; they are also
essential for the functionality of the blood-retina barrier
(BRB). In Leonelli er a/’s study using rat retinas, TRPV1
was found in astrocytes (175). In a later study, this channel
was found to play a role in mediating astrocyte migration in
response to mechanical injury (176). The same study also
concluded that TRPV1 contributes to astrocyte migration
by rearranging the cytoskeleton, because TRPV1 antagonist
reduced a-tubulin intensity, decreased cell size, and caused
retraction and fragmentation of microfilaments in astrocytes
in a scratch wound assay. However, other factors could also
mediate astrocyte migration in the wound milieu. Increases
in intracellular Ca’* might result from other TRP channels
or ion channels, such as TRPM7, which can be activated
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in response to shear stress. Reactive astrocytes have been
observed in neurodegenerative diseases, such as glaucoma.
Understanding the molecular mechanisms of TRPV1 that
lead to reactive gliosis and astrocyte migration requires
in vivo or clinical studies.

Existing reports show that retinal pigment epithelial
(RPE) cells express TRPAL, TRPC1/4, TRPM1/3/4/7/8,
and TRPV1-6 (177-180). However, the presence of
mRNA and immunofluorescence does not guarantee the
functional importance of TRP channels. Kennedy ez /. (180)
identified that TRPVS and TRPVG6 contribute to regulating
the calcium composition changes in the subretinal space
that accompany light/dark transitions, indicating these
two most calcium-selective TRPV channels are needed for
the RPE layer to sustain retinal health. Research has also
found that TRPV#4 is distributed throughout the retina
and that its functional expression maintains the integrity
of retinal capillaries, while intravitreal administration of
TRPV4 activators in rats increases the permeability of
capillaries, leading to circulatory collapse (178). Although
the exact physiologic role of each TRP channel in the
retina is not yet known, further examination may show that
they are involved in the pathogenesis of microaneurysms,
hemorrhages, and retinal edema, which is a novel concept.

Diabetic retinopathy

DR is one of the most common microvascular complications
of DM. Approximately one-third of the world’s diabetic
population has DR (181). Among the global working-age (20
to 65 years old) population, DR remains the leading cause
of preventable vision loss (182,183). The main structural
change accounting for DR is BRB breakdown, which starts
with the loss of pericytes and endothelial cells, and includes
neurodegeneration and neuropathy (184). Disruption
of the retinal neurovascular unit leads to increased
vasopermeability, vascular tortuosity, areas of retinal
nonperfusion, and pathologic intraocular proliferation of
retinal vessels that triggers a reduction in retinal thickness
and irreversible retinal damage (185,186).

DR is a multifactorial disease characterized by
dysregulation in the reactive metabolites and high glucose.
Dyslipidemia, angiogenic, inflammatory, oxidative stress,
and extracellular matrix pathways are implicated in
the pathogenesis of DR (187,188). The initial vascular
phenotype of DR is BRB dysfunction triggered by chronic
hyperglycemia, which contributes to macular edema
(which is the major cause of visual loss in type 2 DM),
hemorrhages, exudates, and capillary microaneurysms (182).
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The BRB comprises an outer barrier (RPE cells) and an
inner barrier (retinal capillary endothelial cells and their
intercellular junctions). In the retina, TRPV4 is expressed
in RGCs, Miiller cells, astrocytes, endothelial cells, and
RPE cells, and it has shown some efficacy in regulating
BRB permeability in RPE cells and retinal microvascular
endothelial cells (RMECs) (36,177,178). In vitro treatment
with a TRPV4-selective agonist (GSK1016790A/GSK101)
was found to induce a massive influx of Ca’* and increase
the barrier permeability of human RMEC monolayers (37).
In a study using rat RMECs, diabetes and hyperglycemia-
mimicking conditions were associated with TRPV4
downregulation (36). In vivo studies have shown that
TRPV4-selective antagonists (RN-1734 and GSK2193874)
can mitigate BRB breakdown in streptozotocin-induced
diabetic mice and rats. These results indicate that TRPV4
plays a strong role in Ca® homeostasis and barrier function
in retinal capillaries, suggesting that it may function as
a polymodal sensor of physical-chemical stimuli that
dynamically modulates the inner BRB permeability. More
recently, Ordufia Rios et 4/. (38) quantified retinal water
mobility and retinal thickness using diffusion-weighted
magnetic resonance imaging to evaluate the potential roles
of TRPV4 in diabetic macular edema. Their study observed
that diabetic WT mice had thinner retinas than did their
nondiabetic counterparts. In contrast, diabetic TRPV4™"
mice had similar retinal thickness to the nondiabetic
TRPV4” and WT groups. Further, the apparent diffusion
coefficient (ADC) values showed restricted water diffusion
in TRPV4 KO mice. These findings suggest that TRPV4
channel inhibition prevents and reverts retinal edema. Also,
TRPV4 may contribute to retinal structural stability and is
necessary for BRB breakdown and increased retinal water
diffusion under sugar-dense conditions. Thus, TRPV4
channels may hold potential as a significant therapeutic
target for controlling BRB breakdown in diabetic macular
edema.

DR manifests as structural alterations in retinal blood
vessels and impaired perivascular neuronal function. It is
understood to result from the dysfunction of the retinal
neurovascular unit, a special mechanism that couples
neuronal computations with blood flow. DR is invariably
responsible for neuronal defects, and neuro-retinal function
is weakened even before microangiopathic lesions occur
(189-192). The two hallmarks of neuronal dysfunction are
neural apoptosis and reactive gliosis. In DR, RGCs and
amacrine cells are the first detected neurons to undergo
apoptosis; consequently, there is a reduction in the thickness
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of the inner retinal layers and the nerve fiber layer, which
can be detected by optical coherence tomography (193,194).
The expression of TRPV1, TRPV4, and TRPM3 can
be found in RGCs and Miiller cells (157,195-197).
Ryskamp et al. (121) showed that TRPV4-mediated Ca®*
entry contributed to the cell stretch of RGCs. Further,
sustained exposure to TRPV4 activators (40-PDD and
GSK1016790A) led to an excessive rise in cytosolic Ca’*
levels, which may activate Ca’*-dependent proapoptotic
signaling pathways in a time- and dose-dependent manner.
Therefore, antagonizing excessive TRPV4 activation
may alleviate osmotic pressure-induced RGC apoptosis.
The TRPV4 mechanism involved in RGC protection
represents a neuroprotective molecular target for neuronal
dysfunction in DR. Moreover, endothelial cells have an
essential role in the hemodynamic response of DR. A recent
study showed that TRPC1, TRPC3, and TRPC6 channels
are critically involved in maintaining the normal function
of cultured human retinal vascular endothelial cells (39).
In vitro, the protective phenotype in DR was observed
in TRPC1/4/5/6” compound KO mice, which showed
a TRPC blocker compound to be highly promising for
the treatment of DR (40). However, the specific effect of
each TRPC channel mentioned needs to be identified to
precisely understand the causative role of TRPCs in DR.
Pericytes, the spatially isolated mural cells on capillaries,
play a vital role in stabilizing and remodeling microvessels
in the retina under pathological conditions. Awry signals,
oxidative stress, increased leukocyte adhesion, and
advanced glycation end products can disturb pericyte-
endothelial interactions, resulting in BRB breakdown.
Pericytes represent the first and last vascular elements of
the retinal neurovascular unit in controlling the blood flow
of the retinal microvasculature (185,198). Pericyte loss has
been implicated in three well-defined aspects of vascular
remodeling: pericyte differentiation, cell adhesion, and
key factors involved in ion transport. Jiang ez 4/. (199) first
demonstrated the role of the TRPM2 ion channel and
autophagy in the pathological process of pericyte injury.
However, at present, the cause of pericyte apoptosis in DR
is poorly understood. Jiang ez al’s study raises interesting
questions regarding the interrelationships between
pericyte-specific TRPM2 channels and other neurovascular
components in the pathological process of neurovascular

injury.

Retinopathy of prematurity (ROP)
ROP is a vasoproliferative disorder of the developing retinal
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vasculature in premature infants. Improved technologies
and modern neonatal care have increased the survival rate
of extremely low gestational age neonates (<1,250 grams,
<28 weeks gestation). The incidence of ROP has increased
over recent decades, and it is a leading cause of severe visual
impairment and blindness in childhood, especially in some
developing countries (200). In ROP, there are two postnatal
phases: vaso-obliteration (phase 1) and vasoproliferation
(phase 2). Phase 1 involves delayed physiologic retinal
vascular development beginning at preterm birth with the
transition from the intrauterine to extrauterine environment.
Exposure to supplemental oxygen suppresses retinal growth
factors, which halts vascular development and causes
many newly developed blood vessels to regress. In phase
2, the poorly perfused retina becomes hypoxic, resulting
in abnormal retinal neovascularization. Abnormal retinal
neovessels can ultimately cause retinal hemorrhages, retinal
folds, dilated and tortuous posterior retinal blood vessels,
“Plus” disease, and even retinal detachment (201,202).

It is virtually impossible to study the cellular and
molecular mechanisms within the human preterm
retina that cause the biological features of severe ROP.
Accordingly, animal models have been developed to test
heterotypic cell interactions and signaling events in this
disease. Due to the relatively low cost of mice and the
advanced understanding of mouse genetics compared to
other species, the oxygen-induced ischemic retinopathy
(OIR) mouse model is the most widely used. This model
has unquestionably aided in furthering the understanding
of the pathophysiology of ROP and assessing the effects of
potential treatments.

Endothelial Ca’* signals are critical in angiogenesis
and arterial remodeling. Activation of receptors (such
as bradykinin and acetylcholine receptors), the release
of various vasoactive factors (including nitric oxide and
insulin-like growth factor-1), and mechanical stimulation
(such as pulsatile stretch and laminar shear stress) all induce
neovessel formation through an increase in the intracellular
Ca’* concentration (203-205). Endothelial TRP channels
have long been known to be a part of intracellular signaling
pathways associated with endothelial cell proliferation,
migration, adhesion, tubulogenesis, and permeability
(206-208). Functional expression of TRPV1 and TRPV4
has been confirmed in RMECs (41). Further, pharmacologic
inhibition of TRPV1 and TRPV4 has been found to impair
endothelial cell capillary sprouting and tube formation.
In an OIR mouse model established by O’Leary er al.,
vitreous injection of TRPV1 and TRPV4 inhibitors
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significantly inhibited pathologic retinal angiogenesis and
effectively attenuated avascular areas in phase 2, increasing
physiological angiogenesis (41). Blockade of TRPV1 and
TRPV4 channels likely help to stimulate physiological
revascularization of the ischemic retina. Recent work
further explored the role of the TRPV4 channel in an
OIR mouse model deficient in TRPV4 (209). Contrary to
the above results, in mice with OIR, a higher number of
neovascular tufts were observed throughout the superficial,
intermediate, and deep retinal vascular layers in TRPV4 KO
mice compared to their WT counterparts, which showed
fewer and less pronounced abnormal vascular growths.
The retinas of the TRPV4 KO mice also showed that
TRPV4 deletion did not alter developmental physiological
angiogenesis (209). Unlike genetic deletion, TRPV4
knockdown or reduction in endothelial cells has been shown
to increase cell proliferation and migration, which are two
remarkable events in angiogenesis (210,211). Ultimately,
these inconsistent statements may be attributable to
differences in TRP expression levels in mouse retinas.

A relatively early study showed that genetic deletion of
TRPCS5 with selective siRNA negatively affects hypoxia-
induced capillary sprouting and endothelial cell tube
formation. Consistently, genetic knockdown of TRPCS5 was
found to inhibit hypoxia-induced retinal neovascularization.
Further, TRPC5” mice showed delayed vascular
revascularization in a hindlimb ischemia model, and
riluzole treatment contributed to ischemic tissue recovery
by triggering TRPCS5-mediated Ca® influx in vascular
endothelial cells. These findings indicate that TRPCS
may be a new target for the clinical treatment of ischemia-
related diseases (42).

Congenital stationary night blindness

CSNB is a clinically and genetically heterogeneous
group of retinal disorders. It is generally considered to
be a non-progressive or minimally progressive disease
characterized by night blindness, moderately reduced visual
acuity, myopia, nystagmus, strabismus, and photophobia.
The predominant cause of CSNB is defective signal
transmission from rod photoreceptors to adjacent ON-
bipolar cells (169,212). Because of this transmission defect,
electroretinograms (ERGs) show a near-normal a-wave and
a reduced or absent b-wave. This ERG pattern is known as
a negative ERG. Based on the pattern in ERG responses,
CSNB can be divided into two subtypes: the complete
form and the incomplete form (213). Further, CSNB can
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be X-linked, autosomal recessive, or autosomal dominant,
and is caused by mutations in genes encoding proteins
involved in phototransduction, photoreceptor to bipolar
cell signaling cascades, and retinoid recycling (43,214,215).
Over the last decade, the development of high-throughput
technologies and gene expression analysis have allowed in-
depth examination of the genome underlying this disorder.
Corresponding mutations in at least 17 identified human
genes, such as CACNAIF, CABP4, CACNA2D4, GRMG6 (the
gene that encodes mGluR6), GPR179, LRIT3, TRPM1, and
NYX, are associated with CSNB (216).

In the murine retina, TRPMI is selectively and strongly
expressed in the inner nuclear layer, especially in ON-
bipolar cells (217,218). Bellone et 4l. (24) gave an important
clue about the involvement of TRPM1 in CSNB. In the
Appaloosa horse, the leopard complex (LP) is thought to be
responsible for determining the Appaloosa coat-spotting
pattern. Homozygosity for LP (LP/LP) is directly associated
with CSNB in Appaloosa horses. Also, LP/LP horses have
an absent b-wave and a depolarizing a-wave in dark-adapted
ERG (219). Bellone et 4. mapped the LP locus to a 6-cM
region containing five candidate genes on ECA1, namely
TRPM1, OCA2, TJP1, MTMR10, and OTUD7A. A PCR
assay showed that the TRPM1I transcript is downregulated
in the retinal samples of CSNB horses, suggesting that
TRPM1 might function in ON-bipolar cells. Further,
studies reported that TRPM1-null mutant mice completely
lost photoresponse in ON-bipolar cells, and identified
an apparent role for TRPMI in visual transduction
(44,169); these results rendered TRPM1 a good candidate
to be mutated in patients with CSNB, which was later
confirmed (220). The TRPMI1 mutation in patients with
CSNB was first identified by autozygosity mapping in a
consanguineous family with South Asian ethnicity using
single-nucleotide polymorphism arrays (221). Since then,
TPRM1 mutations have been reported worldwide as a
major cause of autosomal recessive CSNB, especially in
individuals with European ancestry. To our knowledge, 73
nonsense, missense, frameshift, splice site, and deletion
mutations have been identified in TRPMI, of which
67 show different CSNB phenotypes. Some mutations
cause TRPMI1 dysfunction, while some, such as missense
mutations, result in mislocalization of TRPM1. Collectively,
the above studies contribute to an evolving understanding
of the diverse group of TRP channels in human disease and
provide new insights into the mechanisms of the retinal
circuitry.
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Retinoblastoma (RB)

RB is the most common aggressive neoplasm of the
eye in infancy and childhood but is still an uncommon
pediatric cancer, representing only 2.5% to 4% of all
childhood malignancies (222,223). It appears as one
or several yellowish-white retinal masses which can be
isolated or coalesced, unilateral or bilateral. RB presents
at a very young age, with the mean age at diagnosis being
27 months for unilateral RB and 15 months for bilateral
cases (222,224,225). Despite its rarity, RB was the first
tumor to draw attention to the genetic testing and screening
of cancer, and has served as a cornerstone of oncology in
terms of tumor diagnosis, classification, and treatment. The
RB1 gene was the first described tumor-suppressor gene
located in chromosome 13q14. Heritable RB is initiated
by mutations of the RBI gene, most of which are caused
by nonsense or frameshift mutations within exons 2-25,
resulting in the absence of RBI or loss of RBI function.

The expression and role of TRPs in RB remain largely
unknown. A previous study showed that TRPV1, TRPMS,
and TRPAI were expressed in human RB tumor tissue and
the human RB cell line WERI-Rb1. Further, PCR results
showed that TRPV1 was consistently overexpressed in
WERI-RbI and RB tumor tissue. In paraffin sections of
the eye of a patient with RB, TRPV1 immunoreactivity was
evident in the membrane of the RB cells. The researchers
concluded that the cytostatic agent resistance of RB may be
associated with TRPV1-mediated Ca’* inward current (47).
This study provides an intriguing insight into RB
development and responses to treatment. A previous
study also proposed that TRPs play an important role in
the proliferation of human RB cells through their effects
on cellular metabolism and protein translation (48).
The authors concluded that TRPs, such as TRPM7,
can be prognostic factors for RB progression. More
recently, Oronowicz et al. (45) reported that dysfunctional
regulation of intracellular calcium levels could disrupt
RB tumorigenesis. Therefore, designing drugs to target
TRP channels may be a viable approach to inhibiting RB
cell viability and survival and increasing the efficacy of
chemotherapeutic treatment for patients with RB.

Conclusions

Strong in vitro and in vive data collected in the last two
decades indicate that TRP channels regulate fundamental
cellular processes. A plethora of studies has demonstrated
the involvement of TRP channels in various eye diseases,
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and immense progress has been made in the understanding
of TRP channels. However, considerable work is needed
to more fully understand the functional and mechanistic
aspects of the contribution of these channels to the
pathophysiology of eye diseases, especially in the context
of animal models or patients. Collectively, these channels
hold tremendous potential that has yet to be uncovered in
the hopes of achieving major clinical breakthroughs in eye
disease.
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