Risk score model of autophagy-related genes in osteosarcoma

Mingyang Jiang¹#, Dalang Fang²#, Xiaoyu He³#, Jie Huang⁴, Yang Hu¹, Mingjing Xie¹, Yiji Jike¹, Zhandong Bo¹, Wentao Qin³

¹Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China; ²Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China; ³Department of Thoracic Surgery, The Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China; ⁴Department of Bone and Joint Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China

Contributions: (I) Conception and design: M Jiang, D Fang, X He; (II) Administrative support: Z Bo, W Qin; (III) Provision of study materials or patients: W Qin; (IV) Collection and assembly of data: J Huang, Y Hu, M Xie, Y Jike; (V) Data analysis and interpretation: M Jiang, D Fang, X He, W Qin; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

#These authors contributed equally to this work.

Correspondence to: Wentao Qin, MD. Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China. Email: qwr1713974028@163.com.

Background: Osteosarcoma (OS) is a common pediatric malignancy with high mortality and disability rates. Autophagy is an essential process in regulating the apoptosis and invasion of tumor cells, so constructing a risk score model of OS autophagy-related genes (ARGs) will bring benefit to the evaluation of both treatment and prognosis.

Methods: We downloaded a dataset of OS from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) database, and found OS-related ARGs through the Human Autophagy Database (HADb). Five hub ARGs (CCL2, AMBRA1, VEGFA, MYC and EGFR) were obtained using a multivariate Cox regression model. We then generated the risk scores and constructed a prediction model. Another dataset obtained from the Gene Expression Omnibus (GEO) was used to test accuracy and validity. The role of immune cell infiltration was systematically explored, and prediction of response to targeted drugs was assessed. Immunohistochemistry was carried out to verify the expression of the key ARGs.

Results: Based on the five hub ARGs, we established a risk score model related to OS. High accuracy and validity were demonstrated by datasets downloaded from the GEO. The five ARGs played a role in the PI3K and MAPK pathways. Results from targeted drug sensitivity analyses were consistent with pathway analyses. Immunohistochemistry demonstrated that the expression differences of the five ARGs were significant between the OS group and the paracancerous group.

Conclusions: We constructed a risk score model related to autophagy of OS, explored the diagnostic value of ARGs, and present possible therapeutic targets.

Keywords: Autophagy genes; osteosarcoma (OS); risk prediction model

Submitted Nov 29, 2021. Accepted for publication Feb 22, 2022.
doi: 10.21037/atm-22-166
View this article at: https://dx.doi.org/10.21037/atm-22-166

Introduction

Osteosarcoma (OS) is a common pediatric malignancy with high disability and mortality rates (1). With improved understanding of cancer pathogenesis and the updating of diagnostic methods, the 5-year survival rate of patients with OS has increased from <20% to 50–60% (2). So far, the prognosis still depends largely on tumor stage system and histopathological diagnosis. However, traditional methods are not enough to accurately evaluate the prognosis of OS patients (3). Therefore, it is necessary to develop accurate and reliable biological indicators to help doctors choose
optional treatment methods. In recent years, oncology biology has made significant progress in the field of OS (4). One of the achievements is that macroautophagy (referred to thereafter as autophagy) are involved in the therapeutic response of tumor (5,6).

Autophagy is a highly conservative catabolic cellular event degrading aggregated proteins and damaged organelles. The dynamic process includes induction, nucleation of the autophagosome, growth of the double-membrane, sealing and merging with the lysosome, and the disintegration of engulfed materials (3). Typically, a basal level of autophagy exists everywhere in the cell to decompose and reuse non-functional cellular contents as a source of intracellular nutrition. In response to various stimuli and stresses, such as hunger, hypoxia and drugs, the extent of autophagy can increase dramatically to provide intracellular nutrients and remove harmful content (e.g., damaged mitochondria) (4). It suggests that autophagy is subject to highly orchestrated regulation. Several known signaling pathways for regulating key cellular events are also involved in autophagy, including AMPK/CaMKK, p53/DRAM, PI3K/AKT/mTOR, JAK-STAT and RAS signaling pathways (3).

Autophagy is a double-edged sword in the carcinogenesis process. It inhibits or promotes the development of tumors in a situation-dependent manner, which depends on the tumor type, clinical stage, genetic background, and even treatment strategies. More and more studies have shown the significance of autophagy in OS (3). Autophagy is a pre-survival pathway used by OS tumor cells to increase their proliferation and development, resist cancer therapy, and preserve the cancer stem cell (CSC) pool within the tumor. However, autophagy may also be anti-tumor in OS and lead to cell death (7). Prominently, in tumors with mutations in the RAS pathway genes, hyperactivity of autophagy is indispensable to meet extraordinarily high demands of tumor cell metabolism (8). Numerous studies have proven that autophagy participates in the occurrence and development of OS by inhibiting the signaling pathway PI3K/AKT/mTOR (9-11). Besides, autophagy-related genes (ARGs) (CCL2, EGFR and MYC) were associated with a different prognosis in OS (12).

During tumor development, cancer cells pathologically affect the tumor microenvironment (TME) by inducing various types of stress, including hypoxia, oxidative stress and acidosis (13). These effects cause abnormal reactions of adjacent immune cells and stromal cells that promote necrosis and metastasis (14). Therapeutic strategies targeting tumor-associated macrophages have been shown to significantly inhibit the metastasis of advanced OS (15,16). Although a large number of studies have been published, no effective immunotherapy has been developed to treat OS due to the rarity and heterogeneity of OS, the lack of specific tumor antigens, and the target effect of drugs (17-19).

These findings substantiate the involvement of autophagy in OS and suggest that ARGs may hold great promise as prognostic markers in OS. Hence, we considered that constructing and validating a risk score model of the ARGs of OS would benefit evaluation of both treatment and prognosis.

There were several similar reports about the establishment of risk score model of the ARGs of OS in PubMed, but their researchs were limited to a separate model. We have integrated the data of OS in TARGET (Therapeutically Applicable Research To Generate Effective Treatments) database (https://ocg.cancer.gov/programs/target) and GEO (Gene Expression Omnibus) database (www.ncbi.nlm.nih.gov/geo), whose sample size is more than these two studies. Secondly, the receiver operating characteristic (ROC) value of our model is 0.930, which is better than that of the models in these two studies, and can more accurately predict the survival rate of OS patients. We present the following article in accordance with the TRIPOD reporting checklist (available at https://atm.amegroups.com/article/view/10.21037/atm-22-166/rc).

Methods

Data preparation

The TARGET database is a comprehensive database for pediatric tumors. It aims to identify the biological processes (BPs) in pediatric tumors using comprehensive genomics methods, using the data to help guide the development of less toxic and more effective therapies through the generation of useful drug targets and prognostic markers for researchers (20).

The gene sets information (85 patients: TARGET-OS) was contained as a training set from the TARGET database (21). Clinical information included survival time, survival state, sex, age, disease at diagnosis, primary tumor site, specific tumor region and definitive surgery. The autophagy information used for selecting the ARGs was collected from the Human Autophagy Database.
Another dataset (GSE16091) was downloaded from the GEO database as the validation set (23).

Model establishment

To establish our model, we combined univariate Cox-LASSO–multivariate Cox regression with consideration of the clinical factors, and finally selected the ARGs to establish the risk score model. Univariate and multivariate Cox regression analyses were performed using R’s “survival” package, and P<0.01 was used as the filtering condition of univariate Cox. To prevent large variance, we performed LASSO regression analysis using R’s “GLMNET” package, and determined K value by minimum lambda (21). The gene at the minimum of the Akaike information criterion (AIC) was calculated and used as the variable to be included in the model, and each patient’s gene expression level were used in the model to calculate the risk score, with the algorithm as follows: $\sum_{x} (\text{coef}_x \times \text{Expr}_x)$, where coef$_x$ is the regression coefficient obtained from multivariate Cox regression analysis, and Expr$_x$ represents the gene expression level of each variable (24,25). The median risk score of each patient was taken as the reference standard for dividing the high and low groups, and then the Kaplan-Meier method (K-M method) was used to analyze the survival of the two groups and draw the survival curves (26).

In order to avoid mutual influence between risk factors, we conducted principal component analysis (PCA) and dimension reduction. According to the key parameters and scores of the model, and in combination with various clinical factors, we drew a clinically relevant nomogram for predicting the 1-, 3-, and 5-year survival rates. The scales on the nomogram represented the numerical ranges of each variable. The total scores calculated for each variable could be used to predict the survival rate (27).

Model validation

We used the “Survival ROC” package to draw ROC curves and used the “RMS” package to obtain the calibration curve to evaluate the accuracy of the predicted 1-, 3- and 5-year survival rates, and used the ROC curves to verify each grouping variable (28). The diagnostic value of key ARGs was validated by a dataset from the GEO database (34 patients), and the diagnostic value of each key ARG was evaluated by the area under the ROC.

Gene enrichment analysis (GO and KEGG)

We investigated the cellular components (CC), BP and molecular function (MF) of the ARGs in the gene ontology (GO) database. And selected ARGs were utilized in the functional pathway analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG). R software and ClusterProfiler package were used to conduct the functional enrichment analysis. We then used the “corrplot” package to analyse the relationships between ARGs by Pearson’s correlation coefficient.

Gene set enrichment analysis (GSEA)

GSEA is a method used for enrichment of gene sets to determine the distribution differences between whole gene sets and phenotypes, thereby achieving enrichment. The grouping file of the ARGs expression differences and the downloaded expression matrix file of OS common transcription group were input into GSEA4.0.3 software (29). The data sets used for enrichment were C2 and C5 molecular sets from the Molecular Characteristic Database (MSigDB), and the output results were adjusted to 100 sheets (30). Finally, the enrichment gene sets were screened according to $|\text{Normalized Enrichment Score}| > 1, \text{False-DiscoveryRate (FDR)} < 0.25$ and $P<0.05$.

Immune cell infiltration

We visualized the proportions of immune cell signatures in the training set. The single-sample GSEA (ssGSEA) algorithm was used to access the immune cell infiltration level and the stromal content for each OS sample. The ConsensusClusterPlus R package was used to perform consensus clustering.

Prediction of response to targeted therapy

Half-maximal inhibitory concentrations (IC50) of targeted therapeutic drugs were plotted using R’s “ggplot2” and “pRRophetic” packages. The relationship between the IC50s and high- and low-risk groups were represented by box plots.

Immunohistochemistry

We obtained five OS and five paracancerous samples from
The First Affiliated Hospital of Guangxi Medical University for immunohistochemistry. All patients were diagnosed as OS by pathology. Clinicopathological data, such as sex and age, were collected. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). This study was approved by The First Affiliated Hospital of Guangxi Medical University Ethics Review Committee [approval No. 2021(KY-E-125)]. Because the information and privacy of the patients needed to be fully protected, the requirement for obtaining informed consent was waived.

The tissue slices were placed in xylene for 20 min, then fresh xylene was replaced and repeated once more. The dewaxed tissue slices were soaked in 100% ethanol for 5 min twice, then 95% ethanol, 80% ethanol and distilled water for 5 min respectively. The alkaline antigen repair solution (TRIS-EDTA, pH=9) was heated to boiling in a pressure cooker, the tissue slices were placed in the solution for 2 min, then cooled to room temperature naturally (31). Next, they were incubated with 3% H\textsubscript{2}O\textsubscript{2} at room temperature for 10 min in the dark, then blocked with normal sheep serum solution at room temperature for 30 min. The primary antibody RP215 was added at 4\textdegree C overnight and then treated with HRP-labeled secondary antibody at room temperature for 30 min. Then, dianaminobenzidine (DAB) coloration and hematoxylin counterstaining was carried (31).

Ten high-power (×400) visual fields were randomly selected, and two researchers independently read the images. Hematoxylin stained the cell nucleus blue, and positive expression of DAB is brownish yellow.

Statistical analysis

All data were statistically analyzed using SPSS22.0 (IBM) and R 3.6.2 (https://www.r-project.org/). Hazard ratio (HR) and 95% confidence interval (CI) were used to represent the relative risk between each variable and the prognosis of OS patients. All results P<0.05 were considered statistically significant.

Results

Collation of ARGs

The expression files of 85 patients (from TARGET-OS, all diagnosed with OS) downloaded from TARGET and 232 autophagy genes in HADb were combined to find OS-related ARGs and their expression levels and clinical information. Expression files of 34 patients (from GSE16091, all diagnosed with OS) were used to validate the model’s stability. Based on univariate Cox analysis, 10 survival-related ARGs were obtained (Figure 1A). We then used multivariate Cox regression and the LASSO method to generate a classifier to forecast OS according to the expression of ARGs (Figure 1B,1C). Finally, a combination of five genes (CCL2, AMBRA1, VEGFA, MYC and EGFR) remained as predictors in the model (Figure 1D).

Data preprocessing and risk score model establishment

According to the median risk score of the training set, the patients in the training and validation sets were divided into low- and high-risk groups. Survival analysis between groups showed that a low-risk score significantly correlated with good prognosis of OS patients (Figure 2A,2B). A heatmap to demonstrate the expression level of the five genes from their signatures was plotted (Figure 2C). Similar results were observed in the validation set (Figure 2D-2F). According to the results, the expression levels of CCL2, AMBRA1 and EGFR were relatively lower in the high-risk group. On the other hand, patients in the high-risk group tended to have a higher VEGFA and MYC expression levels. The survival rates and gene expression levels of each hub ARG are shown in Figure 3.

Nomogram development and verification

After PCA, a risk score combined with five independently related risk factors (sex, age, disease at diagnosis, definitive surgery and risk score) was used to form an OS risk estimation nomogram (Figure 4). K-M curves indicated that over time, the survival rate of the low-risk group was higher than that of the high-risk group (Figure 5A). The C-index (0.853 in the training set) and calibration curve were plotted to assess prediction accuracy (Figure 5B,5C). The validation group C index (0.879) and calibration curve also showed high prediction of actual survival rate (Figure 5D-5F).

KEGG and GO analysis

To clarify the biological pathways and processes related to the five ARGs, we carried out KEGG signaling pathway and GO functional process analysis. The results indicated that these ARGs were functional in autophagy-related processes such as the PI3K-Akt signaling pathway and MAPK signaling pathway (Figure 6).
The patients were stratified according to their median of risk scores. GSEA results revealed that the five ARGs were favorably enriched in the biocarta-TOB1 pathway, antigen-receptor mediated signaling pathway, inflammatory response to antigenic stimulus, membrane invagination, phagocytic vesicle membrane, regulation of lymphocyte activation, T cell receptor signaling pathway, reactome costimulation by the CD28 family and reactome signaling by the B cell receptor, and natural killer (NK) cell-mediated cytotoxicity (Figure 7).

GSEA

The patients were stratified according to their median of risk scores. GSEA results revealed that the five ARGs were favorably enriched in the biocarta-TOB1 pathway, antigen-receptor mediated signaling pathway, inflammatory response to antigenic stimulus, membrane invagination, phagocytic vesicle membrane, regulation of lymphocyte activation, T cell receptor signaling pathway, reactome costimulation by the CD28 family and reactome signaling by the B cell receptor, and natural killer (NK) cell-mediated cytotoxicity (Figure 7).

Immune infiltrating

Except for actived dendritic cells (aDCs) and immature dendritic cells (iDCs), the numbers of other immune cells and immune functions in the low-risk group were significantly higher than in the high-risk group (Figure 8A-8C).

Response to targeted therapy

According to the predicted IC50s, the high- and low-risk groups had different responses to various targeted drugs, and the difference was statistically significant. The high-risk group had lower IC50s, which indicated that the group was more sensitive to targeted drugs (Figure 9).

Immunobistochemistry

The expressions of the hub genes were more obvious in the...
Figure 2 Development of prognostic autophagy-associated gene signature. (A) Risk score plot, (B) survival status scatter plot and (C) heat map of the expression levels of CCL2, AMBRA1, VEGFA, MYC and EGFR. Validation of prognostic autophagy-associated gene signature. (D) Risk score plot, (E) survival status scatter plot and (F) heat map of the expression levels of CCL2, AMBRA1, VEGFA, MYC and EGFR.

Figure 3 Survival rates and expressions of AMBRA1, CCL2, EGFR, MYC and VEGFA.
OS group than in the paracancerous group (Figure 10).

Discussion

Autophagy is a “self-digesting” metabolic process of cell renewal, which has been proven to continue the growth of tumor cells by maintaining cell energy production (32). In addition, inhibition of autophagy enhances the effectiveness of anticancer therapy (33). These findings substantiate the involvement of autophagy in OS and suggest that ARGs may hold great promise as prognostic markers in OS. Hence, we constructed and validated a risk score model of the ARGs of OS to benefit evaluation of both treatment and prognosis.

We screened OS-related ARGs to obtain five key genes that are potential targets for new molecular therapies. A risk prediction model was constructed for these five key ARGs, and it demonstrated that the survival curves of the high- and low-risk groups were significantly separated (31). In the time-dependent model, the risk score and number of deaths increased significantly with time, indicating that these five key ARGs have great significance in predicting OS prognosis. From the ROC prediction results of 1-, 3-, and 5-year survival rates, the five key ARGs could predict the prognosis of OS patients well. Similarly, the five key ARGs also showed satisfactory results in the study of clinical traits.

Four of the five key ARGs have been previously identified. Chen et al. reported that high-grade OS cells highly express CCL2, and that OS cells with high expression of CCL2 are more closely related to proliferation and invasion (34). Another study found that microRNA (miR)-150-5p weakens the proliferative and invasive potential of OS cells by downregulating the VEGFA level, and knockdown of VEGFA remarkably weakened the proliferative and invasive capacities of OS cells (35).

Moreover, researchers have applied multi-region whole-genome sequencing to identify that amplification of the MYC oncogene is the main cause of paediatric OS (36). A
previous study also revealed that the miR-7/EGFR pathway is significant in the metastasis of OS cells and indicated that EGFR has the potential to become a prognostic marker and a promising therapeutic target for OS (37). To date, AMBRA1 has not been directly related to OS, but it has been related to prostatic cancer (38).

According to our enrichment analyses, OS autophagy was associated with the PI3K–Akt and MAPK signaling pathways. Jin et al. demonstrated that miR-1224-5p targeted PLK1 and mediated autophagy by blocking the PI3K/Akt/mTOR signaling pathway (39). Previous studies demonstrated that PEITC could induce autophagy in
K7M2 OS cells and eventually activated the ROS-related MAPK signaling pathway (40); moreover, escin was proved to be an activator of the ROS/p38 MAPK signaling pathway to counteract OS by inducing autophagy (41). These studies show that our results were credible. The GSEA results suggested that autophagy in OS is favorably related to immune and inflammatory responses. Related pathways including B cells, T cells and NK cells may be the potential direction of targeted therapy.

The predicted IC50s indicated that the high-risk group was more sensitive to targeted drugs. Previous research has proved the importance of these targeted drugs in biological tumor cytology. For example, axitinib (AG-013736) is a potent and selective inhibitor of VEGFR-1–3. In transfected or endogenous RTK-expressing cells, axitinib potently blocked growth factor-stimulated phosphorylation of VEGFR-2 and VEGFR-3 (42,43). AZD8055 showed low activity against all PI3K subtypes (α, β, γ, δ) and other near-PI3K kinase families (ATM and DNA-PK). AZD8055 inhibits the phosphorylation of mTORC1 (p70S6K and 4E-BP1), mTORC2 (AKT), and downstream proteins (44). BIRB 796 is one of the most effective and slowest-separating inhibitors of human p38 MAPK (45). The combination of BIRBO796 with p38 MAPKs or JNK1/2 decreased phosphorylation of human p38 MAPK (45). The combination of BIRB 796 with p38 MAPKs or JNK1/2 decreased phosphorylation of human p38 MAPK (45). The combination of BIRB 796 with p38 MAPKs or JNK1/2 decreased phosphorylation of upstream kinase MKK6 or MKK4, but did not enhance dephosphorylation (46). The results of these drug sensitivity analyses coincided with those for the pathway analyses mentioned above.

The tumor-associated immune response is integral in the TME, whereas autophagy is of great significance in regulating tumor-related immune responses (47). Immune cell infiltration analyses showed that both immune cells and

Figure 6 Significantly enriched GO annotations and KEGG pathways. (A) Bar plot and (B) bubble plot of GO enrichment pathway. (C) Bar plot and (D) bubble plot of KEGG enrichment pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes, GO, gene ontology.
Figure 7 Gene set enrichment analysis results for CCL2, AMBRA1, VEGFA, MYC and EGFR.
immune functional processes were obviously significant in the low-risk group, demonstrating that the high-risk group had less autophagy-related immune response.

Some limitations exist in this study. For example, the sample size is relatively small. Further research with more samples is needed to better evaluate the performance of the model and elucidate the underlying mechanism in the future.

Conclusions
In summary, we identified a 5-autophagy-gene-based prognostic signature in OS. We created a risk score model according to five ARGs associated with OS and verified its accuracy and stability. This risk score model shows commendable performance to predict the prognosis of OS at 1, 3, and 5 years for OS patients independently, which will provides potential guidance of OS targeted therapy.
Figure 9 Prediction of response to targeted drugs. (A) AG.014699, (B) axitinib, (C) AZD8055, (D) BIRB.0796, (E) BAY.61.3606 and (F) elesclomol.

Figure 10 Immunohistochemical results for CCL2, AMBRA1, VEGFA, MYC and EGFR. Hematoxylin stained the cell nucleus blue, and positive expression of DAB is brownish yellow. DAB, diaminobenzidine; OS, osteosarcoma.
Acknowledgments

The authors thank The First Affiliated Hospital of Guangxi Medical University for the assistance with data collection.

Funding: This work was supported by Guangxi Natural Science Foundation (No. 2017JJA10088).

Footnote

Reporting Checklist: The authors have completed the TRIPOD reporting checklist. Available at https://atm.amegroups.com/article/view/10.21037/atm-22-166/rc

Data Sharing Statement: Available at https://atm.amegroups.com/article/view/10.21037/atm-22-166/dss

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://atm.amegroups.com/article/view/10.21037/atm-22-166/coif). All authors report that this work was supported by Guangxi Natural Science Foundation (No. 2017JJA10088). The authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. This study was approved by The First Affiliated Hospital of Guangxi Medical University Ethics Review Committee [approval No. 2021(KY-E-125)]. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). Because the information and privacy of the patients needed to be fully protected, the requirement for obtaining informed consent was waived.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

