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Background: Current prediction models of esophageal cancer (EC) are limited to predicting at a specific 
time point, and ignore changes in hazard ratios of predictive variables, known as time-varying effects. Our 
study aimed to investigate variables with time-varying effects in EC and to develop a prediction model that 
can update the 5-year predicted dynamic overall survival (DOS) probability during the follow-up period. 
Methods: Firstly, the clinicopathological information and survival data of 4,541 patients with EC was 
obtained from the Surveillance, Epidemiology, and End Results (SEER) database between 2007 and 2011 for 
modeling. Secondly, the time-varying effect of variables was assessed and the dynamic prediction model was 
developed based on the proportional baselines landmark supermodel. 
Results: Here, we found that age at diagnosis, sex, location of primary tumor, histological type, 
chemotherapy, surgery, and T stage showed significant time-varying effects on overall survival. Thirdly, 
the prediction model was validated by an internal SEER validation cohort and a Chinese patient cohort, 
respectively, and achieved promising results as follows: area under the curve (AUC) =0.733 (internal 
validation) and 0.864 (external validation). The heuristic shrinkage factor was 0.995. Finally, several clear 
cases were selected as examples for model application to map the patient’s 5-year DOS curves and to 
respectively demonstrate the impact of different variables’ time-varying effect on survival. 
Conclusions: Overall, our results suggest that the existence of time-varying effect highlights the 
importance of updating the predicted survival probability during the follow-up period. Moreover, this 
prediction model can be used to assist doctors in making more-individualized treatment decisions based on a 
dynamic assessment of patient prognosis. 
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Introduction

Esophageal cancer (EC) is a malignant tumor with an 
extremely poor prognosis, with a 5-year overall survival 
(OS) rate of approximately 20% (1). Different pathological 
types of EC differ greatly in terms of their male to female 
ratio, time trends, geographic patterns, and primary risk 
factors across countries (2-4). These diverse characteristics 
can interact with survival outcomes, making it difficult 
to obtain estimations of individual prognosis. Therefore, 
there is an urgent need for accurate survival prediction 
tools that take into account the heterogeneity of patients 
to help clinicians predict individual survival and propose 
treatment recommendations. A recent systematic review 
indicated that there were at least 15 prediction models for 
EC patients between January 1st, 2000 and February 6th, 
2017 (5). However, most previous prediction models were 
developed using the Cox proportional hazards model, which 
fundamentally assumes that the hazard ratio of covariates 
does not change with time (6). However, several studies 
have discovered that some prognostic variables may exhibit 
time-varying effects on the outcome, leading to changes in 
mortality risk over time (7-12). Therefore, these predicted 
results could be misleading if covariates exhibit time-
varying effects.

In addition, there is a practical problem that the 
currently available prediction models cannot solve in the 
study of EC. For example, a patient may pay more attention 
to the survival probability or mortality of “w” years after a 
cancer diagnosis, which is often asked by questions such as: 
“How long will I live?” or “What is the probability of being 
alive ‘w’ years from now?” Furthermore, these questions are 
not only asked at diagnosis, but also at any time during the 
follow-up (FU) visits. However, most existing prediction 
models ignore this issue because they were designed only 
based on the patient’s baseline status at diagnosis or at a 
specific time during treatment, and ultimately obtain a 
corresponding 3- or 5-year survival rate. However, they are 
unable to calculate survival probabilities at different time 
points and therefore cannot reflect the change in patient 
survival probability during the follow-up period. Therefore, 
van Houwelingen et al. proposed a new dynamic prediction 
model based on the proportional baselines landmark 
supermodel (PBLS), which takes time-varying effects into 
account and is able to update survival probabilities over 
time (13,14). The predicted 5-year OS probability is known 
as a 5-year dynamic overall survival (DOS). Our previous 
research has compared the effect of using the PBLS versus 

the Cox proportional hazards model when constructing a 
cervical cancer prediction model in the context of time-
varying effects. We found that with the time-varying effects, 
the PBLS model was recommended to predict a patient’s 
w year dynamic survival rate (15). To the best of our 
knowledge, no previous dynamic prediction model based on 
the PBLS has been developed for patients with EC.

The aim of this research was to explore covariates with 
time-varying effects in EC and to develop a universally 
applicable and accurate prediction model that can 
dynamically predict survival probabilities for patients 
with EC during the entire follow-up period. Therefore, 
a prediction model with time-varying effects was 
developed and internally validated using the Surveillance, 
Epidemiology, and End Results (SEER) database. 
Moreover, an independent Chinese EC patient cohort was 
used for external validation of the model. The resulting 
model can predict an individual patient’s 5-year survival 
probability at different prediction time points up to 5 years 
after EC diagnosis. Specific patient examples were also used 
to illustrate how predicted survival probabilities vary at 
different time points during follow-up and how the model 
can assist clinicians in their medical practice. Compared 
with previous studies, the innovation of our model was 
that the variables with time-varying effects were taken into 
account, which enabled the model to dynamically predict 
the survival probabilities of patients at different time points 
during the follow-up period. We present the following 
article in accordance with the TRIPOD reporting checklist 
(available at https://dx.doi.org/10.21037/atm-21-4964).

Methods

Data source

The SEER database is a population-based cancer database 
that covers approximately 28% of the U.S. population. 
Patient information, including demographics, clinical 
characteristics, pathological features, treatment, and 
survival data were downloaded from the SEER 18 Regs 
Custom Data (with additional treatment) released in 
November 2018 Sub [1975–2016] using SEER*Stat version 
8.3.6. The information of 19,362 cases of patients with 
microscopically-confirmed EC was extracted between 
January 2007 and December 2011. Only histologic codes 
for squamous cell cancers (ICD-O-3 histology codes: 8000-
8046, 8051-8131, 8148-8157, 8230-8249, 8508, 8510-8513, 
8560-8570, 8575, 8950, 8980-8981) and adenocarcinoma 
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(codes: 8050, 8140-8147, 8160-8162, 8170-8175, 8180-
8221, 8250-8507, 8514-8551, 8514-8551, 8576, 8940-8941, 
8140-8573) were included in the research.

Cohort selection 

Baseline patient- and tumor-specific factors included in 
the model were as follows: age at diagnosis, marital status, 
race, sex, histological type, primary tumor site, grade, T 
stage, N stage, M stage, surgery primary site, radiation, 
chemotherapy, survival months, and vital status. The period 
was restricted between 2007 and 2011, during which patient 
pathological staging was characterized according to the 
American Joint Committee on Cancer (AJCC) Tumor Node 
Metastasis (TNM) sixth edition staging criteria.

The exclusion criteria were as follows: (I) patients who 
were not diagnostically confirmed by positive histology 
(N=904); (II) those whose tumor was not the first malignant 
primary indicator (N=4,992); (III) patients whose reporting 
source was an autopsy, hospice, death certificate, or nursing 
home (N=204); (IV) those with an unknown marital status 
(N=648); (V) patients of unknown or American Indian/
Alaska Native race (N=87); (VI) those with a primary tumor 
site code C15.1 or C15.9 (N=1,484); (VII) patients whose 
histologic type was not adenocarcinoma or squamous cell 
carcinoma (N=26); (VIII) those lacking a histological grade 
(N=1,832); (IX) patients with an unknown (N=1,869) or T0 
T stage (N=4); (X) those without specific N and M stages 
(N=384); (XI) patients with a surgery primary site code 10–
27 (local tumor excision, N=23); (XII) those with a surgery 
primary site code 90 (NOS, N=23) or 99 (unknown, N=9); 
(XIII) patients with a radiation code radioisotopes (N=1); 
and (XIV) those with unknown or <3 survival months 
(N=1,302). Finally, 5,423 patients were eligible for inclusion 
in this study. These patients were randomly divided into a 
training cohort (N=4,541) and an internal validation cohort 
(N=882) at a ratio of 5:1. The screening process is presented 
in detail in Figure 1.

The eligible data were defined, integrated, and grouped. 
First, data were divided by age into five groups: age <50, 
50–59, 60–69, 70–79, and >80 years. Patients who were 
separated, divorced, single patients (never married), or 
widowed at diagnosis were integrated into the unmarried 
group, and married patients (including common-law 
marriages) were designated as the married group. Tumor 
sites were divided into four groups: upper third of the 
esophagus (C15.0, C15.3), middle third of the esophagus 
(C15.4), lower third of the esophagus (C15.2, C15.5), and 

overlapping lesion of the esophagus (C15.8). Patients were 
grouped into radiotherapy and no radiotherapy/unknown 
groups based on their radiotherapy treatment. Surgery 
primary site reflected whether the patient has undergone 
surgery and the surgical site. Thus, patients in this study 
were divided into surgery (codes: 30–80) and no surgery 
(codes: 0) groups.

A retrospective Chinese patient cohort consisting of 99 
EC patients from the Zhujiang Hospital of the Southern 
Medical University (Guangzhou, Guangdong Province, 
China) between January 2004 and September 2010 was 
used to externally validate this dynamic prediction model. 
The inclusion and exclusion criteria for all cases were the 
identical to the screening criteria for the SEER database. 
All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved 
by the Medical Ethics Committee of Zhujiang Hospital, 
Southern Medical University, Guangzhou, China (ethics 
committee approval number: 2020-KY-001-01). Individual 
consent for this retrospective analysis was waived. Using 
SEER data does not require additional informed consent 
as patient privacy information is protected by the SEER 
cancer registries.

Statistical analysis

All-cause mortality (death from any cause) served as the 
primary endpoint in this study. Survival time was measured 
in years from the date of diagnosis until (I) the date of 
death, (II) the date last known to be alive, or (III) December 
31, 2016. 

The categorical data were indicated as frequencies 
(percentages). The Kaplan-Meier curves of OS were 
compared using the log-rank test. The univariable and 
multivariable Cox proportional hazard (PH) models were 
used to estimate hazard ratios (HRs) and 95% confidence 
intervals (CIs). The PHs assumption was checked using 
the Grambsch-Therneau test. A PBLS (for more details, 
see Supplemental method I) was established to obtain the 
5-year DOS. Firstly, the prediction window was fixed at 
w=5, where w was the patient’s response to the question 
“How long will I live?” at any prediction time point 
( [ ]1, Ls s s∈ ). Next, a set of prediction landmark time points 

{ }1 2 3 20 21
1

0 0.25 0.5 4.75 5, 1,2,3,..., 20,21 , , ,..., , , , ,..., ,
5 5 5 5 5 5l

L

s ss l s s s s s
s s

   = = = = =   −    was selected 
at every third month between 0 and 5 years after the 
diagnosis of EC (see the blue circles and the yellow parts in 
Figure S1). A Cox PH model for 5-year OS at a specific s 
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19,362 patients from SEER database 
(2007–2011)

5,423 eligible patients random 
assigned by 5:1

Training cohort  
(N=4,541)

Internal validation cohort  
(N=882)

Excluded “Diagnostic Confirmation: 
Non-Positive histology”  

904 cases
Excluded “First malignant primary 

indicator: Not”  
4,992 cases

Excluded “T Stage: T0, TX”  
1,873 cases

Excluded “N Stage: NX”  
318 cases

Excluded “Race: American Indian/
Alaska Native, unknown”  

85 cases Excluded “Primary tumor site:  
C15.1, C15.9”  
1,484 cases

Excluded “Surg Prim Site code:  
90 (NOS), 99 (unknown)”  

38 cases
Excluded “Radiation code: 

Radioisotopes”  
1 cases

Excluded “Type of Reporting Source: 
autopsy; hospice or nursing home” 

204 cases
Excluded “Marital : unknown”  

648 cases

Excluded “M Stage: MX”  
66 cases

Excluded “Surg Prim Site code:  
10–27 (local tumor excision)”  

166 cases

Excluded “Histologic Type: Non-
Adenocarcinoma and squamous cell 

carcinoma”  
26 cases Excluded “Grade: unknown”  

1,832 cases

Excluded “Survival months code: 0, 
1,2, 3, unknown”  

1,302 cases

Figure 1 Flow chart of patients’ selection from the SEER database. The information of 19,362 cases of esophageal cancer patients diagnosed 
between 2007 and 2011 was downloaded from the SEER database. After screening, 5,423 eligible patients were included in this study. These 
eligible patients were randomly divided into a training cohort (N=4,541) and an internal validation cohort (N=882) at a ratio of 5:1. SEER, 
the Surveillance, Epidemiology, and End Results database.
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was then estimated on the subset of patients, who were still 
alive at s and administrative censored at s + w (see the red 
circles and the blue parts in Figure S1). A super prediction 
data set (for construction, see Supplemental method II) 
was stacked with all-created small subsets (the number of 
patients in each landmark subset is shown in Figure S2). 
The following model was constructed for our study, where 

2
0 1 2( ) ss sβ γ γ γ+ +=  and 2( ) ssg s= + .

( )0( | ) ( ) ( ( ) ),, ,  h t Z s w h t exp s sZ s t s wθβ′= ≤ ≤ ++
	

[1]

A backward selection procedure was then used to select 
covariates with time-varying effects in two steps. Initially, 
all of the interactions (Z × s2) between quadratic s2 and the 
covariates were tested, and non-significant terms were then 
removed. In the second step, interactions (Z × s2) for linear 
s and prognostic factors were tested, and only significant 
effects were retained. The w-year dynamic HR at different 
time points could then be calculated using the following 
equations:

2 2
0 1 2 0 1 2( ) exp( exp() ( / 5) ( / 5) ), [0,5]l

w
l lHR s s s ss sγ γ γ γ γ γ+ + = + × + × ∈=

2 2
0 1 2 0 1 2( ) exp( exp() ( / 5) ( / 5) ), [0,5]l

w
l lHR s s s ss sγ γ γ γ γ γ+ + = + × + × ∈=

[2]

The performance of the model was evaluated in terms of 
both discrimination and calibration. The model’s ability to 
correctly discriminate between patients was evaluated using 
the area under the curve (AUC). Calibration was evaluated 
using the heuristic shrinkage factor. All analyses were 
performed using R software (version 3.6.1) (https://www.
r-project.org/), and the significance level was set at 0.05.

Results

Patient characteristics

A total of 5,423 EC patients from the SEER database were 
included in the analyses. 4,541 randomly-assigned patients 
were used as the training cohort for the development of 
the prediction model, and 882 patients were used as the 
internal validation cohort for the model. The median 
follow-up time for the training cohort was 16.00 (95% CI:  
15.31–16.69) months (range, 4–119 months), while the 3- 
and 5-year survival rates of the training cohort were 27.99% 
(95% CI: 26.71–29.32%) and 20.28% (95% CI: 19.14–
21.49%), respectively. The median follow-up time for the 
interval validation cohort was 18.00 (95% CI: 16.19–19.81) 
months (range, 4–119 months), while the 3- and 5-year 
survival rates of the interval validation cohort were 28.53% 
(95% CI: 25.70–31.68%) and 21.01% (95% CI: 18.46–

23.90%), respectively. A total of 99 patients from a Chinese 
patient cohort were investigated as the external validation 
cohort. Their median follow-up time was 13.00 (95% CI: 
10.94–15.07) months (range, 2–98 months), and the 3- and 
5-year survival rates of the entire cohort were 15.15% (95% 
CI: 9.51–24.15%) and 9.26% (95% CI: 4.78–17.96%), 
respectively. The OS curves of the three cohorts are 
shown in Figure 2. The baseline demographics and tumor 
characteristics of the included patients are presented in  
Table 1. The Kaplan-Meier survival curves (Figure S3) 
for age at diagnosis, sex, T stage, chemotherapy, and 
radiotherapy had intersecting evidence. Moreover, the Cox 
PH model (Table S1) could not satisfy the PH assumption 
that the HR is constant over time. To obtain the 5-year 
DOS, we used the PBLS to analyze our study.

Variables with time-constant and time-varying effects

Regression coefficients and HRs with 95% CI for the 
variables included in the model are represented in Table 2 and  
Figure 3. Variables with time-constant and time-varying effects 
on the 5-year DOS were also determined. Patient baseline 
demographics and tumor characteristics, including marital 
status, race, grade, N stage, M stage, and radiotherapy, had 
a time-constant effect (Table 2, Figure 3). The HR for these 
variables was constant regardless of time point during the 
follow-up period (Figure 3B,3C,3G,3I,3J,3M). For instance, 
the HR for unmarried patients compared to married patients 
was 1.156 (95% CI: 1.061–1.260) at the time of diagnosis with 
EC (0 years). During the following 5 years after diagnosis, the 
HR value remained at 1.156, demonstrating a significant time-
constant effect (Figure 3B). 

On the contrary, age at diagnosis,  sex, primary 
tumor site, histologic type, stage AJCC T, surgery, and 
chemotherapy demonstrated significant time-varying effects 
on the 5-year DOS. These HRs were constantly changing 
with each successive s (Figure 3A,3D,3E,3F,3H,3K,3L). For 
example, the HR value for a patient without chemotherapy 
immediately after primary treatment compared to a 
patient with chemotherapy (Yes) was 1.241, which 
was calculated using the following formula (Table 2): 

5 20.216-1.379 (0 / 5) 1.1(0 35 (0 /) e 5)xp( )=1.124HR = × + × .  T h i s 
value decreased to 0.986 5 20.216-1.379 (1/ 5) 1.1(1 35 (1/) e 5)xp( )=0.986HR = × + ×

5 20.216-1.379 (1/ 5) 1.1(1 35 (1/) e 5)xp( )=0.986HR = × + ×  after 1 year of follow-up, 0.816 after 
3 years of follow-up, and 0.972 after 5 years of follow-up 
(Figure 3L). Age, sex, primary tumor site, histologic type, 
chemotherapy, and AJCC T stage also demonstrated a 
significant time-varying effect.

https://cdn.amegroups.cn/static/public/ATM-21-4964-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4964-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4964-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4964-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4964-Supplementary.pdf
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Figure 2 Overall survival curves of esophageal cancer patients in three cohorts. The red line exhibits the overall survival of patients in 
the SEER training cohort, and the corresponding red shaded area is the confidence interval. The green line shows the overall survival of 
patients in the SEER internal validation cohort, and the corresponding green shaded area is the confidence interval. The blue line exhibits 
the overall survival of patients in the external validation cohort from Zhujiang hospital, and the corresponding blue shaded area is the 
confidence interval. The number of patients at risk periodically with the time of each cohort is exhibited in the same color at the bottom of 
figure. SEER, the Surveillance, Epidemiology, and End Results database.

Table 1 Baseline characteristics of cohort patients

Characteristics
Training cohort (N=4,541) Internal validation (N=882) External validation (N=99)

n % n % n %

Age

<50 years 416 9.16 79 8.96 1 1.01

50–59 years 1,105 24.33 206 23.36 42 42.42

60–69 years 1,572 34.62 311 35.26 33 33.33

70–79 years 1,008 22.20 190 21.54 13 13.13

80+ years 440 9.69 96 10.88 2 2.02

Sex

Male 823 18.12 136 15.42 80 80.81

Female 3,718 81.88 746 84.58 19 19.19

Marriage status

Married 2,807 61.81 561 63.61 99 100.00

Unmarried 1,734 38.19 321 36.39 0 0.00

Table 1 (continued)
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Table 1 (continued)

Characteristics
Training cohort (N=4,541) Internal validation (N=882) External validation (N=99)

n % n % n %

Race

Asian or Pacific islander 205 4.51 35 3.97 99 100.00

Black 423 9.32 74 8.39 0 0.00

White 3,913 86.17 773 87.64 0 0.00

Histological types

Squamous cell carcinoma 1,409 31.03 260 29.48 91 91.92

Adenocarcinoma 3,132 68.97 622 70.52 8 8.08

Primary tumor site

Upper third of esophagus 289 6.36 44 4.99 10 10.10

Middle third of esophagus 703 15.48 126 14.29 40 40.40

Lower third of esophagus 3,375 74.32 679 76.98 20 20.20

Overlapping lesion 174 3.83 33 3.74 29 29.29

Grade

Grade I 261 5.75 45 5.10 6 6.06

Grade II 1,926 42.41 380 43.08 62 62.63

Grade III/grade IV 2,354 51.84 457 51.81 31 31.31

T stage

T1 1,366 30.08 240 27.21 3 3.03

T2 607 13.37 127 14.40 11 11.11

T3 1,970 43.38 412 46.71 63 63.64

T4 598 13.17 103 11.68 22 22.22

N stage

N0 1,953 43.01 392 44.44 39 39.39

N1 2,588 56.99 490 55.56 60 60.61

M stage

M0 3,302 72.72 658 74.60 79 79.80

M1 1,239 27.28 224 25.40 20 20.20

Surgery

Yes 1,795 39.53 352 39.91 68 68.69

No/unknown 2,746 60.47 530 60.09 31 31.31

Chemotherapy

Yes 3,520 77.52 670 75.96 69 69.70

No/unknown 1,021 22.48 212 24.04 30 30.30

Radiation

Yes 3,185 70.14 597 67.69 43 43.43

No/unknown 1,356 29.86 285 32.31 56 56.57
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Table 2 Covariates with time-constant effects and time-varying effects by Dynamic prediction

Covariates Regression coefficient Hazard ratio (95% CI) P value

Covariates with time-constant effects

Marriage status (ref: married) 

Unmarried 0.145 1.156 1.061–1.260 0.001

Race (ref: White)

Black 0.172 1.187 1.024–1.377 0.023

Asian or Pacific Islander −0.195 0.823 0.675–1.004 0.055

Grade (ref: grade I)

Grade II 0.187 1.206 1.005–1.447 0.044

Grade III/grade IV 0.353 1.424 1.187–1.708 <0.001

N stage (ref: N0)

N1 0.238 1.269 1.162–1.386 <0.001

M stage (ref: M0)

M1 0.391 1.479 1.332–1.642 <0.001

Radiation (ref: yes)

No/unknown −0.019 0.981 0.880–1.094 0.735

Covariates with time-varying effects

Age at diagnosis (ref: per 10 years)

Constant

Age 0.075 1.078 1.042–1.116 <0.001

Time-varying effect

Age (s) −0.111 0.895 0.715–1.121 0.334

Age (s2) 0.450 1.568 1.161–2.119 0.003

Sex (ref: female)

Constant

Male 0.175 1.192 1.066–1.332 0.002

Time-varying effect

Male (s) 0.664 1.943 1.287–2.935 0.002

Histological types (ref: adenocarcinoma)

Constant

Squamous cell carcinoma −0.020 0.980 0.879–1.092 0.715

Time-varying effect

Squamous cell carcinoma (s) −0.815 0.443 0.257–0.764 0.003

Squamous cell carcinoma (s2) 0.892 2.441 1.331–4.476 0.004

Table 2 (continued)
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Table 2 (continued)

Covariates Regression coefficient Hazard ratio (95% CI) P value

Primary tumor site (ref: lower)

Constant

Upper −0.076 0.926 0.779–1.101 0.387

Middle 0.018 1.018 0.894–1.159 0.788

Overlapping 0.296 1.344 1.110–1.628 0.002

Time-varying effect

Upper (s) 0.238 1.269 0.660–2.439 0.475

Middle (s) 0.563 1.756 1.170–2.636 0.007

Overlapping (s) −0.087 0.917 0.355–2.366 0.857

Chemotherapy (ref: yes)

Constant

No/unknown 0.216 1.241 1.107–1.391 <0.001

Time-varying effect

No/unknown (s) −1.379 0.252 0.138–0.460 <0.001

No/unknown (s2) 1.135 3.111 1.589–6.093 0.001

Surgery (ref: yes)

Constant

No 0.863 2.370 2.152–2.611 <0.001

Time-varying effect

No (s) −0.738 0.478 0.346–0.661 <0.001

T stage (ref: T1)

Constant

T2 −0.057 0.945 0.829–1.076 0.393

T3 0.199 1.220 1.103–1.349 <0.001

T4 0.300 1.350 1.184–1.539 <0.001

Time-varying effect

T2 (s) 0.598 1.818 1.191–2.776 0.006

T3 (s) 0.282 1.326 0.917–1.919 0.134

T4 (s) 0.417 1.517 0.888–2.592 0.127

Prediction time (ref: years since start of diagnosis)

s 2.648 14.128 2.861–69.756 0.001

s2 −4.016 0.018 0.004–0.074 <0.001
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Figure 3 HRs with 95% confidence intervals in the dynamic prediction by PBLS model. The colored curves indicate the variation tendency 
with time of each variable’s HR, and the colored shaded areas indicate the confidence interval of the HR. HRs of age at diagnosis, sex, 
primary tumor site, histologic type, T stage, surgery, and chemotherapy were changing at each successive time point(s). (A) Time-varying 
HR for age. Red: per 10-year range/earlier 10-year range. (D) Time-varying HR for sex. Red: male/female. (E) Time-varying HR for tumor 
primary site. Pink: upper third of esophagus/lower third of esophagus; green: middle third of esophagus/lower third of esophagus; orange: 
overlapping site of esophagus/lower third of esophagus. (F) Time-varying HR for histologic type. Red: ESCC/EAC. (H) Time-varying 
HR for AJCC T stage. Pink: T2/T1; green: T3/T1; orange: T4/T1. (K) Time-varying HR for surgery. Red: no surgery/surgery. (L) Time-
varying HR for chemotherapy. Red: no chemotherapy/chemotherapy. (B,C,G,I,J,M) HRs of marriage status, race, grade, N stage, and M 
stage were constant regardless of time point during the follow-up period, with straightforward time-constant effects. PBLS, proportional 
baselines landmark supermodel; ESCC, esophageal squamous cell carcinoma; EAC, esophageal adenocarcinoma; AJCC, American Joint 
Committee on Cancer; HR, hazard ratio.

Internal model validation

The heuristic shrinkage factor was 0.995, which indicated 
good model calibration. The model discriminatory accuracy 
was verified using the SEER validation cohort using the 
AUC, resulting in values of 0.763 (95% CI: 0.745–0.78), 
0.746 (95% CI: 0.732–0.760), and 0.733 (95% CI: 0.720–
0.745) at 1, 2, and 3 years, respectively, and self-verified 
by training cohort, resulting in values of 0.784 (95% CI: 
0.776–0.791), 0.767 (95% CI: 0.761–0.773), and 0.757 (95% 

CI: 0.752–0.762) at 1, 2, and 3 years, respectively (Figure 4), 
which both reflected satisfactory accuracy.

External model validation 

A retrospective Chinese patient cohort consisting of 99 EC 
patients from Zhujiang Hospital of the Southern Medical 
University (Guangzhou, Guangdong Province, China) 
between January 2004 and September 2010 was used for 
external model validation. Model discriminatory accuracy 
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was verified using the AUC, resulting in values of 0.865 
(95% CI: 0.811–0.919), 0.871 (95% CI: 0.827–0.914), 
and 0.864 (95% CI: 0.825–0.902) at 1, 2, and 3 years 
respectively (Figure 4).

Model application 

The most important function of the dynamic prediction 
model is to intuitively portray the change in patient survival 
probability, in order to assist clinicians in performing their 
medical practice. Our study selected 14 patients as examples 
for model application to respectively demonstrate the 
impact of different variables’ time-varying effect on survival 
and to map the patient’s 5-year DOS curves (Figure 5). 

For instance, clinicians often face the problem of 
receiving adjuvant chemotherapy after an esophagectomy 
for an early EC patient. In this case, clinicians can use the 
dynamic survival prediction model to map the survival 
curves under different conditions for clinical decision-

making. Figure 5G displays the 5-year probabilities of 
survival for a 55-year-old married Caucasian female patient 
with esophageal adenocarcinoma in the lower third of the 
esophagus, diagnosed with T1N1M0 stage, and treated 
with an esophagectomy. The g1 line shows the 5-year 
survival probability for this patient receiving adjuvant 
chemotherapy after esophagectomy. Conversely, the g2 
line shows the survival probability for this patient without 
receiving adjuvant chemotherapy after esophagectomy. It is 
evident that postoperative adjuvant chemotherapy increases 
the survival probability for this patient in the early follow-
up phase (time point = 0–1 years), but subsequently resulted 
in a lower survival probability during the follow-up period. 
This example shows that this model can assist doctors in 
developing individualized treatment strategies for patients.

The latest National Comprehensive Cancer Network 
(NCCN) clinical practice guidelines for EC recommend 
that patients with early EC undergo radical surgery. 
However, many patients will refuse surgery for various 
reasons. In this case, patients can be educated using 
dynamic survival curves resulting from this prediction 
model. For example, Figure 5F demonstrates a 55-year-old  
married Asian male patient diagnosed with squamous cell 
carcinoma in the middle third of the esophagus, with a 
stage of T1N0M0. The f1 line shows the 5-year survival 
probability for this patient receiving radical surgery for 
EC. Conversely, the f2 line shows this patient’s survival 
probability without receiving radical surgery. The 5-year 
dynamic survival curves suggest that in the early follow-
up phase for this patient, the 5-year survival rate after 
undergoing radical surgery is significantly higher than that 
after refusing surgery. Although the gap will be shortened 
over time, this still underscores the importance of radical 
surgery for patients with early EC. There are also several 
additional examples shown in Figure 5, which are not 
elaborated in the article, and detailed patient information is 
attached to Table S2.

In clinical practice, this model can be used for EC 
patients to predict their 5-year survival probabilities at 
different time points during the follow-up period. In 
addition, this model can map patient-specific dynamic 
survival curves to assist clinicians in their practice.

Discussion

To the best of our knowledge, there are few prediction 
models for EC that can dynamically predict 5-year OS at 
a specific time point during follow-up after diagnosis. The 
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Figure 4 AUC of the dynamic prediction model. The AUC for 
3-year OS was 0.757 (95% CI: 0.752–0.762) in the SEER training 
cohort (red line). The AUC for 3-year OS was 0.733 (95% CI: 
0.720–0.745) in the SEER internal validation cohort (green line). 
The AUC for 3-year OS was 0.864 (95% CI: 0.825–0.902) in the 
external validation cohort (blue line). The AUCs for the dynamic 
prediction model verified by the training set, validation set, and 
Zhujiang hospital external validation all indicated a good model 
discriminatory accuracy. SEER, Surveillance, Epidemiology, and 
End Results; AUC, area under curve; OS, overall survival; CI, 
confidence interval.
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Figure 5 Application of the model: changes in the 5-year dynamic survival estimates in 14 example patients. The 5-year probability of 
survival estimates for seven groups of 14 patients as examples to demonstrate the impact of different variables’ time-varying effect on 
survival. (A) Married, White, male, lower third of the esophagus, EAC, grade III, T3N1M0, no surgery, chemotherapy, and radiotherapy; 
(B) 58 years, unmarried, White, middle third of the esophagus, EAC, grade II, T2N1M0, surgery, chemotherapy, and no radiotherapy; (C) 
44 years, married, Asian, female, ESCC, grade I, T1N0M0, surgery, no chemotherapy, and no radiotherapy; (D) 72 years, unmarried, Black, 
male, overlapping lesion of the esophagus, grade II, T4N1M1, no surgery, chemotherapy, and no radiotherapy; (E) 60 years, married, White, 
male, upper third of the esophagus, ESCC, grade I, TxN1M1, no surgery, chemotherapy, and no radiotherapy; (F) 55 years, married, Asian, 
male, middle third of the esophagus, ESCC, grade II, T1N0M0, no chemotherapy, and no radiotherapy; (G) 55 years, married, White, 
female, lower third of the esophagus, EAC, grade I, T1N1M0, surgery, and no radiotherapy. EAC, esophageal adenocarcinoma; ESCC, 
esophageal squamous cell carcinoma; AJCC, American Joint Committee on Cancer.

main highlight of this model is that it takes into account 
prognostic variables with time-varying effects, including 
age, sex, primary tumor site, histologic type, chemotherapy, 
surgery, and AJCC T stage. The discovery and addition of 
time-varying effects in the model make its predicted results 
more optimal because the model can adjust the HR of 
prognostic variables, thereby adjusting the patient’s survival 
probability at different time points. Most importantly, the 
prominent advantage of this model is that it can predict 
the 5-year survival probability of patients at different time 
points, making the prediction more accurate and more 
practical.

Several EC prediction models currently exist. These 
models have different manifestation forms, prognostic 
covariates, use conditions, and predictive purposes. For 

example, Eil et al. created a web-based prediction tool to 
determine the OS of patients treated with esophagectomy 
or  neoad juvant  chemoradiotherapy  fo l lowed by 
esophagectomy (16). The covariates included in the model 
were sex, T and N classification, histology, the total number 
of lymph nodes examined, and treatment. Cao et al. used 
a population-based SEER database for constructing a 
nomogram to predict patient survival esophagectomy (17), 
which incorporated covariates such as age at diagnosis, 
recorded race, histological type, tumor site and size, 
grade, T category, N category, and retrieved lymph nodes. 
Custodio et al. developed a survival prediction model 
for Caucasian patients with advanced esophagogastric 
adenocarcinoma receiving first-line chemotherapy (18). 
Tang et al. developed a model predicting cancer-specific 
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survival for patients initially diagnosed with metastatic EC 
(mEC) (19). The novelty of this study was that it filled the 
gap in predicting mEC. 

Numerous studies have demonstrated that some 
prognostic variables may exhibit time-varying effects 
that result in a change in the HR over time during long-
term follow-up. These variables include age at diagnosis 
(20,21), tumor size (8,21,22), lymph nodal status (8,21), 
tumor stage (23), histological grade (8,9,24), hormone 
receptors status (9,24), tumor biomarker level (10), drug 
exposure, and chemotherapy (21,25). In addition, Fontein 
et al. demonstrated that high-risk N-stage (N2/3), Human 
Epidermal Growth Factor Receptor 2-positive (HER2 
-positive), and locoregional recurrence are all characteristics 
that have time-varying effects in postmenopausal, 
endocrine-sensitive breast cancer patients, and further 
designed a dynamic prediction model that can update 
predictions at different time points (26). Rueten-Budde  
et al. determined that surgical margin and tumor histology 
exhibit significant time-varying effects on OS, and modeled 
a dynamic prediction for patients with high-grade extremity 
soft tissue sarcoma (27). However, the EC prediction 
models above did not take into account that some predictive 
variables may have time-varying effects. Moreover, these 
models are not able to update predictions at different 
time points during the follow-up period. To date, there is 
no existing EC prediction model that involves variables 
with time-varying effects and can dynamically predict the 
survival probability of patients at different time points.

The present study explored the effect of predictive 
variables over time in EC and found significant time-
varying effects of age, sex, primary tumor site, histologic 
type, chemotherapy, surgery, and T stage on OS. We then 
developed a prediction model based on the PBLS, which 
takes into account variables with time-varying effects. 
Many studies have shown that the prognostic effect of age 
on survival changes during long-term follow-up, which 
is similar to our results on the time-varying effect of age 
(20,21). Chemotherapy has also been shown to have time-
varying effects in several studies, which is consistent with 
our findings (21,25). No previous research has discovered 
the time-varying effects of the remaining five prognostic 
factors, which therefore deserve further investigation. The 
accumulation and interaction of these time-varying effects 
result in a change in the risk of death for EC patients 
and lead to a dynamic prediction of survival probabilities. 
Compared with other ‘static’ prediction models, the 
advantages of this model were to take into account variables 

with time-varying effects for the first time in EC, so that 
the model has the ability to dynamically predict and update 
survival probabilities at different time points.

Owing to its ability to predict survival probabilities 
dynamically, this model can play an important role 
in practical applications. As mentioned above, when 
faced with the tricky problem of postoperative adjuvant 
chemotherapy benefit for a T1N1M0 EC patient after 
surgery, clinicians can use the dynamic prediction model to 
calculate the 5-year DOS for both chemotherapy and non-
chemotherapy at different time points during the follow-up 
period, and choose the treatment according to its predictive 
results. In conclusion, this dynamic prediction model can 
make predictions more accurate by updating the survival 
probabilities over time, and can assist clinicians in patient 
counseling, individualized therapy decision-making, and 
treatment risk evaluation. 

Several limitations exist in this dynamic prediction 
model. The retrospective nature of the SEER database 
data, as well as a large number of missing patient clinical 
pathology registration information are the main limitations 
of this study. Also, since the data used to construct the 
model is retrospective, a lot of registered information (which 
used an early classification version, such as the AJCC-TNM 
6th edition staging criteria) was included in the present 
model, with subtle time differences in clinical applications. 
Moreover, some important variables that may alter patient 
prognosis during the follow-up period, such as locoregional 
and distant recurrences, were not included in the present 
study, as this information is not registered in the SEER 
database. For the same reason, the lack of treatment-related 
variables, such as induction chemoradiotherapy, the quality 
of esophagectomy, surgical margins, degree of response 
to therapy, and comorbidity information, also represent 
disadvantages of the model. Finally, this prediction model 
could benefit from presentation in an easy-to-use medium, 
such as a nomogram, web-based calculator, or mobile 
application.

Conclusions

This study explored and discovered variables that exhibit 
time-varying effects in EC, and then developed a prediction 
model that can predict survival probabilities at different 
time points in the follow-up period. Our dynamic prediction 
model can continuously revise the patient residual death 
risk and track changes in patient survival, thereby assisting 
clinicians in selecting individualized therapy. Additionally, 
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this study underscores the importance of using prediction 
models for clinical guidance, not only at the time of 
diagnosis but also during the follow-up period.
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Figure S1 Structure of dynamic prediction using proportional baselines landmark supermodel. The green circle represents the patients’ 
survival time. The blue circle represents the landmark time points. The red circle represents the two endpoints (Truncation time and 
Censoring time) of the prediction window. Different types of circles overlapping at the same time indicate that the time points occur at the 
same time.

Figure S2 Number of patients in the landmark datasets since the diagnosis of EC in relation to Death Censored status. The green bar shows 
the censored patients in each landmark time point, the red bar shows the deaths in each landmark time point, and the purple dot shows the 
cumulative distribution function (CDF) in each landmark time point.
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Figure S3 The overall survival curves of different factors. The Kaplan-Meier curves of OS were first compared with LR, of which a value 
<0.05 suggested that there were significant differences in survival rates among the different groups. The colored line exhibits the overall 
survival of a group of patients, and the corresponding shaded area is the confidence interval. The proportional hazards assumption was 
also checked by GT, of which a value <0.05 implied that the proportional hazard assumption was not satisfied. The Kaplan-Meier survival 
curves for age at diagnosis, sex, T stage, chemotherapy, and radiotherapy had intersecting evidence, which also implied that the proportional 
hazard assumption was not satisfied in this case. AJCC, American Joint Committee on Cancer; LR, Log-rank test; GT, Grambsch-Therneau 
proportional hazards test.
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Supplemental method I The construction of proportional baselines landmark supermodel

The proportional baselines landmark supermodel (PBLS model) was originated from the Landmark method (landmark 
analysis), a debate on the effect of response to chemotherapy on survival 33 years ago in the first volume, the Journal of 
Clinical Oncology (28). If we count the patients with guarantee time bias (immortal time bias) in the response group, then we 
will underestimate the death rate for responders, overestimate the death rate in the early month for nonresponders (29). So 
Anderson (28) provided an alternative method to consider the guarantee time bias in the early months by fixing time after the 
initiation of therapy as a landmark. People whose survival time less than the landmark time will be excluded from the analysis. 
This approach effectively removes the bias present in the early time. In 2007, Houwelingen (13) designed the PBLS model, 
one way of dynamic prediction, combining Cox proportional hazards model and landmark method, having advantages to 
solve the covariates with time-varying effect, simply operating and easily understanding.

Suppose that a data based on a sample of size n , consists of the triple ( ), ,i i iT Zδ , where ( )1,2,...,iT i n=  is the time to event 
for the i -th patient. iδ  is the event indicator ( =1iδ  if the event has occurred, =0iδ  if the time is censored). ijZ  is the i -th 
patient’s j -th covariate. Then the Cox proportional hazards (PH) model can be constructed as follows:

0 0( | )= ( )exp ( )= ( )exp ( Z )j jh t h t h t β′ ∑Z Zβ 	 [1]

where j is the coefficient for the j -th covariate ( Z j ) and the 0( )h t is the baseline hazard function
However, the Cox PH model was found evidence of the non-proportionality of hazards for many reasons. The time-

varying effect model is denoted as

( )0( | )= ( )exp ( )h t h t t ′Z Zβ
	

[2]

Exploring the prognosis factors is important for clinical research, but a good prognostic prediction model might be more 
important to patients. Patients after diagnosis of cancer may pay more attention to the probability of “w” years’ survival 
or mortality. Moreover, patients maybe not only pay attention at the start of the treatment but also any time of the follow-
up visits. This emphasizes the dynamic use of time in the prediction model. In van Houwelingen [2007], landmarking is 
introduced as a tool to obtain predictions from s up to hort s w= + . And then use the Cox PH model in that interval as 
follows:

( )0( | , , ) | , exp( ),l l LM l lh t s w h t s w s t s w′= ≤ ≤ +Z Z β 	 [3]

We can use this simple Cox PH model at any landmark time point [ ]1, Ls s s∈ . Maybe the PH assumption is violated in 
some intervals. But it is a very convenient and useful way to obtain a dynamic prediction without having to fit a model with 
complicated time-varying effects.

The analysis is based on a “super prediction dataset” (more information see the supplemental method 2 “The construction of 
a super prediction data set”). After obtaining the data set, we can establish the proportional baselines landmark supermodel. The 
first step is to let the regression coefficients LMβ  depend on 

1

, 1, 2,3,...,l
L

ss l L
s s

 
= = − 

 in a smooth way and to model that 
in a linear way. The form can be

( )0( | , , ) | , exp( ( )),LMh t s w h t s w s s t s w′= ≤ ≤ +Z Z β 	 [4]

where 1
( ) ( ) 

bm

LM l j j l
j

s f sγ
=

= ∑β  and mb is the sum of the terms of the coefficients. An easy way is to use the spline or a parametric 
model like: 2

0 1 2 ( )LM l l ls s sβ γ γ γ= + + . Every dataset can be viewed as a “strata.” There are some patients repeated in each strata 
in the super dataset. So the baseline hazard function depends on ls  via the smooth functions modeled directly by letting

( )0 0 0
1

( | , ) ( )exp( ) ( )exp( ( ))
hm

j j
j

h t s w h t s h t g sθ η
=

= = ∑
	

[5]

Where 1( ) ( )j l j lg s f s+= and hm is the sum of the terms of the baselines. Then the proportional baselines landmark supermodel 
(PBLS) can be

( )0( | ) ( ) (, ), ( ), LMh t Z s w h t exp Z s s t s wsθβ′= ≤ ≤ ++ 	 [6].
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And the integrated partial log-likelihood (ipl*) is

( ) { }

{ }

'
|*

' 1
1 | ( )

exp( ( | ) ( | ))
, ln( ),

exp( ( | ) ( | ))
i

ji j

n js s t s w LM

i L
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i s s t s w t Mj R

Z s s
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Z s
s t s

s
w
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γ

γ

γ θβ

θ η
η

η
≤ ≤ +

= ≤ ≤ + ∈

+
=

+
≤ ≤ +

∑
∑ ∑ ∑ 	 [7]

The baseline hazards are: 
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* 0
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[8]

Let ( ) ( )* *
0 0̂

ˆ
i

i it t
H t h t

≤
= ∑  be the corresponding cumulative hazard, then the simple predictive landmark model is given by  

( ) ( ) ( ) ( )' * *
0 0

ˆˆ̂̂ | , exp( ( ) )(ˆ )LM LMH t Z t s s H tZ s H sθβ −= = + − 	 [9]

The predicted w-year dynamic survival rate at any prediction time was obtained by 

( )| , ( | , ) exp( ( |Z,s) )
s w

s

S s w s Z P T s w T s Z h t dt
+

+ = > + > = − ∫ 	 [10]

Then the w-year dynamic HR at different time point can be calculated as following equations:

2
0

1
1 2( ) exp( , 1, 2,3,) ...,,l l

L

w
l lHR s s

s
ss s l L

s
γ γ γ


= = =

−

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	 [11]
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Supplemental method II The construction of a super prediction data set

To better understand the construction of a super prediction data set, we fabricate a toy data set containing two variables for 
six single-record-per-patient subjects. The data is shown in Table S1.

Then we construct the super prediction data set for six subjects as the following steps:
(I)	 Fix the prediction window w (see the blue part in Figure S1). The selection of w relies on the severity of the cancer, 

w=5 or w=10 for the milder cancers, w=1 or w=2 for the severe cancers. Suppose the six patients want to know the 
probability of mortality of 5 years at any prediction time point ( s ), then the prediction window was fixed at w=5. 

(II)	 Select a set of prediction landmark time points ( [ ]1, Ls s s∈ ). (see the blue circles and the yellow parts in Figure 
S1). The value of L defines a weighting of the prediction time points in the model to be developed. The simplest 
approach is taking an equidistant grid of points on an interval { }1, Ls s . For six subjects, a set of prediction landmark 
time points 1 2 3 4{ , , , } {0,1,2,3}s s s s = was selected at every 1 year between 0 and 3 years. In reality, the value of L between 
20 and 100 will be sufficient and should not depend on the actual event times.

(III)	 Create a prediction data subset for each landmark timepoint ( s ), who was still alive at s  and administrative censored 
at s w+  (see the red circles and the blue parts in Figure S1). In the first landmark time point ( 1 0s = ) from Table S2, 
all the subjects were included and administrative censored at 1 0 5s w+ = + , so Time for the subject (ID=5) and the 
subject (ID=6) became 6 to 5 and 8 to 5 and Status for the subject (ID=6) became 1 to 0 because subject 6 still alive 
after the diagnosis at the beginning. In the second landmark time point ( 2 1s = ), the subject (ID=1) was excluded from 
the interval [ ]6,1  due to the event time ( 19.0 < ). Time for the subject (ID=5) and the subject (ID=6) became 6 to 6 
and 8 to 6 and Status for the subject (ID=6) became 1 to 0. In the third landmark time point ( 3 2s = ), the subject (ID=1) 
and the subject (ID=2) were excluded from the interval [ ]7,2  due to the event time ( 29.0 <  and 28.1 < ). Time for the 
subject (ID=6) became 8 to 7 and Status became 1 to 0. In the last landmark time point ( 4 3s = ), only three subjects [4, 
5, 6], who were still alive at 3 years after following-up, were included in the interval [ ]83， .

(IV)	 Stack all-created small subsets into a super prediction data set. In this large data set, the subsets corresponding to a 
given prediction time( s ) are labeled as “strata”. But it couldn’t be the stratified proportional hazards model. Because 
there are some patients repeated in each strata in the super dataset. 

Table S1 Six single-record-per-patient subjects

ID Time Status Age at diagnosis Gender

1 0.9 1 50 0

2 1.8 0 42 1

3 2.9 1 30 0

4 4.2 1 36 1

5 6 0 20 0

6 8 1 45 1

The unique subject identifier is ID. The variable Status takes on a value of 1 if the subject dies and 0 if the subject is censored. The time of 
death or censoring is captured by Time. The predictors of interest are Age at diagnosis and Gender.
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Table S2 A super prediction data set for six subjects
Landmark ID ID Time Status Age at diagnosis Gender Landmark time

1 1 0.9 1 50 0 0

2 2 1.8 0 42 1 0

3 3 2.9 1 30 0 0

4 4 4.2 1 36 1 0

5 5 5 0 20 0 0

6 6 5 0 45 1 0

21 2 1.8 0 42 1 1

31 3 2.9 1 30 0 1

41 4 4.2 1 36 1 1

51 5 6 0 20 0 1

61 6 6 0 45 1 1

32 3 2.9 1 30 0 2

42 4 4.2 1 36 1 2

52 5 6 0 20 0 2

62 6 7 0 45 1 2

43 4 4.2 1 36 1 3

53 5 6 0 20 0 3

63 6 8 1 45 1 3
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