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A novel immune-related ceRNA network that predicts prognosis 
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Background: The tumor microenvironment plays an important role in the progression and malignancy 
of lung adenocarcinoma and affects the immunotherapy response. There is increasing evidence that long 
non-coding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) have significant functions in the 
development and treatment response of various kinds of cancer. This study aimed to explore the association 
between immune-related lncRNA-microRNA (miRNA)-messenger RNA (mRNA)-ceRNA networks, and 
the prognosis of and immunotherapy response in lung adenocarcinoma.
Methods: RNA-sequencing (RNA-seq) and miRNA-seq data from The Cancer Genome Atlas (TCGA) 
were used to evaluate the infiltration of immune cells in lung adenocarcinoma samples by undertaking a 
single-sample gene set enrichment analysis (ssGSEA) to divide the cells into high and low immune cell 
infiltration groups. The differentially expressed mRNA (DEmRNA) was further analyzed by a weighted 
gene co-expression network analysis (WGCNA), search tool for recurring instances of neighboring genes 
(STRING), and Cytoscape to select hub genes. The ceRNA network was constructed using Cytoscape. 
Additionally, survival analyses were conducted to screen out prognostic candidate genes.
Results: Seven thousand five hundred and thirty-eight mRNAs, 540 lncRNAs, and 138 miRNAs were 
found to be differentially expressed between the high and low immune cell infiltration groups. The two 
DEmRNA modules most significantly associated with immune cell infiltration were further analyzed, and 
four clusters, including 179 DEmRNAs, were selected based on Molecular Complex Detection (MCODE) 
scores. The selected DEmRNAs in the four clusters were mainly enriched in pathways involved in regulating 
the immune response. Ultimately, a ceRNA network of SNHG6-hsa-miR-30e-5p-CYSLTR1 was identified as 
being associated with the prognosis of and immunotherapy response in lung adenocarcinoma.
Conclusions: The present study extends understandings of immune-related lncRNA-miRNA-mRNA-
ceRNA networks and identifies novel targets and a regulatory pathway for anti-tumor immunotherapy.
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Introduction

Lung cancer is one of the most frequently diagnosed 
malignancies, and is a leading cause of cancer-related 
mortality worldwide (1). Lung adenocarcinoma is the most 
common histological subtype of lung cancer, and accounts 
for about 50% of cases. Despite significant developments in 
the diagnosis and clinical treatment of lung adenocarcinoma, 
the 5-year survival rate of patients remains poor (2). 
Immune checkpoint blockade therapy is a promising 
therapeutic strategy for treating lung adenocarcinoma 
patients. However, patients’ responses vary greatly. There 
is increasing evidence that the tumor microenvironment 
plays an important role in the progression and malignancy 
of lung adenocarcinoma and affects the immunotherapy 
response (3). Tumor microenvironment is comprised of 
tumor-infiltrating immune cells, tumor cells, and stroma. 
Cancer immunotherapy alleviates tumor-associated 
suppression of anticancer immune response by promoting 
T lymphocyte activation. Tumor-infiltrating B lymphocytes 
could generate antibodies and anticancer cytokines, present 
cancer-related antigens, and kill tumor cells directly. B cells 
and associated tertiary lymphoid structures contribute to 
the antitumor activity of immunotherapy (4). Loss of the 
capacity to attract innate myeloid effector cells into the 
tumor microenvironment can lead to primary or secondary 
therapy resistance (5). The complexity and heterogeneity 
of tumor microenvironment increase the difficulty of 
cancer immunotherapy and lead to the variable efficacy in 
immunotherapy (6). Thus, it is important to understand 
the lung adenocarcinoma immune microenvironment 
and identify new molecular markers to guide future lung 
adenocarcinoma treatments.

The Encyclopedia of Deoxyribonucleic Acid Elements 
(ENCODE) Consortium revealed that over 70% of the 
human genome can be transcribed into RNA (the landscape 
of transcription in human cells). Less than 2% of the human 
genome is comprised of protein-coding genes, while most 
of the transcripts are non-coding genes, including long non-
coding RNAs (lncRNAs), pseudogenes, and microRNAs 
(miRNAs) (7). LncRNAs are a class of non-coding RNA 
that are more than 200 nucleotides in length, and which 
used to be considered transcriptional noise. Recent studies 
have shown that lncRNAs are involved in various cellular 
processes, such as differentiation, the immune response, 
cancer cell metastasis, proliferation, and drug resistance  
(8-10). Besides modulating the tumor microenvironment 
and tumor progression, lncRNAs play significant roles in 

the interactions between tumor cells and stromal cells (11). 
For example, tumor-derived exosomal lncRNA TUC339 is 
found to be critical for the regulation of macrophage M1/M2 
polarization (12). MiRNAs are a class of small endogenous 
single-stranded non-coding RNA that play a vital role in 
the development and metastasis of lung adenocarcinoma. 
MiRNAs can also have a fundamental regulative impact on 
both innate and adaptive immune cells by targeting cellular 
signaling hubs. MiRNAs can be secreted by cancer cells, 
consecutively taken up by immune cells, and influence 
immune functions (13). MiRNAs facilitate the degradation 
of the target messenger RNA (mRNAs) or suppress their 
translation by binding the miRNA response elements 
(MREs) of the target mRNAs. MREs are also present in 
lncRNAs, and transcribed pseudogenes. RNAs that contain 
MREs can act as sponges that relieve mRNA targets from 
repression or indirectly induce target mRNA repression by 
releasing miRNAs from this reservoir. LncRNAs have the 
potential to sponge miRNAs and thus affect the expression 
of mRNAs (14). Zhu et al. focused on immune gene-related 
lncRNA-miRNA-mRNA-competing endogenous RNA 
(ceRNA) networks that were different between tumors 
and non-tumor samples in lung adenocarcinoma (15). Wei 
et al. explored B cell immunity-related ceRNA networks 
in lung adenocarcinoma (16). However, understandings 
of the association of immune-related ceRNA networks 
and immunotherapy response and prognosis of lung 
adenocarcinoma remain very limited.

In the present study, the expression profiles and clinical 
information for lung adenocarcinoma were extracted 
from The Cancer Genome Atlas (TCGA). The immune 
microenvironment was examined using the single-
sample gene set enrichment analysis (ssGSEA). The lung 
adenocarcinoma tumor samples were divided into high 
and low immunity groups using unsupervised clustering 
based on their ssGSEA scores. The differently expressed 
genes were selected. Survival analysis and predicted RNA 
interaction pairs were used to construct a prognosis-related-
ceRNA network. Additionally, associations between the 
ceRNA network and tumor microenvironment immune cell 
infiltration and immunotherapy response were explored. In 
summary, we constructed a novel ceRNA network (SNHG6-
has-miR-30e-5p-CYSLTR1) that has a potential prognostic 
value for lung adenocarcinoma patients and might facilitate 
personalized counseling for immunotherapy. We present 
the following article in accordance with the REMARK 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-4151).

https://dx.doi.org/10.21037/atm-21-4151
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Methods

Data source

RNA-sequencing (RNA-seq) data (level 3), miRNA-seq data 
(level 3), and clinical data for lung adenocarcinoma were 
downloaded from TCGA database (https://cancergenome.
nih.gov/), including lung adenocarcinoma tissue and 
adjacent non-cancerous lung tissue data. The SEQ data 
were derived from publicly available Illumina HiSeq RNA-
seq and miRNA-seq platforms. Approval by an ethics 
committee was not required for this study. GENCODE 
(https://www.gencodegenes.org/) was used to convert the 
RNA-seq data into lncRNAs and mRNAs. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Statistical analysis

Immune grouping
The 29 immune-related gene sets of the immune cells 
were obtained from a previous study (17). A ssGSEA was 
conducted to calculate the immune activity score of each 
lung adenocarcinoma sample based on the transcriptomic 
expression data and the 29  immune-related gene sets. 
Next, unsupervised clustering was used to divide the lung 
adenocarcinoma tumor samples into two groups. The 
group with high ssGSEA scores was considered the high 
immunity group, while the other was the low immunity 
group (18). To verify the validity of the immune grouping, 
the stromal, immune score, Estimation of STromal and 
Immune cells in MAlignant Tumor tissues using Expression 
data (ESTIMATE), and tumor purity scores were calculated 
using the ESTIMATE algorithm (https://bioinformatics.
mdanderson.org/estimate/) (19). The results were plotted 
and are shown in the clustering heat map and statistical map.

Identification of differentially expressed mRNAs 
(DEmRNAs), differentially expressed lncRNAs 
(DElncRNAs), and differentially expressed miRNAs 
(DEmiRNAs)
Genes with a low expression level (i.e., an expression value 
of 0, which accounted for >50% of the genes) were removed 
from TCGA sequence data. To distinguish between the 
mRNAs, lncRNAs, and miRNAs that were differentially 
expressed between the high and low immunity groups, the 
“limma” package in R software was used to standardize and 
analyze the expression data with the criteria of |log2 fold 
change (FC)| >1.0 and adjusted P value <0.05 (20). Heatmap 

clustering and volcano plots were used to depict the 
differentially expressed lncRNAs, mRNAs, and miRNAs.

Construction of a weighted gene co-expression 
network of DEmRNAs and the identification and 
functional characterization of modules associated with 
immune status
A weighted gene co-expression network of the DEmRNAs 
was constructed using the weighted gene co-expression 
network analysis (WGCNA) package (21). The network 
modules were generated using the topological overlapping 
measurement with a power cutoff threshold of 5 and a 
minimum module size of 50. Pearson’s correlation tests were 
then used to analyze correlations between clinical traits and 
the modules. Protein interactions among the DEmRNAs in 
the immune modules were identified, and a protein-protein 
interaction (PPI) network was constructed (a minimum 
required interaction score >0.7 was required) using the 
search tool for recurring instances of neighboring genes 
(STRING) online tools (version 11.0) (22). Additionally, 
Cytoscape software (version 3.8.2) was used to construct 
the PPI networks (23). The Cytoscape plug-in Molecular 
Complex Detection (MCODE) was applied to detect notable 
modules in the PPI network (24). The advanced options 
were set as degree cutoff =2, node score cutoff =0.2, and 
K-core =2. Enrichment analysis of the genes in the selected 
notable modules was performed using Gene Ontology (GO) 
biological processes (BPs) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways (25,26).

Prediction of RNA interaction pairs and ceRNA 
network construction
The TargetScan v7.2 (http://www.targetscan.org/) and 
DIANA-microT-CDS v5.0 (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=microT_CDS/
index) databases were used to predict the target genes of 
DEmiRNAs and miRNA-mRNA interactions (27,28). A 
“VennDiagram” was used to identify overlapping miRNA-
mRNA pairs. The LncRNA-miRNA interactions were 
predicted by miRcode (http://www.mircode.org/) (29). 
The lncRNA-miRNA pairs and miRNA-mRNA pairs were 
screened to construct the lncRNA-miRNA-mRNA network 
using the Cytoscape software (version 3.8.2).

Survival analysis
To identify the hub ceRNA network associated with patient 
prognosis, the relationship between overall survival time 
and the mRNAs, miRNAs, and lncRNAs in the ceRNA 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.gencodegenes.org/
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
http://www.targetscan.org/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index
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http://www.mircode.org/
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network were analyzed using the “survival” and “survminer” 
packages. Genes with a value <0.05 were considered the key 
nodes for the construction of the next network.

Identification of the mRNAs in the network associated 
with the response to immunotherapy
GSE126044 was downloaded from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE126044). Seven-four 
non-small cell lung cancer patients were administered 
either nivolumab or pembrolizumab. The mRNAs in the 
ceRNA network were analyzed using the limma package 
to screen DEmRNAs between the response group and the 
non-response group. mRNAs with a P value <0.05 were 
considered for the construction of the next network.

Construction of the ceRNA network associated with 
patient prognosis and immunotherapy response
The DEmRNAs, DEmiRNAs, and DElncRNAs associated 
with patient prognosis, and the DEmRNAs associated with 
immunotherapy response in the lncRNA-miRNA pairs 
and miRNAs-mRNAs were screened to construct the next 
ceRNA network and visualized by Cytoscape software 
(version 3.8.2).

Associations between immune cell infiltration and 
ceRNA network
The Tumor IMmune Estimation Resource (TIMER) 
(https://cistrome.shinyapps.io/timer/) algorithm was used 
to quantify the correlation of hub genes in the ceRNA 
network with the abundance of six types of infiltrating 
immune cells in lung adenocarcinoma patients (30). 
According to the median expression values of hub genes of 
the ceRNA network, the available data were split into low 
and high expression groups to evaluate the difference in the 
proportion of immune cells. The correlations between the 
hub genes of the ceRNA network and the immune, stromal, 
and ESTIMATE scores were explored.

Results

Construction and verification of lung adenocarcinoma 
immune groupings

The RNA-seq data of 513 lung adenocarcinoma tissues, 
the miRNA-seq data of 507 lung adenocarcinoma tissues, 
and relative clinical data were obtained from TCGA. The 
lung adenocarcinoma samples were divided into high and 

low immune cell infiltration groups using an unsupervised 
hierarchical clustering algorithm according to immune 
infiltration. The ESTIMATE algorithm was used to verify 
the feasibility of the above grouping based on ssGSEA. The 
high immune cell infiltration group had higher immune, 
stromal, and ESTIMATE scores, but lower tumor purity 
scores (see Figure 1).

Differential expression of lncRNAs, miRNAs, and mRNAs 
in lung adenocarcinoma patients

Differentially expressed lncRNAs, miRNAs, and mRNAs 
were screened by comparing the difference in the expression 
levels of these RNAs between the high and low immune 
cell infiltration groups. In total, 7,538 DEmRNAs (2,121 
upregulated and 5,417 downregulated), 540 DElncRNAs 
(104 upregulated and 436 downregulated), and 138 
DEmiRNAs (57 upregulated and 81 downregulated) were 
identified. The heat maps show the most significant genes 
of the top 30 mRNAs, lncRNAs, and miRNAs (see Figure 2).

Identification of the most significant modules by WGCNA 
and hub genes

WGCNA was used to categorize DEmRNAs into different 
gene modules that may function in the same biological way. 
A soft threshold of five was selected to construct a scale-free 
network. A total of 23 gene modules were identified after 
setting the minimum cluster size as 50. The blue module 
(R=0.66, P=2e−64) and green module (R=0.63, P=4e−59) were 
most significantly associated with immune cell infiltration. 
Pathway enrichment demonstrated that the genes in the 
two modules were mainly involved in the innate immune 
response, lymphocyte activation, cytokine-mediated 
signaling pathway, leukocyte mediated immunity, and 
inflammatory response (see Figure 3) The 793 DEmRNAs 
in the blue module and 465 DEmRNAs in the green 
module were selected to construct the PPI network using 
the STRING database (see Figure S1).

The interactions between the DEmRNAs in the whole 
network were explored using Cytoscape MCODE. The 
following four clusters with higher MCODE scores were 
selected for further analysis: Cluster 1 (74 nodes and  
1,350 edges), Cluster 2 (41 nodes and 429 edges), Cluster 3  
(54 nodes and 403 edges), and Cluster 4 (10 nodes and  
45 edges). The pathway enrichment demonstrated that 
the four clusters, including 179 DEmRNAs, were mainly 
involved in regulating the immune response (see Figure 4).

https://cistrome.shinyapps.io/timer/
https://cdn.amegroups.cn/static/public/ATM-21-4151-Supplementary.pdf
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Construction of the ceRNA network

The target genes of the 138 DEmiRNA were predicted 
by the TargetScan and microT-CDS databases. After 
overlapping the miRNA-mRNA pairs, we identified  
73 miRNAs and 78 mRNAs in the 159 miRNA-mRNA 
pairs (see Figure 5A). The miRcode matching indicated that 
27 lncRNAs and 66 miRNAs effectively generated 467 pairs 
of associations. Thus the miRNA-mRNA and lncRNA-
miRNA pairs were used to build the lncRNA-miRNA-
mRNA-ceRNA network, which contained 16 DEmRNAs 
(16 upregulated), 23 DElncRNAs (6  upregulated and 
17 downregulated), and 10 DEmiRNAs (7 upregulated 
and 3 downregulated). The network was visualized using 
Cytoscape software (see Figure 5B).

The  overa l l  surv iva l  ra tes  o f  the  DEmRNAs, 
DElncRNAs, and DEmiRNAs of the ceRNA network were 
explored by Kaplan-Meier. Six DEmRNAs [i.e., cluster 
differentiation (CD) 80, Major Histocompatibility Complex, 
Class II, DQ Beta 1 (HLA-DQB1), CIITA, CYSLTR1, 
KETEDS, and GRAP2], 6 DElncRNAs (LINC00324, 
SNHG6, HLA-DQB1-AS1, CRNDE, LINC00426, and 
LIN00205), 4 DEmiRNAs (has-miR-140-5p, has-miR-148a-

3p, has-miR-199a-3p, and has-miR-30e-5p) met the survival 
significance criterion for lung adenocarcinoma (see Table 1 
and Figure 5C).

The DEmRNAs were further analyzed in GSE126044. 
Four DEmRNAs (i.e., CD80, HLA-DQB1, CIITA, and 
CYSLTR1) were differentially expressed between the 
response group and the non-response group in GSE126044 
(see Figure 5D and Figure S2). Based on the ceRNA 
network, the SNHG6-has-miR-30e-3p-CYSLTR1 axis was 
found to be related to patient prognosis and immunotherapy 
response (see Figure 5E).

Validation of the correlation of the hub genes in the ceRNA 
network and immune cell infiltration

CYSLTR1 expression was found to be positively associated 
with immune cell infiltration, the stromal score, immune 
score, and ESTIMATE score, but negatively associated 
with the purity score. SNHG6 expression was found to be 
negatively associated with immune cell infiltration, the 
stromal score, immune score, and ESTIMATE score, but 
positively associated with the purity score. The CYSLTR1 
expression levels were positively correlated with the 
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Figure 1 Construction and verification of lung adenocarcinoma grouping. (A) The immune cells were highly expressed in the Cluster 
1 group, which was named the high immune cell infiltration group (Immunity_H, n=215), and lowly expressed in the Cluster 2 group, 
which was named the low immune cell infiltration group (Immunity_L, n=298). Using the ESTIMATE algorithm, the stromal, immune, 
ESTIMATE, and tumor purity scores of each sample gene were displayed together with the grouping information. The violin plot shows 
the statistical differences in the stromal (B), immune (C), ESTIMATE (D), and tumor purity scores (E) between the two groups (P<0.01).
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infiltrating levels of CD8+ T cells, CD4+ T cells, B cells, 
neutrophils, macrophages, and dendritic cells. SNHG6 
expression levels were inversely correlated with infiltrating 
levels of neutrophils, macrophages, and dendritic cells, but 
not CD8+ T cells, CD4+ T cells, or B cells (see Figure 6).

Discussion

Lung adenocarcinoma is the most common type of lung 
cancer and is one of the leading causes of cancer-related 
deaths. Because of the substantial heterogeneity of lung 
adenocarcinoma, it is difficult to develop individualized 
treatments and predict outcomes. Lung adenocarcinoma 
tissue is not only composed of lung adenocarcinoma cells, 
it is also composed of a mixture of many kinds of normal 
cells, such as immune cells, stromal cells, and fibroblasts. 

These different types of cells form a complex tumor 
microenvironment. Given the importance of the interaction 
between tumor-infiltrating immune cells and tumor cells, 
it is of crucial significance to mine molecular events that 
are related to the tumor immune microenvironment to 
uncover the predictive biomarkers associated with survival 
and immunotherapy response. In the current study, we 
found the SNHG6-hsa-miR-30e-5p-CYSLTR1 ceRNA 
network related to immune cell infiltration was associated 
with the prognosis of and immunotherapy response in 
lung adenocarcinoma using the transcriptome seq data 
and clinical features of lung adenocarcinoma obtained  
from TCGA.

Var ious  c l in ica l  t r ia l s  have  shown that  tumor 
microenvironment immune cell infiltration is critical in 
predicting the prognosis and immunotherapy response of 
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patients (31,32). We conducted a comprehensive analysis 
of the tumor microenvironment immune cell infiltration 
landscape by estimating the abundance of 29 immune 
cell types in lung adenocarcinoma. The high immune 
cell infiltration group had higher immune, stromal, and 
ESTIMATE scores, but lower tumor purity scores than 
the low immune cell infiltration group. Seven thousand 
five hundred and thirty-eight mRNAs, 540 lncRNAs, and 
138 miRNAs were found to be differentially expressed 
between the high and low immune cell infiltration groups. 
WGCNA revealed that two DEmRNA modules were 
most significantly associated with immune cell infiltration. 
Those two modules were further analyzed by STRING 
and Cytoscape MCODE. Four clusters were selected based 
on the MCODE scores. A pathway enrichment analysis 
demonstrated that the DEmRNAs selected in the four 
clusters were mainly involved in regulating the immune 

response.
Salmena et al. proposed that non-coding RNAs like 

lncRNAs could act as natural miRNAs sponges by 
competitively binding to the MREs of target mRNAs. A 
number of studies have shown that the ceRNA network 
of lncRNA-miRNA-mRNA interactions is involved in the 
regulation of tumor progression, prognosis, and therapy 
responses (14). LncRNA LCAT1 functions as a ceRNA 
to regulate RAC1 function by sponging miR-4715-5p, 
which plays an important role in the progression of lung  
cancer (33). LncRNA UCA1 promoted Gefitinib resistance 
as a ceRNA to target FOSL2 by sponging miR-143 in non-
small cell lung cancer (34). The present study found that 
the novel immune-related ceRNA network of SNHG6-
hsa-miR-30e-5p-CYSLTR1 ceRNA network is associated 
with the prognosis and immunotherapy response of lung 
adenocarcinoma. LncRNA SNHG6 plays an oncogenic role 
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in various types of cancer, such as colorectal cancer, breast 
cancer, and clear cell renal cell carcinoma (35-37). SNHG6 
interacts with glucocorticoid-induced tumor necrosis factor 
receptor-related protein to regulate cisplatin resistance 
by competitively binding to miR-325-3p in gastric 
cancer cells (38). SNHG6 is a poor prognostic factor for 
colorectal cancer patients (39). SNHG6 expression levels 
were not found to be correlated with infiltrating levels of 
CD8+ T cells, CD4+ T cells, B cells, but were found to be 
inversely correlated with infiltrating levels of neutrophils, 
macrophages, and dendritic cells. CYSLTR1 was widely 
distributed in a range of cells of the innate immune system, 
including basophils, mast cells, dendritic cells, eosinophils, 
and monocytes/macrophages, as well as B cells and CD4+ T 
cells, and to a lesser extent, neutrophils and CD8+ cells (40). 
Barrett et al. found that CYSLTR1 promotes nascent 
Th2 immune responses by facilitating the organization of 
the immune synapse (41). CYSLTR1 plays a key role in 

cysteinyl leukotrienes, inducing the activation and migration 
of human monocytes (42). CYSLTR1 is an indicator of 
patient prognosis in colorectal cancer, breast cancer, and 
pancreatic adenocarcinoma (43-45). Hsa-miR-30e-5p has 
anti-tumor effects on various kinds of cancers, such as 
bladder cancer, nasopharyngeal carcinoma, squamous cell 
carcinoma of the head and neck, and non-small cell lung 
cancer (46-49). Hsa-miR-30e-5p plays an integrated role in 
the regulation of the innate immune response (50,51). Hsa-
miR-30e-5p plays an important role in circMET by driving 
immunosuppression and anti-PD1 therapy resistance (52).

This study had several limitations. First, the data in our 
study were obtained from public databases, such as TCGA 
and GEO databases. Thus, the quality of the data could 
not be appraised. Second, the ceRNA networks have not 
been verified in clinical lung adenocarcinoma samples. 
Multi-centered validation especially large scare prospective 
studies are still required before the ceRNA network can be 
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applied in clinical practice. The expression of the ceRNAs 
and immune cell markers should be detected in the same 
samples via immunohistochemistry analysis or quantitative 
real-time PCR and analyzed the associations. Finally, 
further functional studies need to be conducted to explore 
the molecular functions (MFs) of the SNHG6-hsa-miR-
30e-5p-CYSLTR1 ceRNA network in lung adenocarcinoma 
progression and the immunotherapy response. Gain- and 
loss-of-function experiments are needed to investigate the 
biological functions of the ceRNA network both in vitro and 

in vivo.

Conclusions

In this study, we constructed an immune-related ceRNA 
network of SNHG6-hsa-miR-30e-5p-CYSLTR1, which 
was found to be associated with the prognosis of and 
immunotherapy response in lung adenocarcinoma. 
However, further experiments are required to verify the 
clinical and biological functions of the ceRNA network.

Table 1 Univariate regression analysis for overall survival in lung adenocarcinoma patients

Gene symbol Type Coefficient HR 95% CI lower 95% CI higher P value

CD80 mRNA 0.310 1.363 1.013 1.833 0.041

HLA-DQB1 mRNA 0.493 1.637 1.216 2.204 0.001

CIITA mRNA 0.305 1.357 1.01 1.824 0.043

CYSLTR1 mRNA 0.321 1.378 1.027 1.849 0.033

KBTBD8 mRNA 0.313 1.367 1.017 1.838 0.038

GRAP2 mRNA 0.516 1.675 1.239 2.266 0.001

LINC00324 lncRNA 0.443 1.557 1.158 2.093 0.003

SNHG6 lncRNA −0.303 0.739 0.55 0.992 0.044

HLA-DQB1-AS1 lncRNA 0.366 1.442 1.069 1.943 0.016

CRNDE lncRNA 0.465 1.592 1.184 2.14 0.002

LINC00426 lncRNA 0.449 1.566 1.162 2.111 0.003

LINC00205 lncRNA −0.306 0.736 0.549 0.987 0.041

hsa-miR-140-5p miRNA 0.307 1.36 1.011 1.829 0.042

hsa-miR-148a-3p miRNA 0.402 1.495 1.112 2.01 0.008

hsa-miR-199a-5p miRNA 0.322 1.379 1.025 1.856 0.034

hsa-miR-30e-5p miRNA 0.491 1.633 1.213 2.199 0.001

hsa-miR-375 miRNA 0.316 1.372 1.02 1.844 0.036

HR, hazard ratio; CI, confidence interval.
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Supplementary

Figure S1 PPI network analysis of two module genes identified by WGCNA. The nodes indicate proteins; the lines represent the 
interaction of proteins. One thousand two hundred and fifty-four nodes and 7,754 edges were obtained with a confidence score of ≥0.7. PPI, 
protein-protein interaction; WGCNA, weighted gene co-expression network analysis.
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Figure S2 The expression of 3 DEmRNAs between the response group and non-response group based on GSE126044. (A) CD80; (B) 
HLA-DQB1; (C) CIITA. DEmRNAs, differentially expressed mRNA.


