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Background: Gastric adenocarcinoma (GAC), a common type of gastric cancer, poses a significant public 
health threat worldwide. This study aimed to determine the transcriptional regulatory mechanisms of GAC. 
Methods: HTSeq-FPKM raw data were obtained from The Cancer Genome Atlas Stomach 
Adenocarcinoma data collection. Subsequently, the limma package in R was used to identify differentially 
expressed genes (DEGs). Differentially methylated genes (DMGs), DEGs, and differentially expressed 
microRNAs (miRNAs) in normal, and tumor tissues of the same patients were screened and compared 
using R software tools. A functional enrichment analysis was performed using Gene Ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) for various DEGs, DMGs, promoter methylation, and 
miRNAs. DEG-specific methylation and transcription factors were analyzed using ENCODE ChIP-seq.
Results: DEGs were centrally modified by the histone trimethylation of lysine 27 on histone H3 
(H3K27me3). Upstream transcription factors of DEGs were enriched in different ChIP-seq clusters, such as 
Forkhead Box M1, E2F Transcription Factor 4, and suppressor of zest 12. Integrated regulatory networks of 
DEGs, promoter methylation, and miRNAs were constructed. Two miRNAs (hsa-mir-1 and hsa-mir-133a) 
and four DEGs (A disintegrin and metalloproteinase domain 12, transcription factor AP-2 alpha, solute 
carrier family 5 member 7, and cadherin 19) separately played important roles in the integrated regulatory 
network. Therefore, these DEGs, DMGs, promoter methylation, and miRNAs may play an important role 
in GAC pathogenesis. 
Conclusions: In summary, the present study results provide insights into the oncogenesis and progression 
of GAC, thus accelerating the development of novel targeted GAC therapies.
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Introduction

Gastric cancer (GC) is the fifth most common malignancy 
worldwide, with the third-highest incidence and mortality 
rates of all types of cancer (1). In 2018, more than one 
million new GC-related cases were diagnosed with an 
estimated 783,000 global deaths (1). Moreover, incidence 
rates are markedly elevated in East Asian countries, 
particularly in Mongolia, Japan, and the Republic of Korea, 
whereas those in North America, Northern Europe, and 
African regions are generally low (1). Surgery is considered 
a potentially curative therapy for early GC; however, the 
prognosis for patients with advanced adenocarcinoma 
remains poor, despite improvements in chemotherapy (2). 

Epigenetic alteration is an important event during 
carcinogenesis; it plays a critical role in the transcriptional 
silencing of tumor suppressor genes (3). Detecting the 
regulators of gene expression associated with cancer 
progression is one of the fundamental challenges in cancer 
research. DNA methylation occurs almost exclusively in 
the context of CpG islands，defined as regions of more 
than 200 bases with a G+C content of at least 50% and a 
ratio of statistically expected CpG frequencies of at least 
0.6 (4). Moreover, the methylation of these CpG island 
shores referred to as regions of lower CpG density that lie 
close (~2 kb) to CpG islands, is likely to occur in promoter 
regions near the transcription start site. Additionally, 
microRNAs (miRNAs) are a class of endogenous small 
RNAs containing 20–25 nucleotides that regulate mRNA 
translation and degradation by perfect, or near-perfect, 
complementarity to the 3' untranslated regions (UTRs) of 
the target mRNA (5). miRNAs act as regulators of post-
transcriptional levels and transcriptome changes and are 
also major components of the epigenome. Active regulatory 
functions of nuclear miRNAs have been described in gene 
promoter regions and exert further effects via epigenetic 
pathways (6). Hypermethylation and hypomethylation of 
miRNAs frequently occur in human cancer, representing a 
new level of complexity in gene regulation. Furthermore, 
in this research, we found that miRNAs and DNA 
methylation were in mutual regulation in GAC. Specifically, 
miRNAs regulate DNA methylation by targeting DNA 
methyltransferases or methylation-related proteins (7). 
Nevertheless, the mechanism of the synergistic interactions 
between DNA methylation and miRNAs as epigenetic 
regulators of transcriptomic changes, as well as their 
association with clinical outcomes, have remained largely 
unexplored in cancer research (8). 

Previous studies have identified various genes related to 
gastric adenocarcinoma (GAC). For instance, Pilehchian 
Langroudi et al. (9) analyzed FAT4 expression and promoter 
methylation in GC and reported that FAT4 is a tumor 
suppressor gene in cell adhesion. This indicated that a 
reduced expression of FAT4 and increased methylation of 
its promoter might be a key mechanism associated with 
tumor growth (9). Furthermore, targeted therapies, such 
as trastuzumab, an antibody against HER2 (also known as 
ERBB2), and the VEGFR-2 antibody ramucirumab, have 
recently been initiated (10). 

GAC is a major subtype of GC, but the pathogenesis of 
GAC has yet to be characterized. To reduce the significant 
morbidity and mortality associated with GAC, it is critical 
to identify GAC-associated genes and mechanisms. 
Tumorigenesis is regulated by epigenetic phenomena, 
including nucleosome remodeling by histone modifications, 
DNA methylation, and miRNA-mediated targeting of genes 
associated with various biochemical pathways. Epigenetic 
abnormalities are heritable as part of gene transcription and 
collaborate with genetic changes to cause cancer evolution. 
General hypomethylation and focal hypermethylation of 
the noncoding region, especially the promoter-related CpG 
island associated with gene silencing, are the characteristics of 
cancer cells. This process may be related to the acquisition of 
histone inhibitory markers (11). Furthermore, mutated genes 
controlling epigenetic factors have further strengthened 
the importance of epigenetics in cancer (12). It is worth 
mentioning that mutations in genes caused by epigenetic 
changes can be frequently observed (13). Most cancers 
harbor frequent mutations in genes that encode components 
of the epigenetic machinery, resulting in abnormalities in 
the epigenome, which can further affect gene expression 
patterns and genomic stability (14,15). Hence, conducting an 
integrated analysis of differentially expressed genes (DEGs) 
and the expression of regulatory factors, such as methylation, 
mRNA splicing, transcription factors (TFs), and miRNAs, is 
an effective strategy for investigating GAC pathogenesis. The 
present study used microarray technology and bioinformatics 
analyses to investigate the regulatory network of GAC-
associated miRNAs and their target genes in an effort 
to further explore the function of promoter methylation 
and miRNAs in the pathogenesis of GAC. We hope these 
findings will serve as a foundation for future studies. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-3211).

https://dx.doi.org/10.21037/atm-21-3211
https://dx.doi.org/10.21037/atm-21-3211
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Methods

Datasets

We downloaded the GAC dataset from The Cancer 
Genome Atlas (TCGA) data portal (https://gdc.cancer.-
gov/), which included the DNA methylation dataset, 
the mRNA expression profile dataset, and the miRNA 
expression profile dataset. In total, we obtained 397 DNA 
tissue samples (395 GAC, 2 normal), 407 mRNA tissue 
samples (375 GAC, 32 normal), and 491 miRNA tissue 
samples (446 GAC, 45 normal). The three datasets were 
then combined using R software (3.5.2 version, http://cran.
r-project.org/src/base/R-3/R-3.5.2.tar.gz). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Differential expression analysis of mRNA and miRNA

We obtained the differential expressions of mRNAs 
and miRNAs by using the limma package (16) in R 
[logFC >2, false discovery rate (FDR) <0.01]. The 
target genes of miRNAs were acquired from mirWalk 
(http://zmf.umm.uniheidelberg.de/apps/zmf/mirwalk/
micrornapredictedtarget.html).

Screening of DEGs and differentially methylated genes 
(DMGs)

We used the limma package in R (16,17) to compare 
DEGs in GAC and normal tissue samples after adjusting 
the FDR <0.01 and |log2fold-change (FC)| ≥1 threshold. 
Differentially methylated regions (DMRs) were discovered 
using the minfi R software (17), with a q value <0.05. By 
applying gplots in the limma package (https://cran.r-project.
org/web/packages/gplots/), we produced volcano plots 
to analyze the DEGs with adjusted P values <0.01 and 
|log2FC| ≥2.

Functional analysis of DEGs 

Gene Ontology (GO), consisting of three categories 
(biological process, BP; cellular component, CC; and 
molecular function, MF), was used to predict the potential 
functions of gene products. The GO functional enrichment 
and annotation of DEGs were computed using Enrichr (18) 
(https://amp.pharm.mssm.edu/Enrichr/). We used the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database, 
which connects genomic information with functional coding 

information to systematically analyze gene functions (19). 
We also used Cytoscape (http://apps.cytoscape.org/apps/
keggscape) to reproduce equivalent detailed hand-drawn 
pathway diagrams (20). The GO and KEGG enrichment 
analyses were performed for the DEGs, DMGs, and the 
target genes of miRNAs, as well as promoter methylation. 
The P values of the enriched terms were corrected by the 
Holm Bonferroni method (21). An adjusted P value <0.05 
was applied as the cut-off criterion. ChIP-X enrichment 
analysis (ChEA) (22) and ENCODE ChIP-seq (23) were 
used to screen the enriched TFs located upstream of the 
DEGs. Lists of the mammalian gene symbols, for which the 
program computes over-represented TFs from the ChIP-X 
database, were then imported using ChEA. 

Correlation analysis of DEGs, differential miRNAs, and 
promoter methylation

We used a network graph to determine the correlations 
between GAC DEGs, differential miRNAs, and promoter 
methylation. Funrich (24) (http://www.mybiosoftware.com/
funrich-functional-enrichment-analysis-tool.html), a stand-
alone software tool, was used to produce Venn diagrams to 
show the functional enrichment and interaction network 
analysis of the identified genes (25). The data visualization 
tool MEXPRESS (https://mexpress.be/) was used to analyze 
further the precise methylation locus and expression (26).

Construction of the risk score-based prognostic model 

The GAC tumor samples from the TCGA-STAD cohort 
(n=350) were enrolled as the training cohort to construct 
the prognostic model, and the trimmed mean of M-values 
(TMM) normalized expression matrix of 17 interested genes 
were obtained from Figure 1. Ten-fold cross-validation were 
applied to the multivariate cox regression model to train the 
minimum lambda value, with 17 genes as the parameters. 
The minimum lambda value (λmin≈0.046) was applied to 
the original multivariate cox model, returning a subset of 
variables containing 5 variables (ADAM12, CDH19, RIMS1, 
SHOX2, and IGF2BP1). Furthermore, the risk score 
model was built on the Lasso-Cox regression result, with 
5 genes selected based on the subset with λmin applied. The 
coefficients of the risk score model were weighted by the 
coefficients of the lasso multivariate Cox regression model. 
The formula for calculating the risk score is: risk score 
= 0.058316123 × EXPADAM12 + 0.014146433 × EXPCDH19 

+ 0.015680240 × EXPRIMS1 + 0.032075667 × EXPSHOX2 + 
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Figure 1 Interrelated networks in the context of DEGs, differentially expressed miRNAs, and gene expression. Methylation and microRNA 
regulatory network of 31 DEGs. The downregulated and upregulated genes are shown in green and red circles, respectively. The 
upregulated and downregulated miRNAs are displayed in red and green rectangles, respectively. DEGs, differentially expressed genes 

0.007903263 × EXPIGF2BP1. 

Validation of the prognostic model in the training and 
validation cohort 

In the training cohort, time-dependent receiver operating 
characteristic (ROC) analysis was adopted to evaluate the 
performance of the risk score-based prognostic signature 
to predict 1-, 3- and 5-year survival. Kaplan-Meier (KM) 
survival curves combined with a log-rank test were used to 
test the differences in prognosis between the high- and low-
risk groups. Gastric tumor samples from the GSE15459 
dataset (n=192) were extracted as the validation cohort. 
Similarly, time-dependent ROC analysis and KM survival 
analysis were also performed on the validation cohort. 

Construction and assessment of a predictive nomogram 

Univariate and multivariate analyses were successively 
performed on the 5 genes-based risk score prognostic model 
alone and combined with other clinical characteristics 
(including TNM stage, age, and sex) of patients with GAC 
to test their predictive efficacy. In the training cohort, 
univariate Cox regression analysis was used to identify 
clinical characteristics that were significantly associated with 
overall survival (OS). Characteristics with P<0.05 in the 
univariate analysis were included in the multivariate Cox 
regression model. Subsequently, nomogram for 1-, 3-, and 
5-year OS were constructed using the rms R package (27)  
as a visualizing aid to obtain predicted values manually 
from the multivariate analysis. The performance of the 
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nomogram was evaluated using Harrell’s concordance index 
(c-index) and calibration curves. 

Overall survival analysis

To identify which interactions between miRNAs and 
methylation are significantly associated with GAC 
prognosis, we used the Kaplan-Meier (KM) overall 
survival analysis from UALCAN (http://ualcan.path.uab.
edu/index.html) (28). This program aids in investigating 
gene expression patterns related to clinical parameters. 
A set of KM plots (29) from both the univariate analysis 
(considering only gene expression) and multivariate analysis 
(considering clinical parameters along with gene expression) 
were provided from the output page of the survival analysis 
after using the “scan by gene” option in UALCAN. A KM 
survival plot was generated for every gene in each TCGA 
cancer type, using the “survival” (https://cran.r-project.org/
web/packages/survival/index.html) and “survminer” (http://
mirrors.dotsrc.org/pub/cran/web/packages/survminer/
index.html) packages. The survival curves of samples with 
high gene expressions and low/medium gene expressions 
were compared using the log-rank test (30). Based on 
the KM plots, we then ran survival analyses for the two 
extreme subgroups; the first subgroup comprised the 
lowest quantiles of miRNAs and methylation profiles, and 
the second subgroup comprised the highest quantiles of 
both profiles. Observation of the KM plots allowed us to 
assess the relationship between gene expression and overall 
survival in GAC patients.

Statistical analysis

Statistical analyses were performed using R software 
(https://mirrors.tuna.tsinghua.edu.cn/CRAN/). Kaplan-
Meier survival analysis was conducted together with the 
log-rank test to compare the prognostic risk of GAC 
patients with different average expression levels. Unless 
otherwise noted, a P value <0.05 was considered statistical 
significance. 

Results

Identification of DEGs, target genes of miRNAs, and 
promotor methylation

The overall study design is outlined in a flow chart in  
Figure 2. A total of 397 DNA samples, 407 mRNA samples, 

and 491 miRNA samples from TCGA were analyzed 
using the minifi package in R with a q value <0.05 to 
identify DMRs; in turn, 8,615 DMGs were identified using 
annover. Finally, 2,059 differential promoter methylation 
genes were identified. Using the limma package in R, 
1,160 downregulated target genes and 3,480 upregulated 
target genes of miRNAs were identified. Moreover, 507 
downregulated genes and 919 upregulated genes were 
identified. The DEGs were selected by volcano plot 
filtering (P value <0.05 and |log2FC| ≥2) (Figure 3). 

GO enrichment analysis of methylation-related genes 

To further investigate the function of methylation-related 
genes in GAC, we used the GO enrichment analysis in 
Enrichr, and the KEGG pathway enrichment analysis in 
Cytoscape. Four specific variables were used in the analyses: 
DEGs, DMGs, the target genes of miRNAs, and promoter 
methylation. The top seven GO pathways are shown in 
Figure 4A-4D. Specifically, DEGs were enriched in the 
extracellular matrix organization (ECM) (BP), the spindle 
of cell components (CC), and endopeptidase activity (MF) 
(Figure 4A). For DMGs, the predominantly enriched genes 
included the development of the nervous system (BP), exon 
(CC), and transcriptional activator and factor activity (MF) 
(Figure 4B). The target genes of miRNAs were enriched 
in the regulation of transcription from RNA polymerase 
II promoter (BP), nuclear body (CC), and protein kinase 
activity (MF) (Figure 4C). Promoter methylation genes 
showed enrichment in the regulation of transcription and 
DNA-template (BP), an integral component of the plasma 
membrane (CC), and transcription regulatory region DNA 
binding (MF) (Figure 4D). 

KEGG pathway enrichment analysis of methylation-
related genes

Based on the KEGG pathway enrichment analysis, 
DEGs were significantly enriched in the IL-17 signaling 
pathway, cytokine-cytokine receptor interaction, and cell 
cycle (Figure S1), while other pathways exhibited little 
correlation with GAC. DMGs were associated with the 
neuroactive ligand-receptor interaction, cAMP signaling 
pathway, RAP1 signaling pathway, exon guidance, cell 
adhesion molecules, ribosome biogenesis in eukaryotes, and 
ribosomes (Figure S2). The target genes of miRNAs were 
correlated with endocytosis, signaling pathways regulating 
pluripotency of stem cells, proteoglycans in cancer, the 

http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://cdn.amegroups.cn/static/public/ATM-21-3211-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-3211-supplementary.pdf
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Figure 2 Flow chart representing the detailed analysis process applied in this work. TCGA-STAD, The Cancer Genome Atlas Stomach 
Adenocarcinoma; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology. 

RAP1 signaling pathway, olfactory transduction, axon 
guidance, the mitogen-activated protein kinase (MAPK) 
signaling pathway, pathways in cancer, and RAS signaling 
pathways (Figure S3). Promotor methylation genes were 
strongly related to neuroactive ligand-receptor interactions 
and cell adhesion molecules (Figure S4).

Transcriptional analysis of DEGs

ChEA2 analyses obtained from the ENCODE database 
(Figure 5A) indicated that the screened DEGs were modified 
and regulated by multi-cancer cell line histones, including 
trimethylation of lysine 27 on histone H3 (H3K27me3). 
The binding patterns of the upstream TFs were not as 
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clustered as those of the histone modification; however, 
they were enriched in different ChIP-seq TF clusters in 
different cell lines (Figure 5B), such as forkhead box M1 
(FOXM1) in MCF7 cells and endometrial cells (ECC1), 
E2F transcription factor 4 (E2F4) in HeLaS3 cells and 
murine erythroleukemia (MEL) cells, and the suppressor of 
zest 12 (SUZ12) in NTERA2 clone D1 (NT2D1).

Integrated analysis of DEGs, differential miRNAs, and 
promoter methylation

In the Venn diagram shown in Figure 6, a total of 31 genes 
appeared in the overlapped area between differentially 
expressed miRNA target genes, DEGs, and promoter 
methylated genes. In addition, based on the hypermethylation 
and hypomethylation levels, potential regulatory networks 
associated with methylation, miRNA expression, and gene 
expression were generated (Figure 1). Within this network 
were 17 upregulated and 3 downregulated miRNAs and 
13 upregulated and 4 downregulated genes. In addition,  
6 hypermethylated genes and 11 hypomethylated genes were 
included. In total, 20 miRNAs were found in the network 
from which miR-133a (degree =4) had the highest degree. 

In addition, A disintegrin and metalloproteinase domain 12 
(ADAM12) (31), orthodenticle homeobox 1 (OTX1), and 
transcription factor AP-2 alpha (TFAP2A) (32) had relatively 
high degrees. Moreover, ADAM12 was associated with 
upregulation of hsa-mir-501, hsa-mir-19a, and hsa-mir-130b, 
and downregulation of hsa-mir-1 and hsa-mir-133a (Figure 1).  
TFAP2P correlated with upregulation of hsa-mir-429, hsa-
mir-200b, hsa-mir-200c, and hsa-mir-135b, as well as the 
downregulation of hsa-mir-133a.

Establishment of the risk score and prognostic model of the 
nomogram 

The method section has presented the formula to calculate 
the risk score based on 5 genes (ADAM12, CDH19, RIMS1, 
SHOX2, and IGF2BP1), the method section has presented 
the formula to calculate the risk score. Based on the median 
f the risk score, the 350 GAC patients in the training 
cohort were divided into a high-risk group (n=175) and 
a low-risk group (n=175). Time-dependent ROC curves 
(Figure 7A) were drawn to evaluate the predictive efficacy 
of the constructed risk score-based prognostic model, with 
AUCs for the prediction of 1 year, 3 years, and 5 years of 
OS were 0.607, 0.632, and 0.735, respectively. Kaplan-
Meier survival analysis (Figure 7B) indicated that patients 
in the high-risk group had worse prognoses than the low-
risk group (P=0.001). The GSE15459 dataset (n=192) was 
used as the validation cohort to evaluate the performance 
of the risk score-based model; it comprised 96 patients 
in the high-risk group and 96 patients in the low-risk 
group, respectively. The time-dependent ROC curve and 
Kaplan-Meier survival curve were also plotted. As shown in  
Figure 7C,7D, the AUC for the prediction of OS at 1 year, 
3 years, 5 years in the validation cohort were 0.568, 0.587 
and 0.615, respectively; worse prognoses were revealed in 
patients in the high-risk group than in the low-risk group 
(P=0.0089). 

To construct a prognostic model of nomogram, the 
univariate and multivariate analyses of OS regarding 
canonical clinicopathologic characteristics were performed 
in the training cohort (Table S1). In the univariate 
analysis, OS was significantly correlated with risk score 
(P=0.001), TNM-T stage (P=0.018), TNM-N stage 
(P=0.005), TNM-M stage (P=0.014), and age at diagnosis 
(P=0.023). However, in the multivariate analysis, only the 
risk score (P=0.007), TNM-N stage (P=0.017), TNM-M 
stage (P=0.017), and age at diagnosis (P=0.012) remained 
significantly associated with OS. As shown in Figure 7E, a 

Figure 3 Volcano plot depicting the differentially expressed genes 
between normal gastric and GAC samples. The red dots indicate 
upregulated genes, the green dots indicate downregulated genes, 
and the white block represents the remaining genes—|log2FC| 
<2. The Y-axis represents FDR, and the X-axis represents the value 
of log2FC. DEGs, differentially expressed genes; GAC, gastric 
adenocarcinoma. 
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Figure 4 GO enrichment analysis of methylation-related genes. GO enrichment results for the (A) DEGs, (B) DMGs, (C) miRNA 
target genes, (D) and promotor methylation. The data are represented as the mean ± SEM. The Student’s t-test was used to analyze 
significant differences, P<0.05 vs. shCtrl. shCtrl, negative control cells; GO, Gene Ontology; DEGs, differentially expressed genes; DMGs, 
differentially methylated genes; BP, biological process; CC, cellular component; MF, molecular function. 
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Figure 6 Correlation analysis of the DEGs, differentially expressed miRNAs, and promotor methylation. The Venn diagram representing 
the functional enrichment and interaction network formed in the context of the DEGs, miRNA target genes, and promoter methylation are 
also shown. DEGs, differentially expressed genes. 

nomogram was further constructed to predict 1-, 3-, and 
5-year OS in the training cohort (TCGA-STAD dataset) 
to provide an accurate prediction of the prognosis. The 
estimated total points were calculated from clinical factors 
significantly associated with OS in the univariate analysis. 
For example, a high-risk score patient (67.5 points) aged 
older than 60 years old (65 points) with pathologic T3/T4 
(27.5 points), N1/2/3 (75 points), M1 stage (100 points)  
would score 335 points in total for OS, and his/her 
predicted 1-, 3-, 5-year OS would be approximately 50%, 
12.5%, and less than 10%respectively. Additionally, the 
prognostic nomogram model was internally validated by 
assessing both discriminations using the c index and plotting 
calibration curves (Figure 7F). The c-index of the combined 
nomogram (0.640, 95% CI: 0.615–0.666) was higher than 
that of other clinicopathological characteristics alone. 

Analysis of the relationships between key gene methylation 
and expression 

To further analyze the precise methylation loci and 
expression, MEXPRESS was used to investigate the 
relationships between ADAM12 and TFAP2A methylation 
and expression (Figures S5,S6). The dark blue regions 
in Figure S5 demonstrate a negative correlation with 
ADAM12 gene expression (Pearson’s correlation coefficients 
for each probe are shown on the right), indicating that 
ADAM12 methylation silences gene expression. The dark 

blue regions in Figure S6 demonstrate a positive correlation 
with TFAP2A gene expression, indicating that TFAP2A 
methylation activates gene expression.

Survival outcomes

Survival outcomes were analyzed using UALCAN to 
investigate whether the gene expression levels of the 
hypermethylation key drivers ADAM12, SLC5A7, and 
CDH19, and the hypomethylation driver TFAP2A, play 
important roles in GAC patient prognosis. The log-rank P 
values of ADAM12, SLC5A7, CDH19, and TFAP2A were 
0.0044, 0.013, 0.036, and 0.0066, respectively. Therefore, 
regulation of oncogenes caused by aberrant methylation 
could result in different overall survival. Specifically, 
patients with a high TFAP2A expression (Figure 8A) had 
better prognoses, while those with a low/medium expression 
of ADAM12 (Figure 8B), CDH19 (Figure 8C), and SLC5A7 
(Figure 8D) had poorer prognoses.

Discussion

In this study, we performed an integrated analysis of 
DEGs, DMGs, the target genes of miRNAs, and promoter 
methylation. Several DEGs, miRNAs, and TFs were 
screened with respect to metabolism and cell apoptosis 
found in various diseases, and which are known to play a 
significant role in the progression of GAC. Zhao et al. (33) 

https://cdn.amegroups.cn/static/public/ATM-21-3211-supplementary.pdf
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Figure 7 Exploration of the risk score and prognostic model of the nomogram in the training and validation cohort. (A) ROC curve analysis 
of risk score-based prognostic model in the training cohort. (B) Kaplan-Meier survival curve of the high- and low-risk subgroups in the 
training cohort. (C) ROC curve analysis of risk score-based prognostic model in the validation cohort. (D) Kaplan-Meier survival curve of 
the high- and low-risk subgroups in the validation cohort. (E) Nomogram for predicting the OS rates at 1-, 3- and 5-year in the training 
cohort. (F) Calibration curve of the nomogram for predicting 1-, 3-, and 5-year OS in the training cohort. AUC, area under the curve; OS, 
overall survival; ROC, receiver operating characteristic. 
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identified several novel genetic aberrations, gene network 
modules, and miRNA target interactions within TCGA. 
However, their results differed slightly from ours, likely 
due to the bioinformatics tools used. Additionally, as the 
pathogenesis of GAC remains unclear, the results presented 
here may help to clarify the molecular mechanisms of this 
disease.

Our GO analysis demonstrated enrichment of DEGs 
in the ECM. Extracellular composition and organization 
are regulated to control cell behavior and differentiation; 
however, dysregulation of ECM dynamics leads to the 
development of various diseases, such as cancer (34). 
Moreover, the DMGs in our study were enriched in 
transcriptional activator and TF activity. For example, the 
promoter region contains putative binding sites for multiple 
TFs, including the signal transducer and activator of 
transcription 6 (STAT6), a downstream effector of IL-4 (35). 
The GO enrichment analysis also revealed that changes 
in the target genes of miRNAs were primarily enriched 
in protein kinase activity, which is known to be related to 

cancer proliferation, cell invasion, and migration (36-40).  
In terms of promoter methylation, GO was enriched in 
the transcription regulatory region for DNA binding. 
Changes in DNA methylation associated with GC have 
been previously studied and provide additional clues into 
the pathogenesis of the disease (41).

The KEGG analysis showed that DEGs were primarily 
enriched in the IL-17 signaling pathway, cytokine-cytokine 
receptor interaction, and cell cycling, which is consistent 
with previous reports (42). It has been reported that IL-
17 plays an important role in the upregulation of VEGF to 
promote tumor angiogenesis. We also identified that DMGs 
were enriched in the cAMP signaling pathway, RAP1 
signaling pathway, and cell adhesion molecules. cAMP 
interacts with the HERG protein by binding to the cAMP-
binding domain of HERG protein and subsequently impacts 
HERG in GAC (43). Meanwhile, reduced RAP1 signaling, 
which has been reported in prostate cancer, is related to cell 
adhesion, migration, and survival associated with metastasis. 
Cell adhesion molecules were in accordance with the studies 

Figure 8 Survival analyzes to investigate the impact of the key methylation driver genes for the prognoses of GAC patients. Kaplan-Meier 
survival curves demonstrating the prognostic value of (A) TFAP2A, (B) ADAM12, (C) CDH19, (D), and SLC5A7. A two-sided P value of 
<0.05 was regarded as statistically significant; of note, the P value was FDR-corrected. P<0.05 vs. shCtrl. shCtrl, negative control cells. 
ADAM12, A disintegrin and metalloproteinase domain 12; TFAP2A, transcription factor AP-2 alpha; SLC5A7, solute carrier family 5 
member 7; CDH19, cadherin 19; FDR, false discovery rate. 
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above (44). Furthermore, the target genes of miRNAs were 
enriched in proteoglycans in cancer, the RAP1 signaling 
pathway, MAPK signaling pathway, pathways in cancer, and 
RAS signaling pathways. Proteoglycans perform multiple 
functions, including the regulation of tumor cell growth, 
survival, adhesion, metastasis, and angiogenesis through 
interactions between their charged glycosaminoglycan 
chains and effector proteins (45).

The core protein of proteoglycans can also work with 
other proteins, such as integrins, to accommodate their 
signaling (46). The MAPK signaling pathway is thought 
to be involved in a myriad of mechanisms associated with 
eukaryotic cell regulation by coordinating with diverse 
receptor families, such as growth factors closely related 
to the immune system (47). In addition, MAPK regulates 
the activation of gene transcription, protein synthesis, 
cell cycle machinery, cell death, and differentiation (47). 
RAS also plays a key role in malignant cells, including 
the deregulation of tumor cell growth, programmed cell 
death, and the ability to invade and induce new blood 
vessel formation, making it a new therapeutic target for 
GAC (48,49). Promoter methylation was also significantly 
enriched in cell adhesion molecules. These results provide 
the foundation for further GAC research; however, 
additional studies are required to verify our findings.

TF expression and histone modifications are under strict 
control. Hence, during dynamic packaging, maintaining 
stable and ordered chromatin is vital to ensure normal 
cellular homeostasis. Factors influencing the number of 
chromatin-associated cellular events, including transcription, 
warped histones, and DNA, are subject to covalent post-
translational modifications (50). In the present study, a 
comparative analysis of histone modifications in tumor and 
normal tissues was conducted, which revealed that the DEGs 
were primarily regulated by H3K27me3 in several cancer 
cell lines. H3K27me3, a post-translational modification, 
is highly correlated with genomic silencing (51). Many 
studies have reported that cytosine methylation of DNA 
regulatory sequences is associated with the transcriptional 
inactivation of genes, while hypomethylation supports 
transcriptional activation (52,53). Zhang et al. explored 
the relevance of H3K27me3 and DNA methylation in 
terms of molecular mechanisms to better understand 
the relationship between DNA methylation and histone 
modifications in cancer-associated gene silencing (53). Our 
results suggest that abnormal modification of H3K27me3 
may play an important role in GAC with regulation 
predominantly executed by H3K27me3. Other studies have 

reported that hypomethylated genes in H3K27me3 activate 
transcription, whereas hypermethylated genes inactivate  
transcription (52,54). 

The enrichment analysis performed with ChIP-seq 
revealed that DEGs were enriched in different TF clusters, 
including E2F4, FOXM1, and SUZ12. E2F4, a member of 
E2F, regulates various cellular functions related to the cell 
cycle and apoptosis (55). In fact, GAC frequently exhibits a 
mutation of the adenosine-guanine-cytosine (AGC) repeat 
of the E2F4 gene. Furthermore, E2F4 appears to promote 
tumor progression in GAC (56,57). FOXM1 participates 
in cell cycling by regulating both the transition from G1 
to S and progression to mitosis (58). Moreover, FOXM1 
mediates the promotion of human GAC angiogenesis, 
growth, and metastasis, and enhanced regulation of 
FOXM1 leads to the acceleration of GAC (58,59). SUZ12 
is primarily involved in histone modification (60), whereas 
HOTAIR expression positively correlates with SUZ12 
expression levels and, therefore, may affect the epigenetic 
state of cancer tissues. A high expression of HOTAIR is 
associated with higher stages and lymph node metastasis in 
GAC (61). Consequently, a high expression of SUZ12 may 
contribute to GAC progression. 

The constructed differential miRNAs and promoter 
methylation networks showed that the hub nodes included 
SLC5A7 and CDH19. Among these hub genes, ADAM12 
and TFAP2A showed the highest node degrees. Significant 
changes in the expression of key upstream genes may affect 
a large number of downstream target genes. Indeed, altered 
DNA methylation in the promoter region of genes has 
been shown to cause the inactivation of tumor suppressors 
and other cancer-related genes and is regarded as the most 
well-defined epigenetic characteristic in GC (62). ADAM12 
is significantly upregulated in GAC, inhibiting cancer 
proliferation, invasion, and metastasis (63). In addition, the 
upregulation of hypomethylated ADAM12 has also been 
reported in breast, pancreatic, and ovarian cancers, and 
may serve as a valuable biomarker for diagnosis, treatment, 
and prognosis (64,65). In the cellular context, TFAP2A is 
individually related to cell differentiation and development 
and cancer progression/regression. Wang et al. suggested 
that a reduced expression of TFAP2P is associated with 
GAC prognosis and may be a potential marker for improved 
prognosis in GAC patients (66). Moreover, ZNF471 
recruits KAP1 to the promoter of target genes, thereby 
inducing H3K9me3 enrichment and repressing oncogenic  
TFAP2A (67). However, few studies have examined SLC5A7 
in the context of GAC. The downregulated expression 
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of SLC5A7 in various cancers is reportedly associated 
with poor clinical outcomes (68). For instance, SLC5A7 
was found to be downregulated and hypermethylated in 
lung adenocarcinoma (LUAD). However, it was shown 
to be upregulated and hypomethylated in squamous 
cell carcinoma (LUSC) (69). The overall survival (OS) 
of patients with high promotor region methylation of 
LUSC was better than for those with low methylation; 
however, no significant correlation was observed between 
methylation and OS in LUAD (69). CDH19 encodes a 
tyrosine phosphatase associated with adherent junctions. 
As GC develops from the same glands as colorectal tumors, 
CDH19 may also be related to GAC (70). Furthermore, 
new human antibodies targeting CDH19 have been applied 
to prevent, treat, and ameliorate melanoma and metastatic 
melanoma disease. 

The generated network of DEGs, differential miRNAs, 
and promoter methylation constructed in this study 
identified two significant differentially expressed miRNAs, 
miR-1 and miR133a, with miR-133a showing the highest 
node degree (five). miRNAs can distinguish between 
cancer and normal tissues or various cancers (71,72), and 
may regulate diverse protein-coding genes and participate 
in different molecular pathways associated with tumor 
evolution and progression (73-75). Recent studies have 
claimed that miR-1 and miR-133a function as tumor 
suppressors, and their oncogenes have been reported in 
different cell environments (76) . Indeed, overexpression 
of miR-1 can inhibit cell growth, differentiation, and 
migration, while its downregulation promotes cell 
proliferation and migration in endothelial cells of GC 
and activates proangiogenesis-associated signaling (77). 
Moreover, the potential anti-tumorigenic function of miR-1  
in primary HCCs is related to the methylation-mediated 
silencing of miR-1 and upregulation of the potential 
oncogenic target genes of miR-1 (78). Recently, miR-1 has 
been suggested as a therapeutic target for prostate cancer 
and NSCLC (79,80).

Furthermore, reduced miR-133a expression, caused by 
hypermethylation of its promoter or negative regulation 
of TFs, was associated with larger and more invasive 
GAC tumors (81,82), resulting in metastasis of peripheral 
organs (83). In addition, altered miR-133a expression 
has been reported in various types of cancer, including 
esophageal squamous cell carcinoma and bladder cancer, 
mainly regulating the expression of FSCN1 as a tumor 
suppressor (84,85). DNA methylation could, directly 
and indirectly, affect the drug response. Directly, DNA 

methylation involves gene transcription and thus impacts 
the methylation level of epigenome targets. Target genes 
and the expression of proteins affected by epigenome 
targets is the indirect way that is imposed on the response 
to agents of cancer cells (86). Therefore, as the key DEGs, 
miRNAs, and TFs mentioned above and based on the 
relationship with methylation, the outcome of treatment 
with GAC could be predicted by detecting hypermethylated 
or hypomethylated levels of the corresponding targets. 

Clinical or/and pathological staging at diagnosis and 
treatment are practical components that determine the 
prognosis of GAC patients (87). Methylation-driven gene 
expression could be predicted by hypomethylation and 
hypermethylation of corresponding genes exactly based 
on bioinformatic analysis (88). Nowadays, Gastrointestinal 
endoscopy (GIS) has served as one of the most widely used 
diagnostic tools for pathological analysis, is neither suitable 
for early diagnosis nor free from the risk of morbidity, and 
detecting miRNAs in body fluids can be a potential method 
in the diagnosis of GAC. It has been demonstrated that 
endogenous miRNA in serum or plasma remains stable. 
Whether in extreme conditions such as boiling, very low/
high pH levels, extended storage time, and multiple freeze-
thaw cycles (89,90), or stored for more than a decade in 
archival tissues and human serum specimens, miRNA 
can be easily detected (91). The stability and resistance to 
degradation of miRNAs make them more useful biomarkers 
for cancer diagnosis. Q-RT-PCR is widely utilized to 
identify previously unknown new miRNAs, which is 
easier to perform and is a cost-effective technique. Blood-
based (92) and gastric juice-based (93) miRNAs are also 
considered potential biomarkers for early detection of GAC. 
miRNA-125b was identified as a crucial miRNA in GC 
development from miRNA-gene network analyses related 
to gastric oncogenesis (93). Another study found that 
hsa-miR-421/hsa-miR-29b-1-5p targeted CREBZF and 
could play an important role in MKN-74 cell migration, 
suggesting that increased CREBZF by inhibition of hsa-
miR-421/hsa-miR-29b-1-5p could be pivotal in preventing 
gastric cancer in its early stage (94). Moreover, proliferation, 
as well as migration and invasion abilities of GAC cells, 
were restricted by the overexpression of HAND2-AS1 and 
HIF3A and enhanced by miR-184. Furthermore, HAND2-
AS1 rescued enhanced GAC cell proliferation, migration, 
and invasion abilities as well as the glycolytic process caused 
by hypoxia via miR-184/HIF3A (95). Therefore, once 
preclinical screening and validation are resolved, it will 
promote the development of miRNA biomarkers in body 
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fluids for clinical applications. 

Conclusions

Our study reports on an integrated analysis of high-
throughput sequencing data for DEGs, differential 
miRNAs, and promoter methylation associated with GAC. 
Four possible GAC-related DEGs, including ADAM12, 
TFAP2A, SCL5A7, and CDH19, and two possible GAC-
related miRNAs, miR-133a and miR-1, were identified. 
Moreover, DMRs were screened and integrated. GAC-
related promoter methylation may be under comparable 
transcriptional regulation. Furthermore, several TFs and 
miRNAs, as well as promoter methylation, may play critical 
roles in GAC tumorigenesis. These results provide the 
foundation for further GAC research and will need to be 
confirmed by additional experiments.
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Supplementary

Table S1 Univariate and multivariate analyses of variables associated with overall survival 

Characteristics Number of patients
Univariate analysis Multivariable analysis

HR (95% CI) P value HR (95% CI) P value

Risk (High vs. low) 350 1.729 (1.242, 2.407) 0.001 1.614 (1.138, 2.290) 0.007 

Pathologic T stage (T3/4 vs. T1/2) 346 1.643 (1.088, 2.481) 0.018 1.217 (0.774, 1.913) 0.395 

Pathologic N stage (N1/2/3 vs. N0) 339 1.805 (1.199, 2.716) 0.005 1.703 (1.100, 2.638) 0.017 

Pathologic M stage (M1 vs. M0) 335 2.051 (1.157, 3.636) 0.014 2.060 (1.140, 3.722) 0.017 

Age (>60 vs. ≤60) 347 1.531 (1.060, 2.212) 0.023 1.649 (1.119, 2.431) 0.012 

Sex (male vs. female) 350 1.324 (0.930, 1.890) 0.119 

Figure S1 KEGG enrichment results for DEGs.

Figure S2 KEGG enrichment results for DMGs.
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Figure S3 KEGG enrichment results for miRNA target genes.
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Figure S4 KEGG enrichment results for differential promoter methylation.

Figure S5 Correlation analysis for ADAM12 methylation locus and expression.
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Figure S6 Correlation analysis for TFAP2P methylation locus and expression.


