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Correlation of m6A methylation with immune infiltrates and poor
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Background: Non-small cell lung cancer (NSCLC) is a common type of lung cancer with a poor
prognosis. N6-methyladenosine (m6A) methylation, which is a reversible ribonucleic acid (RNA)
modification, plays an important role in the occurrence and development of NSCLC. However, the potential
effect of m6A methylation on immune infiltrates and prognosis remains unclear.

Methods: In this study, a weighted gene co-expression network analysis was used to screen out messenger
RNAs (mRNAs) and non-coding RINAs (ncRNAs) that were co-expressed with m6A regulators. Additionally,
2 molecular subtypes (Clusters 1 and 2) were determined via consensus clustering. Subsequently, a prognostic
risk model was constructed using both co-expressed mRNAs and ncRNAs. Based on the risk scores
calculated by the prognostic model, the patients were divided into the high-risk group or low-risk group.
Finally, the altered patterns of the tumor immune microenvironments (TIMEs) between the 2 stratification
methods were thoroughly investigated, and a gene set enrichment analysis was conducted to further examine
the potential mechanism.

Results: Patients in Cluster 1 had lower immunoscores, higher programmed death-ligand 1 (PD-L1)
expression, and shorter overall survival (OS) compared to patients in Cluster 2. A further investigation based
on the prognostic model revealed that the PD-L1 expression levels of patients in the high-risk group were
significantly upregulated, and the immunoscores were lower than those in the low-risk group. The immune
cells with a high infiltration in Cluster 1 showed a significant positive correlation with the risk score; those
with low infiltration showed a significant negative correlation. The hallmarks of the Myelocytomatosis viral
oncogene (MYC) targets, the second Gap/Mitosis (G2/M) checkpoint, E2 transcription Factor (E2F) targets,
glycolysis, deoxyribonucleic acid (DNA) repair, and unfolded protein response were significantly enriched in
Cluster 1, the low-immunoscore group, and the high-risk group.

Conclusions: This study revealed that m6A methylation is closely related to the poor prognosis of
NSCLC patients via interference with the TIME, which suggests that m6A may play a role in optimizing

individualized immunotherapy management and improving prognosis.
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Introduction

Lung cancer is the most common cause of cancer-related
deaths worldwide and is the deadliest cancer among
men (1). In some developed countries, lung cancer (16.3%)
has overtaken breast cancer (15.4%) as the deadliest
cancer among women (1). Non-small cell lung cancer
(NSCLQ) is the most common type of lung cancer, and
lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) are the most common subtypes (2).
For patients with locally advanced or advanced NSCLC,
current treatment methods cannot significantly improve
overall survival (OS). However, emerging novel anti-
cancer treatments, such as immunotherapy, provide a
broader perspective, and the multidisciplinary treatment
modalities of immunotherapy combined with other
conventional methods have gradually aroused wide interest
and have benefited many NSCLC patients (3). Thus,
it is essential to conduct in-depth studies on the tumor
immune microenvironment (TIME) to explore potential
immunotherapy targets and to further optimize the clinical
treatment management of NSCLC patients. 2/3 of immune
cells in the lung cancer microenvironment consist of
lymphocytes, 80% of which are T cells. The proportion
of B cells in NSCLC tumor tissues is significantly higher
than that in normal lung tissues, while the proportions
of macrophages and natural killer (NK) cells are
significantly lower (4). Lung cancer cells can generate
immunosuppressive factors, causing immune escape and
cancer progression. In addition, controversy continues
as to the effect of the TIME on the long-term survival
of NSCLC patients (5). Further investigations of the
regulation mechanisms of the TIME may reveal effective
biomarkers that can be used to accurately predict patient
prognosis.

N6-methyladenosine (m6A) RNA modification can affect
normal life activities and disease progression (6-8). The m6A
abundance of reversible ribonucleic acids (RNAs) depends
on the dynamic interplay between methyltransferases
(“writers”), binding proteins (“readers”), and demethylases

“erasers”) (9). Writers include methyltransferase-like
(METTL)3, METTL14, METTL16, WT1-associated
protein (WTAP), Vir-like m6A methyltransferase associated
(KIAA1429), zinc finger CCCH-type containing 13
(Zc3h13), RNA-binding motif protein 15 (RBM15), and
RBM15B. Readers include the YTH domain-containing 1
(YTHDCI), YTHDC2, YTH m6A RNA-binding protein
1 (YTHDF1), YTHDF2, YTHDEF3, RNA-binding motif
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protein X-linked (RBMX), and heterogeneous nuclear
ribonucleoprotein C (HNRNPC), and HNRNPA2BI.
Erasers mainly include the fat mass- and obesity-associated
protein (FTO) and alkB homolog 5 (ALKBHS).

mo6A regulators play a vital regulating role in the
tumorigenesis, metastasis, and drug resistance of NSCLC.
Lin er al. (10) found that METTL3 overexpression
promotes the proliferation and migration of human lung
cancer cells, which are significantly upregulated in LUAD
tissues. Wang ez /. (11) showed that m6A methylation
promotes the brain metastasis of lung cancer by inducing
the mature splicing of the miR-143-3p precursor.
Jin et al. (12) showed that METTL3 induces drug resistance
and metastasis in NSCLC. Additionally, they (13) further
found that ALKBHS5 interfered with the expression and
activity of Yesl Associated Transcriptional Regulator (YAP)
and thereby inhibited the growth and metastasis of NSCLC.
Shi et al. (14) suggested that YTHDF1 deficiency inhibited
the growth of NSCLC cells and the formation of xenograft
tumors by regulating the translation efficiencies of CDK2,
CDK4, and cyclin D1, and the depletion of YTHDF1
made cancerous cells resistant to cisplatin treatment and
restricted the progression of de novo LUAD. However,
they observed unexpected results in relation to patient
survival, finding that a high expression of YTHDF1 led to
better clinical outcomes. Liu ez /. conducted a prognostic
analysis of m6A regulators in LUAD (15), and found that
HNRNPC, RBM15, and KIAA1429 serve as risk genes,
while YITHDC2 and METTL3 serve as protective genes.
A copy number variation (CNV) analysis revealed that the
OS of NSCLC patients with any CNV of m6A regulators
was shorter than that of patients with the diploid gene (16).
The effects of differences among all the m6A methylation
levels on the long-term survival of NSCLC patients has
not yet been studied, and correlations with the TIME and
transduction signals have not yet been deeply analyzed.

With the increasingly extensive exploration and
application of immunotherapy in clinical practice (17,18),
the role of m6A methylation in tumor immunity has also
attracted great attention. The pharmacological inhibition of
demethylase FTO helps to reprogram the immune response
of leukemia stem cells/initiating cells by regulating the
expression of immune checkpoint genes (19). HNRNPA2B1
was reported to amplify interferon-o/f (IFN-a/p)
production and enhance the stimulator of interferon gene
(STING)-dependent cytoplasmic signaling to exert an anti-
DNA virus effect (20).

In addition to the intrinsic carcinogenic pathway of
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m6A methylation, many studies have also revealed the
special correlation between TIME immune infiltrating
cells or immunophenotype and m6A modification. Zhang
et al. (21) demonstrated that m6A modification patterns
in gastric cancer were highly correlated with tumor
immunophenotypes (immune-excluded, immune-inflamed,
and immune-desert phenotypes). Han er 4l. (22) showed
that the level of cluster of differentiation 8 positive (CD8+)
T cells in YTHDF1-deficient mice exhibited higher cluster
of differentiation 8 positive (CD8+) T cells levels and
elevated CD8+ T cell antitumour response. Additionally,
non-coding (ncRNAs), such as circular RNAs (circRNAs)
have also been reported to exert an immune-suppressive
effect through m6A modification (23,24). However, whether
m6A methylation plays a role in the immunotherapy of
NSCLC has not yet been fully explored, and the role of
the interaction between ncRNAs and m6A in immunity/
prognosis has not yet been clearly elucidated.

Most previous studies have focused on the potential
roles of one or more m6A regulators in NSCLC. In this
study, a new method was used to assess the holistic m6A
modification abundance, and then to systematically analyze
the correlation of m6A RNA methylation with prognosis
and the TIME in NSCLC. Namely, the Weighted Gene
Co-expression Network Analysis (WGCNA) algorithm was
used to screen out messenger RNAs (mRNAs) and ncRINAs
co-expressed with m6A methylation regulators. Clustering
subtypes and prognostic risk models were established based
on co-expressed RNAs to further investigate the specific
function of m6A methylation in NSCLC and to improve
the prognostic risk stratification of NSCLC patients.
Thereafter, the correlation between m6A methylation
level and the TIME/prognosis was thoroughly explored
by analyzing the relationships among the clustering
subgroups, the risk score, PD-L1, the immunoscore, and
immune cell infiltration. This study also attempted to
determine the regulatory mechanisms of m6A methylation
level on immune infiltration and prognosis and to provide
insights into its prospects in NSCLC immunotherapy.
The following article is presented in accordance with the
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-4248).

Methods
Datasets

The transcriptome data of 1,037 histologically confirmed
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NSCLC specimens and 108 adjacent normal tissues in The
Cancer Genome Atlas (TCGA) database were downloaded
for the RNA differential analysis and clustering. In addition,
999 NSCLC patients with corresponding clinical data
(for age, gender, TNM stage, tumor subtype, and survival
data) were enrolled for further analysis. These patients
were randomized into a training cohort (500 patients) and
a validation cohort (499 patients) at a ratio of 5:5 using the
CreateDataPartition function. The study was conducted
in accordance with the Declaration of Helsinki (as revised

in 2013).

Bioinformatic analysis

The limma package was used to detect mRNAs and
ncRNAs that were differentially expressed between tumor
and normal tissues. Next, the count data were converted
into Transcripts Per Million (TPM) reads, and the mRNA
and ncRNA differential expression data were merged with
the m6A regulator matrix. The WGCNA package was used
for the co-expression analysis (the minimum number of
genes of the mRINA module was set to 20, and the minimum
number of genes of the ncRNA module was set to 10). The
ConsensusClusterPlus package (1,000 iterations and 80%
resample rate) was used to classify the NSCLC patients
into different m6A methylation subtypes. A WGCNA and
principal component analysis (PCA) were conducted using
the R package v4.0.3.

The gene set enrichment analysis (GSEA) was
conducted on the hallmark gene sets of MSigDB to
explore the potential regulatory mechanisms between
the methylation subtypes, immune infiltration level, and
OS. The ESTIMATE algorithm was used to calculate the
immunoscore with the R “estimate package” (25). The
relative proportion of 22 immune cells for each NSCLC
sample was yielded through CIBERSORT (https://
cibersort.stanford.edu/). The algorithm of random sampling
consisted of 1,000 permutations. Only samples with a P
value <0.05 were included in the subsequent analysis to
compare the different immune infiltration cells among the
subgroups (grouped by m6A methylation subtype and risk
score). The corrplot and limma packages were used to test
the correlations between PD-L1 and m6A regulators.

A total of 98 prognostic-related RNAs (82 mRNAs, 16
ncRNAs) were screened out from 535 RNAs co-expressed
with the m6A regulators using the survival package.
Subsequently, the prognostic-related RNAs were used for
the least absolute shrinkage and selection operator (LASSO)
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regression analysis (26) with the optimal penalty parameter
A, and 19 core RNAs were finally identified to establish a
prognostic risk model. In addition, laser regression analysis
was also used to screen RINAs from 82 mRNAs and 16
ncRNAs respectively to construct mRNA model and
ncRNA model. The prognostic efficacy of the three models
was compared by the area under the curve (AUC), and the
optimal model was selected for subsequent analysis. The
coefficients generated by the optimal model were used to
yield the following risk score equation: risk score = sum of
coefficients x co-expressed RINA expression level. The risk
scores were calculated separately for patients in the training
and validation cohorts. The mean values of the risk scores
was set as the cut-off point for dividing patients into high-
and low-risk groups.

Statistical analysis

Statistical tests were carried out using R version 4.0.3 and
GraphPad Prism 9.0. Based on published literature, 20
m6A RNA methylation regulators were collected (27-32).
The expression levels of m6A regulators in tumor tissues
and normal tissues were compared using unpaired t tests
(the gene “VIRMA” was displayed as “KIAA1429”). A
Chi-square test was performed to compare the categorical
variables. The Kaplan-Meier method was used to generate
survival curves, and the log rank test was used to compare
differences between the groups. The correlations between
the PD-L1 expression level, immunoscore, and abundance
of immune cell infiltration in different subtypes and
different risk groups were analyzed using the Pearson
correlation test. The independent prognostic value of
the risk scores was verified by Cox regression models in
both the training and validation cohorts. The predictive
efficiency of the 3 prognostic models for 1-, 3-, and
S-year OS was estimated using ROC curves. A P<0.05 was
considered statistically significant.

Results

The expression levels of m6A regulators in tumor tissues
versus normal tissues in NSCLC

To clarify the role of m6A methylation in NSCLC
tumorigenesis, we systematically investigated the expression
patterns of 20 m6A regulators in tumor and normal lung
tissues based on TCGA database. We downloaded the

expression profile data sets of 108 normal samples and
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1,037 NSCLC tumor samples and analyzed the distinct
expressions of the regulators. The expression levels of the
“readers” (i.e., YTHDCI1, YTHDF1/2/3, HNRNPC,
FMR1, LRPPRC, HNRNPA2B1, and RBMX) showed
consistent and significantly higher expression in NSCLC
tissues than normal tissues (P<0.01; see Figure 1A4).
“Writers”, such as METTL3, WTAP, KIAA1429, RBM15,
and RBM15B, were highly expressed in NSCLC tissues
(P<0.05), while METTL14 and Zc3h13 were expressed at
a lower rate in NSCLC tissues than normal tissues (P<0.01;
Figure 1B). The expression patterns of “erasers” (i.e., FTO
and ALKBHS) differed. Specifically, FT'O was significantly
downregulated in tumor tissues (P<0.001), while ALKBHS5
was highly expressed (P<0.05; see Figure 1C). These results
suggest that the expression patterns of various regulators
in NSCLC are not consistent, and the extent of their roles
in tumorigenesis might also be different. However, the
universal expression differences of the regulators in tumor
and normal tissues highlighted the prominence of m6A
methylation.

The mRNAs and ncRNASs co-expressed with m6A4
regulators were screened out through the WGCNA
algorithm

Given the inconsistency in the expression patterns of the
regulators, we adopted a new approach to investigate the
role of m6A methylation in NSCLC based on the integrated
RNA expression profiles. First, we filtered out the mRNAs
(see Figure 24) that were significantly differently expressed
in tumor tissues versus normal tissues. Subsequently, the
WGCNA algorithm was used to construct a co-expression
network of m6A regulators and differentially expressed
mRNAs. The soft threshold was set to 3 (B=3, R2=0.95) to
construct an mRNA scale free network, and 13 modules
were then identified (see Figure 2B) through average
hierarchical clustering and dynamic tree clipping. The
moOA regulators were mainly clustered in the turquoise and
green modules. The genes in the modules were extracted
(135 co-expressed mRNAs from the green module and
319 mRNAs from the turquoise module). Similarly, the
ncRNAs that were differentially expressed in tumors versus
normal tissues (see Figure 2C) were used to construct a
co-expression network with m6A regulators through the
WGCNA algorithm. The soft threshold was set to 4 (B=4,
R2=0.93) to create an ncRNA scale free network, and 21
modules were identified (see Figure 2D). m6A regulators
were located in the turquoise module, and a total of 400 co-
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Figure 1 The expression levels of 20 m6A regulators in non-small cell lung cancer INSCLC). The expression levels of “readers” (A), “writers”

(B), and “erasers” (C) in 1,037 tumor tissues versus 108 adjacent normal tissues in TCGA database (the icons at the top of the bars represent

standard error). ns, not significant; *P<0.05; **P<0.01; ***P<0.001.

expressed ncRNAs [325 long non-coding RNAs (IncRNAs),
23 microRNA (miRNAs), 28 small nucleolar RNAs
(snoRNAs), and 24 small nuclear RNA (snRNAs)] were
extracted. Finally, the co-expression patterns of mRNAs (see
Figure 2E) and ncRNAs (see Figure 2F) with m6A regulators
were further analyzed.

Consensus clustering for RNAs in modules co-expressed
with m6A regulators

The NSCLC patients in TCGA database were clustered
based on the similarity of the expression levels of the co-
expressed RNAs. The lowest Proportion Ambiguous
Clustering (PAC) score was generated when k=2, which
was regarded as optimal clustering (see Figure 34). 1037
NSCLC patients were clustered into 2 subtypes; that is,

© Annals of Translational Medicine. All rights reserved.

Cluster 1 (n=788) and Cluster 2 (n=249) (see Figure 3B).
The expression patterns of RNAs among different subtypes
were analyzed, and the mRNA expression levels differed
significantly (see Figure 3C). The expression levels of
ncRINA, except for SnoRNA, were slightly lower in Cluster
1 than Cluster 2 (see Figure 3D).

Cluster subtypes were significantly related to the clinical
characteristics of NSCLC patients

An analysis of the expression patterns of the m6A regulators
among subtypes revealed that some regulators had markedly
higher expression levels in Cluster 1 than Cluster 2,
especially HNRNPC, LRPPRC, and WTAP, which had
relatively high expression levels in tumor tissues. Clustering
subtypes were closely related to the clinicopathological
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Figure 3 Consensus clustering of co-expressed RNAs and an analysis of RNAs expression patterns among clustering subtypes. (A)

Consensus clustering cumulative distribution function (CDF) when the k value ranged from 2-9 and (B) consensus clustering matrix for k=2.

The expression patterns of mRNA (C) and ncRNA (D) among different subgroups.

characteristics of NSCLC patients (see Figure 44). Cluster
2 mainly included female LUAD patients (P<0.001),
while Cluster 1 mainly included patients with lymph node
metastasis (P<0.001), a higher T stage (P<0.05), and at
more advanced stages (P<0.05; see Figure 4B). The OS of
Cluster 1 was shorter than that of Cluster 2 (P=0.002; see
Figure 4C).

Patients in Cluster 1 bad lower immunoscores,
differentiated immune cell infiltration levels, and bigher
PD-L1 expression

To further investigate the effect of m6A methylation on
the TIME in NSCLC, we assessed differences in the
immunoscores and infiltration levels of 22 immune cells
among the subtypes. The immunoscore in Cluster 1 was

© Annals of Translational Medicine. All rights reserved.

significantly lower than that in Cluster 2 (P<0.001; see
Figure 5A4). Cluster 1 showed higher infiltration levels
of activated T cell CD4 memory, resting NK cells, M0
macrophages, M1 macrophages, activated mast cells, and
eosinophils, while Cluster 2 was more highly correlated
with B cell memory, resting T cell CD4 memory, regulatory
T cells (Tregs), monocytes, resting dendritic cells, activated
dendritic cells, and resting mast cells (see Figure 5B).
Further, we found that PD-L1 expression in Cluster 1
was significantly more upregulated than that in Cluster
2 (P<0.001; see Figure 5C). In addition, the correlation
between PD-L1 and various m6A regulators was further
analyzed. There was a significant positive correlation in the
co-expression pattern among the regulators. PD-L1 was
positively correlated with WTAP, HNRNPC, FMRI1, and
many other regulators, while it was negatively correlated

Ann Transl Med 2021;9(18):1465 | https://dx.doi.org/10.21037/atm-21-4248
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relative proportions of T stage, N stage, and cancer stage among cluster subtypes; (C) Kaplan-Meier curves of OS for patients with non-
small cell lung cancer (NSCLC). *P<0.05, ***P<0.001.
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Figure 5 Differences in the TIME among clustering subtypes. (A) Inconsistent immunoscore levels in Cluster 1/2 subtypes; (B) the
infiltration levels of 22 immune cell types in 2 clusters (Clusters 1 and 2); (C) PD-L1 upregulation in Cluster 1; (D) the correlation of PD-
L1 with m6A methylation regulators. ns, not significant, *P<0.05, **P<0.01, ***P<0.001.
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Risk type

Figure 6 The co-expression relationship between m6A regulators and RNAs used to construct the prognostic model. The middle column
represents the RNAs used to construct the prognostic model (AC020978.2, AC135050.3, AC138028.6, AL021368.3, CCDC68, CD302,
CPED1, DDX11, GPRIN1, HMGA2, IGF2BP1, LIFR, LRP8, MTURN, NEIL3, PTPRM, RNASEI, SCN1A, and TESMIN); the left

column represents their co-expression relationship with m6A regulators, and right column represents the risk type of RINA.

with YTHDEF3 (P<0.05; see Figure 5D).

Construction and validation of the prognostic model
through the integration of co-expressed mRNAs and
ncRNAs

Based on the differential OS of subtypes, we inferred that
m6A methylation was associated with poor prognosis in
NSCLC. To further reveal the prognostic value of m6A
methylation genes in NSCLC patients, we randomly
divided 999 patients with survival data in TCGA database
into a training cohort (500 patients) and a verification
cohort (499 patients). A total of 98 co-expressed RINAs
(82 mRNAs, 15 IncRNAs, and 1 miRNA; P<0.05) were
screened out via a univariate Cox regression analysis.
Subsequently, 19 RNAs (15 mRNAs and 4 IncRNAs) were
extracted to establish a prognostic model in the training
cohort through a LASSO regression analysis. Additionally,
their co-expression relationship with m6A regulators was
inspected (see Figure 6). The coefficients obtained by the

© Annals of Translational Medicine. All rights reserved.

LASSO algorithm were used to calculate the risk scores
of the training and validation cohorts, and the following
formula was used: risk score = cumulative addition values of
(regression coefficient * RNA expression level) (see Table I).

Based on the average risk score of the training cohort,
the patients were divided into the high-risk group and low-
risk group. In the training cohort, the OS of the high-risk
group was significantly shorter than that of the low-risk
group (P<0.001; see Figure 74), and similar conclusions
were also drawn for the validation cohort (P<0.01; see
Figure 7B). To evaluate the accuracy and superiority of the
prognostic model, another 2 models were constructed via
a separate analysis of mRNA and ncRNA in the training
cohort. By mimicking the integrated analysis process, 16
mRNAs (i.e., CPEDI, CD302, SCNI1A, NEIL3, PTPRM,
CCDC68, MTURN, ANLN, LIFR, GPRIN1, DDX11,
RNASE1, IGF2BP1, HMGA2, MT-ND6, and LRP8) and
7 ncRNAs (i.e., SH3BP5-AS1, AL122010.1, AL021368.3,
AL162586.1, AC020978.2, AC135050.3, and AC138028.6)
were screened out with the minimum value of the mean-

Ann Transl Med 2021;9(18):1465 | https://dx.doi.org/10.21037/atm-21-4248
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Table 1 Regression coefficients used for the calculation of the prognostic risk scores

mRNAs Coefficient mRNAs Coefficient mRNAs Coefficient INnRNAs Coefficient
CPED1 -0.01370 CCDC68 0.02450 TESMIN 0.00397 AL021368.3 -0.05140
CD302 -0.01160 MTURN —-0.00098 RNASE1 —-0.00001 AC020978.2 -0.28200
SCN1A -0.03750 LIFR —-0.00456 IGF2BP1 0.00285 AC135050.3 -0.04870
NEIL3 0.00198 GPRIN1 0.00726 HMGA2 0.00164 AC138028.6 0.11400
PTPRM 0.00231 DDX11 0.00350 LRP8 0.00789
The coefficients of RNAs used to construct the prognostic risk model.
A Risk ==High risk == Low risk C E
1.00
1.0 1 1.0 ~
£0.75 -
g 0.8 08 4
g 050
g | z 06 206
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Figure 7 The predictive power analysis of the 3 prognostic models based on the AUCs. Kaplan-Meier survival curves of non-small cell lung

cancer (NSCLC) patients grouped by risk score in the training cohort (A) and validation cohort (B). Time-dependent ROC curves used to
calculate the 1-year AUC value of the 3 groups in the training cohort (C) and validation cohort (D). A comparison of the 3- (E) and 5-year (F)

AUC values of the 3 groups in the training cohort.

square error (MSE) (A = lambda.min). The AUC values
of the 3 groups were compared by a receiver operating
characteristic (ROC) curve analysis. The 1-year AUC
values of the RINA integration analysis group, the mRNA
group, and the ncRNA group in the training cohort were
0.71, 0.67, and 0.63, respectively (see Figure 7C). In the
validation cohort, the AUC values of these groups were 0.66,

© Annals of Translational Medicine. All rights reserved.

0.65, and 0.64, respectively (see Figure 7D). Additionally,
we analyzed the 3-year (see Figure 7E) and 5-year (see
Figure 7F) ROC curves in the training cohort to further
compare the predictive power of the 3 models. These
results demonstrated that the prognosis model constructed
through RINA integration analysis was superior to the other
2 models and was better able to predict the prognosis of

Ann Transl Med 2021;9(18):1465 | https://dx.doi.org/10.21037/atm-21-4248
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NSCLC patients.

Subsequently, univariate and multivariate Cox regression
analyses were performed on each cohort to verify whether
the risk score calculated according to the optimal model
could be used as an independent prognostic factor for
NSCLC patients. In the training cohort, the univariate
analysis showed that gender (P<0.01), tumor (T)T stage
(P<0.001), and risk score (P<0.001) were strongly correlated
with OS (see Figure 8§4), while the multivariate analysis
results suggested that T stage (P<0.001) and risk score
(P<0.001) were closely related to OS (see Figure §B). In
the validation cohort, both the univariate and multivariate
analyses (see Figure 8C,8D) showed that age (P<0.05), T
stage (P<0.001), and risk score (P<0.001) were prognostic
factors. Further, to prove the versatility of the model,
we stratified the NSCLC patients in TCGA database by
gender (see Figure 8E,8F), age (see Figure 8§G,8H), tumor
subtype (see Figure 81,87), and T stage (see Figure SK,8L).
The Kaplan-Meier curves of OS all showed that patients
with high-risk scores had relatively poor survival (P<0.01).

The distribution of the risk scores, OS, survival status,
and prognostic-related RNA expression profiles was further
investigated. As the risk score increased, the number of
deaths gradually increased, and the expression levels of
risky RNAs (i.e., NEIL3, GPRIN1, DDX11, TESMIN,
IGF2BP1, HMGA2, LRPS8, and AC138028.6) increased
significantly, while the expression levels of protective RNAs
(CPEDI1, CD302, SCN1A, MTURN, LIFR, RNASEI,
AL021368.3, AC020978.2, and AC135050.3) decreased
significantly. Tumor subtype, gender, T stage, node stage,
and immunoscore differed significantly between the risk
subgroups (see Figure 9).

The variation paiterns of the TIME in Cluster 1 were
associated with higber risk scores

By comprehensively analyzing the risk score, clustering
subtypes, and the TIME, we found that the risk score of
Cluster 1 was significantly higher than that of Cluster 2
(P<0.001; see Figure 10A). Patients with a low immunoscore
had a high-risk score (P<0.001; see Figure 10B), and there
was a significant negative correlation between risk scores
and immunoscores. (R=-0.342; P<0.001; see Figure 10C).
In addition, the expression level of PD-L1 in the high-risk
group was significantly upregulated in Cluster 1 (P<0.01;
Figure 10D). Based on the correlation analysis between
the infiltration level of immune cells and the risk score, we
found that immune cells with a higher infiltration level in

© Annals of Translational Medicine. All rights reserved.
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Cluster 1 [activated T cell CD4 memory (R=0.16), resting
NK cells (R=0.15), activated mast cells (R=0.20), MO
macrophages (R=0.27), and M1 macrophages (R=0.15)] had
a strong positive correlation with the risk score (P<0.001;
see Figure 10E-10I), whereas those with a higher infiltration
level in Cluster 2 [B cell memory (R=-0.19), resting T
cell CD4 memory (R=-0.15), Tregs (R=-0.16), monocytes
(R=-0.26), resting dendritic cells (R=-0.21), and resting
mast cells (R=-0.25)] had a significant negative correlation
with the risk score (P<0.001; see Figure 107-100). Our
results indicated that the immune cells with differences
in m6A methylation between clustering subtypes might
be vital prognostic factors, and illustrated a conceivable
mechanism whereby m6A affected the long-term survival of
NSCLC patients by altering the TIME.

The GSEA suggested that multiple ballmarks were
dynamically enriched in Cluster 1, the low-immunoscore
group, and the High-Risk group

To elucidate the intrinsic regulatory mechanisms through
which m6A methylation and the TIME affected the
prognosis of NSCLC patients, we conducted a GSEA
on Cluster subtypes, immunoscore groups, and risk
stratification. Gene sets with | Normalized Enrichment
Score (NES) | >1, normalized p-val <0.05, and False
Discovery Rate (FDR) gq-val <0.25 were considered
significant. A total of 17 hallmarks (e.g., mTORC1
signaling, unfolded protein response (UPR), MYC targets
V1, and E2F targets) were significantly enriched in Cluster
1 (see Tuable 2), 15 hallmarks (e.g., G2ZM checkpoint,
mTORCI signaling, MYC targets V1, and E2F targets)
were enriched in the high-risk group (see Tuble 3), 9
hallmarks (e.g., MYC targets V2, MYC targets V1, G2ZM
checkpoint, and E2F targets) were enriched in the low-
immunoscore group (see Table 4), and no hallmark was
significantly enriched in Cluster 2 and the low-risk score
group. Notably, MYC targets V1/V2, the G2M checkpoint,
E2F targets, DNA repair, glycolysis, UPR, and late estrogen
response pathways (see Figure 11A4-11H) were significantly
enriched in patients with a lower immunoscore and higher
risk score in Cluster 1. Our results further demonstrated
that the interaction between m6A methylation and
the TIME affected the long-term survival of NSCLC
patients, and these hallmarks might be dynamically
implicated in the poor prognosis of a distinct TIME
affected by m6A methylation. Additionally, 11 hallmarks
(e.g., complementary and inflammatory responses) were

Ann Transl Med 2021;9(18):1465 | https://dx.doi.org/10.21037/atm-21-4248
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Table 2 Important hallmarks enriched in Cluster 1 versus Cluster 2 m6A Modification RNA: Cluster 1 vs. Cluster 2

HALLMARK-Name ES NES NOM p-val FDR g-val
MTORC1_SIGNALING 0.6471 2.2730 0.0000 0.0000
UNFOLDED_PROTEIN_RESPONSE 0.6027 2.2645 0.0000 0.0000
MYC_TARGETS_V1 0.7627 2.1995 0.0000 0.0011
E2F_TARGETS 0.7654 2.1313 0.0000 0.0020
G2M_CHECKPOINT 0.7243 2.0928 0.0000 0.0016
DNA_REPAIR 0.5654 2.0429 0.0000 0.0025
PIBK_AKT_MTOR_SIGNALING 0.5054 1.9945 0.0000 0.0049
MYC_TARGETS_V2 0.7363 1.9689 0.0000 0.0060
UV_RESPONSE_UP 0.4329 1.8987 0.0000 0.0097
ESTROGEN_RESPONSE_LATE 0.3657 1.6967 0.0018 0.0490
GLYCOLYSIS 0.4686 1.9176 0.0019 0.0089
OXIDATIVE_PHOSPHORYLATION 0.5960 1.9334 0.0060 0.0077
MITOTIC_SPINDLE 0.5120 1.7669 0.0061 0.0326
HYPOXIA 0.4221 1.7157 0.0170 0.0463
SPERMATOGENESIS 0.4134 1.5733 0.0203 0.0927
P53_PATHWAY 0.3614 1.5926 0.0264 0.0877
REACTIVE_OXYGEN_SPECIES_PATHWAY 0.4989 1.6784 0.0273 0.0527
ES, enrichment score; NES, normalized ES; NOM p-val, normalized p value; FDR g-val, false discovery rate g value.

Table 3 Important hallmarks enriched in the high-risk group versus low-risk group Risk Score: high risk vs. low risk

HALLMARK-Name ES NES NOM p-val FDR g-val
G2M_CHECKPOINT 0.7624 2.2063 0.0000 0.0023
MTORC1_SIGNALING 0.6346 2.1950 0.0000 0.0012
MYC_TARGETS_V1 0.7439 2.1411 0.0000 0.0023
E2F_TARGETS 0.7834 2.1390 0.0000 0.0017
MYC_TARGETS_V2 0.8063 2.1147 0.0000 0.0027
GLYCOLYSIS 0.5009 2.0785 0.0000 0.0031
MITOTIC_SPINDLE 0.5588 1.9556 0.0020 0.0091
UNFOLDED_PROTEIN_RESPONSE 0.5064 1.7980 0.0021 0.0358
ESTROGEN_RESPONSE_LATE 0.3504 1.6348 0.0084 0.0753
HYPOXIA 0.4254 1.7375 0.0086 0.0461
DNA_REPAIR 0.4800 1.7443 0.0123 0.0488
UV_RESPONSE_UP 0.3566 1.6012 0.0139 0.0865
REACTIVE_OXYGEN_SPECIES_PATHWAY 0.4979 1.7116 0.0203 0.0491
CHOLESTEROL_HOMEOSTASIS 0.4188 1.5833 0.0300 0.0893
PIBK_AKT_MTOR_SIGNALING 0.3793 1.4975 0.0353 0.1374

© Annals of Translational Medicine. All rights reserved.
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Table 4 Important hallmarks enriched in low immunoscore group versus high immunoscore group Immune infiltration levels: low vs. high

HALLMARK-Name ES NES NOM p-val FDR g-val
MYC_TARGETS_V2 0.7678 2.0505 0.0000 0.0185
MYC_TARGETS_V1 0.6698 1.9846 0.0019 0.0108
G2M_CHECKPOINT 0.6815 2.0272 0.0038 0.0108
E2F_TARGETS 0.6982 1.9809 0.0039 0.0082
GLYCOLYSIS 0.4068 1.6855 0.0145 0.0743
DNA_REPAIR 0.4579 1.7119 0.0214 0.0740
WNT_BETA_CATENIN_SIGNALING 0.4643 1.5358 0.0379 0.1080
ESTROGEN_RESPONSE_LATE 0.2963 1.4047 0.0418 0.1766
UNFOLDED_PROTEIN_RESPONSE 0.4209 1.5558 0.0461 0.1060

significantly enriched in the high-immunoscore group (see
Table 5).

Discussion

mo6A methylation is the most abundant RNA modification
of eukaryotes (33), which can affect RNA metabolism
through a variety of mechanisms and is associated with the
occurrence and progression of many diseases. Naturally,
the effect of m6A methylation on malignant tumors has
attracted extensive attention (6,29,34). Shen et al. (34)
found that the demethylase ALKBHS can participate in
the occurrence of acute myeloid leukemia by targeting the
prognostic-related oncogenes such as transforming acidic
coiled-coil containing protein 3 (TACC3). The regulatory
role of m6A regulators in the metastasis and drug resistance
of NSCLC has been studied (10-14,35); however, the
correlation between m6A and the TIME has not been
elucidated, and debate continues as to the effect of the total
methylation level on the long-term survival of patients and
its intrinsic mechanisms (14-16).

Immunotherapy has benefited numerous patients with
lung cancer in recent clinical practice. The detection
of protein PD-L1 level played an important role in
the systemic treatment of NSCLC (36), in this study,
we identified that NSCLC patients with elevated m6A
methylation abundance tended to have higher levels
of PD-L1 expression than patients with reduced m6A
abundance, which may provide relevant guidance for PD-
L1 therapy. However, many organs (skin, gastrointestinal
tract, etc.) may be slightly to moderately affected during
immunotherapy (37). Based on the analysis of the effect

© Annals of Translational Medicine. All rights reserved.

of m6A RNA methylation on the TIME and the potential
regulatory mechanisms, more clinical treatments are likely
to be exploited, and more promising immunotherapy
targets might be discovered, which could further improve
the long-term survival of NSCLC patients, and may also be
applied to the precision treatment of tumors to reduce the
incidence of adverse reactions.

In this study, the expression level and co-expression
pattern with mRNA/ncRNA of m6A regulators were
elucidated in NSCLC. The expression levels of METL16,
Zc3h13, and FTO in tumor tissues were lower than those
in normal lung tissues, while YTHDC2 expression was
not significant, and the expression of 16 other regulators
was significantly increased. Further, we attempted to
stratify NSCLC patients using an additional methodology.
Specifically, the WGCNA algorithm was used to screen
out RNAs co-expressed with m6A regulators, which were
used for clustering to eventually obtain 2 subtypes with
differential methylation levels. METTL14, RBM15,
YTHDC2, and YTHDEF3 were assembled in 1 mRNA co-
expression module, while WTAP, HNRNPC, LRPPRC,
HNRNPA2B1, RBMX, and ALKBHS5 were classified into
another module. METTL, and YTHDC?2 formed a co-
expression network with the ncRNAs. Miscellaneous and
ubiquitous ncRNAs are capable of acting as oncogenic
drivers and tumor suppressors in organisms. ncRNAs
modified by m6A can regulate cell proliferation and
migration. Conversely, some ncRNAs can affect the
expression of m6A regulators. Studies indicate that
METTLS3 can induce miRNA maturation by promoting the
m6A modification of primary miRNA (38), which in turn
can also interfere with METTL3 expression (39). Zhang
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Table 5 Important hallmarks enriched in high immunoscore group versus low immunoscore group Immune infiltration levels: high vs. low

HALLMARK-Name ES NES NOM p-val FDR g-val
ALLOGRAFT_REJECTION 0.8122 2.6791 0.0000 0.0000
COMPLEMENT 0.6919 2.6637 0.0000 0.0000
INFLAMMATORY_RESPONSE 0.7326 2.6573 0.0000 0.0000
INTERFERON_GAMMA_RESPONSE 0.8162 2.5633 0.0000 0.0000
IL6_JAK_STAT3_SIGNALING 0.7437 2.5249 0.0000 0.0000
KRAS_SIGNALING_UP 0.6180 2.5041 0.0000 0.0000
IL2_STAT5_SIGNALING 0.5761 2.4576 0.0000 0.0000
INTERFERON_ALPHA_RESPONSE 0.8049 2.2724 0.0000 0.0000
COAGULATION 0.5678 2.1274 0.0000 0.0003
APOPTOSIS 0.4463 1.9010 0.0000 0.0079
TNFA_SIGNALING_VIA_NFKB 0.5936 2.0888 0.0021 0.0006

et al. (40) verified that METTL3 can stimulate excessive
miR-25-3p maturation and is closely related to cigarette-
induced cancer transformation in patients with pancreatic
ductal adenocarcinoma. Wu et al. (41) found that m6A
modification can trigger the dissemination of colorectal
cancer cells by affecting the expression level of IncRNAs.
Based on the new perspective of the mRNA/ncRNA
integrated analysis, the m6A modification level can be better
assessed, and the role of m6A methylation in NSCLC can
also be thoroughly explored.

Based on the subsequent analysis of cluster subtypes,
some meaningful conclusions can be drawn. According to
the differences in OS, PD-L1, immunoscore, and immune
cell infiltration, we preliminarily inferred that the m6A
methylation level affected the long-term survival of patients
and the TIME in NSCLC. Many regulators (METTL14,
WTAP and KIAA1429, etc.) showed a consistent positive
correlation with PD-L1. At the clustering level of m6A
abundance, it was also concluded that NSCLC patients
in cluster 1 with higher methylation abundance tended to
have higher expression levels of PDLI1 than cluster 2. In
hepatocellular carcinoma (42), many regulators (METTLS3,
RBM15B and LRPPRC, etc.) were negatively correlated
with regulatory T cells (Tregs) and monocytes, and
positively correlated with activated CD4 T cells. Likewise,
in this study, patients in cluster 1 had increased activated
CD4 T cells, decreased Tregs and monocytes.

Unexpectedly, gender differences in methylation levels
were statistically significant. Relevant studies on this topic
are relatively scarce; however, studies have shown that

© Annals of Translational Medicine. All rights reserved.

sex hormones can stimulate the growth of tumors, while
estrogen receptors are differentially expressed among
genders in lung cancer and can affect the prognosis of
patients (43,44). Taking the results of the GSEA into
consideration, we speculated that the late pathway of
estrogen response might be associated with gender
differences in m6A methylation, and the hallmark was
significantly enriched in Cluster 1, which had a higher
proportion of male patients. Using this clustering method,
we observed the difference in the proportion of tumor
subtypes among the cluster subgroups. Notably, Cluster 1
was closely related to lymph node metastasis and more
advanced tumor stages, which are the clinicopathological
features of poor prognosis. In addition, some «readers»
such as HNRNPA2B1 and HNRNPC had been identified
with relatively consistent changes with m6A methylation
abundance, that is, patients with high expression of
HNRNPA2B1 or HNRNPC were significantly enriched
in cluster 1 with higher methylation abundance and poorer
prognosis than cluster 2. Therefore, the m6A methylation
abundance and the prognosis characteristics may be
evaluated through detecting the expression levels of the
above-mentioned regulators.

The prognostic risk model constructed by the integrated
co-expressed RNAs was used to stratify the NSCLC
patients in TCGA database to further investigate the
relationship between prognostic characteristics and
cluster subtypes. Cluster 1 with a shorter OS had a higher
risk score. An in-depth analysis of PD-L1 expression,
immunoscore, and immune cell infiltration among the

Ann Transl Med 2021;9(18):1465 | https://dx.doi.org/10.21037/atm-21-4248
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risk subgroups yielded highly consistent results with the
cluster subtypes. The PD-L1 expression in Cluster 1 and
the high-risk group was significantly increased, and patients
in Cluster 1 had lower immunoscores, which showed
a significant negative correlation with the risk scores.
Immune cells with a high infiltration level in Cluster 1
had a significant positive correlation with the risk score,
and immune cells with a high infiltration level in Cluster
2 had a significant negative correlation with the risk score.
Consequently, we inferred that the distinct OS among
cluster subtypes might be closely related to the transition
of the TIME. Studies have shown that lung cancer
patients with higher PD-L1 expression tend to have a poor
prognosis (45) and benefit more from immunotherapy (46).
Research on the correlation between PD-L1 and ubiquitous
m6A methylation in NSCLC patients might extend
understandings and result in more individualized treatment
strategies for immunotherapy. The mutual interference
between tumor cells and immune cells could trigger the
reprogramming of the lung microenvironment, which
may promote tumor progression and metastasis and affect
reactivity to immunotherapy (47,48). However, to date, the
effect of m6A methylation on the tumor microenvironment
of NSCLC has not been studied. Our preliminary research
showed that Cluster 2, which had a lower m6A methylation
level, had a higher immune infiltration score and longer
OS than Cluster 1, and hallmarks, such as complementary
and inflammatory responses, were significantly enriched.
Thus, m6A methylation may play an important role
in immunologically “cold” tumor transition and the
improvement of the long-term survival of NSCLC patients.
The immunologically transition may be implemented by
using “writers” and “erasers” as potential therapeutic targets
to reversibly change the m6A modification abundance.

To further explore the potential mechanisms of the
interaction among m6A methylation, immune infiltration,
and prognosis, we stratified the NSCLC patients in
TCGA database for a GSEA through these 3 patterns and
found that the hallmarks of the MYC targets, the G2M
checkpoint, E2F targets, DNA repair, glycolysis, and the
UPR were significantly enriched in patients with higher
m6A methylation levels, lower immune infiltration, and
higher risk scores. He et /. (29) found that if modified by
mo6A, the MYC gene interfered with the pathogenesis and
progression of tumors. The m6A modification regulated by
METTL3 and FTO acts on damaged DNA sites instantly,
prompting DNA damage responses (49). Yu ez a/. (50)
revealed that ALKBHS inhibited the progression of bladder

© Annals of Translational Medicine. All rights reserved.
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cancer and made it sensitive to cisplatin through the m6a-
dependent glycolysis pathway. The UPR pathway in tumor-
infiltrating immune cells may have immunosurveillance and
immunosuppressive functions (51).

In summary, this study systematically assessed the effect
of m6A RNA methylation on the TIME and prognosis of
NSCLC patients via an RNA integration analysis. Two
subtypes (Clusters 1 and 2) were identified by consensus
clustering for RNAs co-expressed with m6A regulators,
for which OS, the TIME, and the PD-L1 expression levels
differed significantly. Risk score, which was developed from
a prognostic risk model jointly constructed by co-expressed
RNAs, was an independent prognostic indicator of patients
with NSCLC. Subsequently, further investigations of the
correlation between clustering subtypes and prognosis
revealed that the TIME status of Cluster 1 (which had a
higher PD-L1 expression level, lower immunoscore, and
a higher level of infiltrating immune cells) was associated
with higher risk scores. Thus, we speculated that m6A
RNA methylation might lead to the poor prognosis of
NSCLC patients by inducing changes in the immune
microenvironment. MYC targets, the G2M checkpoint,
E2F targets, DNA repair, glycolysis, and UPR pathways are
potential regulatory mechanisms. It should be noted that
our study had several limitations. First, our extrapolation
was not validated externally due to a lack of sufficient
available data. Additionally, the regulatory mechanisms
of m6A methylation on the TIME warrant further
investigation.

Conclusions

In conclusion, our study illustrated the possible mechanisms
through which m6A methylation is related to the poor
prognosis of NSCLC patients via interference with the
TIME. As a reversible modification, m6A methylation
might occupy a position in tumor immunotherapy in the
future (e.g., by turning immunologically “cold” tumors
“hot”), which could further improve the prognosis of
patients.
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