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Background: Colposcopy is widely used to detect cervical cancer, but developing countries lack the 
experienced colposcopists necessary for accurate diagnosis. Artificial intelligence (AI) is being widely used in 
computer-aided diagnosis (CAD) systems. In this study, we developed and validated a CAD model based on 
deep learning to classify cervical lesions on colposcopy images.
Methods: Patient data, including clinical information, colposcopy images, and pathological results, were 
collected from Qilu Hospital. The study included 15,276 images from 7,530 patients. We performed two 
tasks in this study: normal cervix (NC) vs. low grade squamous intraepithelial lesion or worse (LSIL+) and 
high-grade squamous intraepithelial lesion (HSIL)− vs. HSIL+. The residual neural network (ResNet) 
probability was calculated for each patient to reflect the probability of lesions through a ResNet model. Next, 
a combination model was constructed by incorporating the ResNet probability and clinical features. We 
divided the dataset into a training set, validation set, and testing set at a ratio of 7:1:2. Finally, we randomly 
selected 300 patients from the testing set and compared the results with the diagnosis of a senior colposcopist 
and a junior colposcopist.
Results: The model that combines ResNet and clinical features performs better than ResNet alone. In the 
classification of NC and LSIL+, the area under the receiver operating characteristic curve (AUC), accuracy, 
sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 0.953, 0.886, 
0.932, 0.846, 0.838, and 0.936, respectively. In the classification of HSIL− and HSIL+, the AUC, accuracy, 
sensitivity, specificity, PPV, and NPV were 0.900, 0.807, 0.823, 0.800, 0.618, and 0.920, respectively. In the 
two classification tasks, the diagnostic performance of the model was determined to be comparable to that of 
the senior colposcopist and exhibited a stronger diagnostic performance than the junior colposcopist.
Conclusions: The CAD system for cervical lesion diagnosis based on deep learning performs well in the 
classification of cervical lesions and can provide an objective diagnostic basis for colposcopists.
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Introduction

Cervical cancer is the fourth female malignant tumor 
in incidence and mortality (1). In 2018, there were 
an estimated 570,000 new cases and 311,000 deaths  
worldwide (1). Human papillomavirus (HPV) infection 
is the main cause of cervical cancer (2). There are large 
differences in the incidence and mortality of cervical cancer 
worldwide. The incidence in low- and middle-income 
countries is 7–10 times higher than that in developed 
countries, partly due to the existence of large-scale screening 
and prevention services in various regions (1,3). Vaccination 
against HPV and secondary prevention, using screening 
tests to facilitate early detection and treatment of cervical 
intraepithelial neoplasia are effective strategies for cervical 
cancer prevention (4). According to the severity of cervical 
precancerous lesions, it can be divided into three types 
of cervical intraepithelial neoplasms (CIN I, CINII and 
CINIII). With the deepening of the understanding of HPV 
infection and cervical cancer, the three-level classification 
system could be replaced with a two-level classification 
system, applying the term CINI to low-grade squamous 
intraepithelial lesions (LSIL) and the term CINII, III to 
high-grade squamous intraepithelial lesions (HSIL) (5). To 
date, addressing barriers to HPV vaccination and cervical 
screening remains a major challenge for most countries, 
particularly low- and middle-income countries (LMICs) (6). 
The combination of cytology and HPV testing has become 
an option for screening programs (7). However, cervical 
cancer screening is still a problem with low diagnostic 
sensitivity and specificity, especially in LMICs. Some 
people are undertreated, and some people are overtreated 
(3,7). Colposcopy is used to evaluate abnormal or uncertain 
cervical cancer screening tests. Colposcopy helps to identify 
precancerous lesions and cervical cancer that can be  
treated (8). Some underdeveloped areas support screening of 
the cervix by visual inspection after application of acetic acid 
to highlight precancerous or cancerous abnormalities (5). 
Although colposcopy plays an important role in preventing 
cervical cancer, its accuracy and repeatability are limited. 
The accuracy problem is mainly caused by the inconsistency 
between the visible changes of cervical epithelium and 
the severity of precancerous lesions (9). The diagnostic 
performance of colposcopy largely depends on the 
subjective experience of the operator, which requires the 
operator to be able to identify and deal with changes in the 
acetic acid white epithelium according to standards (10). In 
LMICs, the lack of experienced colposcopists and the heavy 

workload of colposcopists exacerbate the inaccuracy of 
colposcopy diagnosis (10).

With the advancement of artificial intelligence (AI) 
technology, computer aided diagnosis (CAD) has become 
one of the leading research topics of medical imaging 
in recent decades. CAD has shown great potential in 
diagnosing malignant tumors such as breast cancer, 
colorectal cancer, and gastrointestinal tumors (11-14). 
In the meantime, there is an urgent need for computer-
aided detection and classification of images acquired with 
colposcopy to reduce the burden of colposcopists. Some 
impressive results have been achieved. Early work usually 
used feature extraction methods to extract discriminative 
features from colposcopy images and then machine learning 
methods to classify the images (15-18). In recent years, deep 
learning methods, especially deep convolutional neural 
networks (CNNs), have shown greater advantages over 
traditional machine learning methods and have achieved 
remarkable results in the development of various types of 
CAD systems (19). Miyagi et al. (20) built a CNN with 
11 layers by using 310 images. This CNN showed a high 
accuracy of 82.3%, sensitivity of 80%, and specificity of 
88.2% for the classification of LSIL and HSIL+. Zhang  
et al.  (21) proposed a CAD method for automatic 
classification of HSIL or higher-level lesions in colposcopic 
images based on transfer learning and pretrained densely 
connected CNN. This method achieved an accuracy 
of 73.08% over 600 test images. Cho et al. (22) applied 
deep learning methods to automatically classify cervical 
neoplasms on colposcopic photographs based on pretrained 
CNN and achieved an AUC of 0.781 for the system. Li  
et al. (23) proposed a deep learning-based CAD system for 
LSIL+ identification. They collected colposcopic images 
captured at different times during an acetic acid test and 
proposed a novel graph convolutional network to fuse 
the features extracted from these time-lapsed colposcopic 
images. They achieved a classification accuracy of 78.33%, 
which was comparable to that of experienced colposcopists.

Inspired by the above works, we proposed a deep 
learning-based CAD system to classify colposcopic images. 
We collected data from more than 7,000 patients, which is 
more than most existing literature. In addition, we collected 
detailed clinical features and combined these features with 
deep learning to build models. To verify the performance of 
our proposed CAD system, we compared the CAD with the 
diagnosis results of different levels of colposcopists.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
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Methods

In this section, we introduce the main methods involved in 
the proposed CAD system. Figure 1 shows a flowchart of 
the study. Using certain inclusion and exclusion criteria, we 
collected a dataset containing 7,530 patients. Two models 
were constructed to distinguish NC vs. LSIL+ (LSIL, 
HSIL, and cancer), and HSIL− (Normal and LSIL) vs. 
HSIL+ (HSIL and cancer), respectively.

Patients

This retrospective study collected information and 
colposcopy images of patients who underwent colposcopies 
at Qilu Hospital of Shandong University from May 2018 
to August 2020. All participants had clinical information 
and image information. The retrospective study was 
performed according to the Declaration of Helsinki (as 
revised in 2013). The study was approved by the Ethical 
Committee of Qilu Hospital in Jinan, Shandong Province, 
China (No. 2019095) and individual consent for this 

retrospective analysis was waived. All images in the study 
were taken with a Leisegang 3ML LED colposcopy camera 
(Leisegang, Germany) with a resolution of 480×320 pixels 
and stored in JPEG format. Patients who met the following 
criteria were excluded: (I) poor or unclear image quality 
of the colposcopy, (II) lack of cytology and HPV results, 
(III) presence of cervical malformations (such as double 
cervix), (IV) presence of cervical polyps or cervical benign 
neoplasms (such as uterine fibroids, inflammatory fibrous 
hyperplasia), (V) difficult cervical exposure, (VI) cervical 
surgery, (VII) visual LSIL or HSIL but no pathological 
results. Except for patients whose colposcopists believe that 
the colposcopy is normal and do not need to take a biopsy, 
the remaining patients have pathology reports. The dataset 
contains 7,530 patients (ages from 15 to 85 years old), which 
can be classified as normal (n=3,966), LSIL (n=1,411), HSIL 
(n=1,966) and cancer (n=187). A total of 15,276 colposcopy 
images from 7,530 patients were included in this study, 
including normal/benign (n=7,433), LSIL (n=2,916), HSIL 
(n=4,458), and cancer (n=469) images. We randomly divided 
the dataset into a training set, validation set, and testing set 
at a ratio of 7:1:2. Table 1 shows the detailed dataset used in 
this study.

lnclusion
∙ Clinical features.
∙ Colposcopy images
Exclusion:
∙ lmage quality is poor or unclear
∙ Cervical malformations
∙ History of cervical surgery

N=7530 patients

N=5271 
Training set

ResNet50

NC vs. LSIL+
Or
HSIL− vs. HSIL+

Trained
models

The architecture of CAD system

Dataset

Clinical features

Model development and validation

N=5271 
Training set

N=753 
Training set

N=1506
Training set

N=753 
Training set

N=1506
Training set

Selected the
best model

Compared with
colposcopists

Validation

Age        Sex       TCT       HPV    Gravidity  Parity Contraception

A B

C

Figure 1 Flowchart of the study. (A) Dataset; (B) model development and validation; (C) the architecture of CAD system. CAD, computer 
aided diagnosis.
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Preprocessing

Since the original colposcopy image has high resolution 
and contains a large amount of irrelevant content, sending 
it directly to the computer will cause too much calculation 
and reduce the model's performance. Therefore, we asked a 
junior colposcopist to outline the region of interest (ROI), 
which is the suspicious lesion area. Figure 2 shows the ROI 
contours of different grades. Second, data augmentation 
methods are used to increase the volume of training 
data, including flip/mirror input images horizontally and 

vertically with a probability of 0.5, rotation by −10 to +10 
degrees, and shear by −4 to +4 degrees. Data augmentation 
can generate more training samples to enhance the 
robustness of the model and reduce overfitting. Finally, we 
resized all images to 224×224 pixels to fit the input size of 
the CNN.

CNN architecture

We selected ResNet (24) as the main structure of our CAD 

Table 1 The detailed dataset used in this study

Category
Training set Validation set Testing set

Patients Images Patients Images Patients Images

NC 2,760 5,144 394 744 812 1,545

LSIL 998 2,058 143 290 270 568

HSIL 1,378 3,115 204 463 384 880

Cancer 135 333 12 34 40 102

Total 5,271 10,650 753 1,531 1,506 3,095

NC, normal cervix; LSIL, low-grade squamous intraepithelial lesions; HSIL, high-grade squamous intraepithelial lesions.

2018-05-24 17:45:57, Z:7.5X 2020-07-13 15:11:56, Z:7.5X 2018-10-29 09:55:46, Z:7.5X 2019-07-01 10:17:10, Z:7.5X

2018-10-10 15:31:04, Z:7.5X

2019-05-23 15:48:47, Z:7.5X2019-10-21 10:00:31, Z:7.5X

2019-11-07 17:18:38, Z:7.5X2018-05-21 15:45:52, Z:7.5X

2019-07-08 13:58:21, Z:7.5X2018-07-09 09:05:43, Z:7.5X

2020-04-14 08:51:04, Z:7.5X

Figure 2 ROI contours of different grades outlined by colposcopist. Red contours denote the ROIs. From left to right: cancer, HSIL, LSIL, 
and NC. ROI, region of interest; HSIL, high-grade squamous intraepithelial lesions; LSIL, low-grade squamous intraepithelial lesions; NC, 
normal cervix.
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system. Compared to plane CNN architectures, ResNet 
can effectively avoid the problems of vanishing gradients 
and exploding gradients by introducing residual blocks. 
Specifically, skip connections are added between some 
layers, which is the core idea of residual blocks. With skip 
connections, the information of the convolutional layer 
output and the input is fused; thus, the gradient can flow 
through this shortcut path to solve the vanishing gradient 
problem. In addition, these connections can act as identity 
functions to ensure that the higher layer to performs at 
least as well as the lower layer and not worse. We applied 
ResNet50 to construct our CAD system, which contains 50 
convolutional layers.

ResNet models were performed on the workstation of an 
Ubuntu20.4 64-bit operating system with 256 GB memory 
and an NVIDIA GeForce Titan RTX GPU. The input size 
was 224×224. We used a batch size of 100 and trained 300 
epochs. The optimizer used was stochastic gradient descent 
(SGD) with an initial learning rate of 0.1 and a momentum 
of 0.9. After every 50 epochs of training, the learning 
rate was reduced by 50%. After each training epoch, we 
calculated the performance of the model on the validation 
set. Finally, we choose the model with the highest accuracy 
on the validation set as the final model to evaluate the 
model in the test set.

Interpretability of deep learning model

Among various deep learning based applications related 
to medical imaging, it is essential to investigate the 
interpretability of the deep learning model. One of the most 
prominent methods to provide an interpretable view of a 
deep learning model is gradient weighted class Activation 
mapping (Grad-CAM) (25). Grad-CAM can effectively 
visualize the region of interest, which can produce a 
coarse heat map that highlights the contribution to the 
classification task.

Development and validation of combination model

Multivariable analysis was used to combine the ResNet50 
probability with clinical features through a multivariable 
logistic regression model. The clinical features involved 
age, cytology, HPV, gravidity, parity, and contraception. 
The output probability of ResNet50 was combined with 
these clinical features, and then a logistic regression model 

was constructed to output the final probability.

Comparison with colposcopists

To verify whether our CAD system can improve the level 
of colposcopists who do not have extensive experience, we 
randomly selected 300 samples from the testing set and 
asked a junior colposcopist to make a diagnosis. These 
diagnoses of the CAD system, the junior colposcopist, and 
the senior colposcopist were compared.

Performance metrics and statistical analysis

We used the measures of accuracy, sensitivity, specificity, 
positive predictive value (PPV) and negative predictive value 
(NPV) to evaluate the binary predictors. We also plotted 
the receiver operating characteristic (ROC) curve to assess 
the performance of the CAD system over a range of possible 
cutpoints. Then, the AUCs were evaluated. In addition, the 
diagnostic performance was demonstrated using confusion 
matrix, which records the correct and incorrect predictions 
on each class in the form of a matrix.

Statistical analysis was performed using R language 
version 3.6.1 (R Foundation for Statistical Computing, 
Vienna, Austria) or MedCalc Statistical Software version 
19.4.1 (MedCalc Software Ltd, Ostend, Belgium). 
Continuous variables were compared using unpaired t-test 
or Wilcoxon rank-sum test, while categorical variables 
were compared using Chi-squared test, as appropriate. The 
Delong test was used to compare different AUCs. A P value 
<0.05 was considered statistically significant.

Results

Patient demographics

In the classification of NC vs. LSIL+, there were 2,760 NC 
samples and 2,511 LSIL+ samples in the training set. There 
were 812 NC samples and 694 LSIL+ samples in the test 
set. The clinical information of the patient is displayed in 
Table 2. In the classification of HSIL− vs. HSIL+, there 
were 3,758 HSIL− samples and 1,513 HSIL+ samples in 
the training set. There were 1,082 HSIL− samples and  
424 HSIL+ samples in the test set. The clinical information 
of the patient is displayed in Table 3. There was no 
statistically significant difference between the training 
set and testing set. Since only cytology and HPV have 
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Table 2 Patients and clinical feature of NC vs. LSIL+

Clinical features
Training set Testing set

NC (n=2,760) LSIL+ (n=2,511) P NC (n=812) LSIL+ (n=694) P

Age *** 0.0008

Mean 41.2 39.5 41.2 39.5

Range 16–75 15–79 18–77 18–79

Cytology *** ***

Negative 2,411 1,375 697 383

Positive 349 1,136 115 311

HPV *** ***

Negative 321 60 91 13

Positive 2,439 2,451 721 681

Gravidity 0.008 0.350

≤2 1,304 1,094 373 302

>2 1,456 1,417 439 392

Parity 0.799 0.818

≤2 2,626 2,385 770 656

>2 134 126 42 38

Contraception 0.539 0.228

Condom 906 845 259 242

No condom 1,854 1,666 553 452

***, P<0.001. NC, normal cervix; LSIL, low-grade squamous intraepithelial lesions; HPV, human papillomavirus.

significant differences in both classifications, we selected 
these two features as the final clinical features for modeling.

Prediction of patients between NC and LSIL+

In the classification of NC vs. LSIL+, the evaluation 
metrics of the testing set are listed in Table 4. The AUC, 
accuracy, sensitivity, specificity, PPV and NPV were 0.692, 
0.681, 0.644, 0.713, 0.657, and 0.710, respectively, for 
the model based on clinical features only. When modeled 
with ResNet50, the AUC, accuracy, sensitivity, specificity, 
PPV and NPV were 0.945, 0.882, 0.901, 0.867, 0.853 and 
0.910, respectively. The AUC of ResNet50 was significantly 
higher than the AUC of the clinical based model (P<0.001). 
When using clinical factors and ResNet50 for joint 
modeling, the AUC, accuracy, sensitivity, specificity, PPV 
and NPV were 0.953, 0.886, 0.932, 0.846, 0.838, and 0.936, 
respectively. Compared with ResNet50, the joint model had 

a higher AUC value (P<0.001). The ROCs and confusion 
matrixes are shown in Figure 3. The confusion matrix is a 
2-dimensional array comparing predicted category labels 
to the true label. The columns represent the predicted 
category labels, and the rows represent the true labels, 
which can provide an insight into the errors being made by 
the classifier. For the joint model, the true positive (TP) is 
647, which is higher than the 625 of the ResNet model and 
the 447 of the clinical model, but the true negative (TN) is 
slightly lower than that of the ResNet.

Prediction of patients between HSIL− and HSIL+

In the classification of HSIL− vs. HSIL+, the evaluation 
metrics of the testing set are listed in Table 5. In the testing 
set, the AUC, accuracy, sensitivity, specificity, PPV and 
NPV were 0.700, 0.675, 0.724, 0.655, 0.451, and 0.858, 
respectively, of the model based on clinical features only. 
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Table 3 Patients and clinical feature of HSIL− vs. HSIL+

Clinical features
Training set Testing set

HSIL− (n=3,758) HSIL+ (n=1,513) P HSIL− (n=1,082) HSIL+ (n=424) P

Age 0.014 0.331

Mean 40.6 39.9 40.2 40.8

Range 16–75 15–79 18–77 21–79

Cytology *** ***

Negative 3,079 707 878 202

Positive 679 806 204 222

HPV *** ***

Negative 357 24 101 3

Positive 3,401 1,489 981 421

Gravidity 0.001 0.038

≤2 1,764 634 503 172

>2 1,994 879 579 252

Parity 0.362 0.162

≤2 3,579 1,432 1,030 396

>2 179 81 52 28

Contraception 0.383 0.504

Condom 1,262 489 366 135

No condom 2,496 1,024 716 289

***, P<0.001. HSIL, high-grade squamous intraepithelial lesions; HPV, human papillomavirus.

Table 4 The classification results of NC vs. LSIL+

Model AUC Accuracy Sensitivity Specificity PPV NPV

Clinical only 0.692  
(0.668–0.715)

0.681  
(0.657–0.705)

0.644  
(0.607–0.680)

0.713  
(0.681–0.744)

0.657  
(0.620–0.693)

0.710  
(0.668–0.732)

CNN only 0.945  
(0.933–0.956)

0.882  
(0.865–0.898)

0.901  
(0.876–0.922)

0.867  
(0.841–0.890)

0.853  
(0.825–0.878)

0.910  
(0.888–0.930)

CNN + clinical 0.953  
(0.941–0.963)

0.886  
(0.869–0.901)

0.932  
(0.911–0.950)

0.846  
(0.819–0.870)

0.838  
(0.810–0.863)

0.936  
(0.916– 0.953)

Data were presented with 95% CIs. NC, normal cervix; LSIL, low-grade squamous intraepithelial lesions; AUC, receiver operating 
characteristic curve; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval; CNN, convolutional neural 
network.

When modeled with ResNet50, the AUC, accuracy, 
sensitivity, specificity, PPV and NPV were 0.887, 0.797, 
0.802, 0.796, 0.606 and 0.911, respectively. The AUC of 
ResNet50 was significantly higher than the AUC of the 
clinical based model (P<0.001). When using clinical factors 
and ResNet50 for joint modeling, the AUC, accuracy, 

sensitivity, specificity, NPV and PPV were 0.900, 0.807, 
0.823, 0.800, 0.618, and 0.920, respectively. Compared with 
ResNet50, the joint model had better performance and a 
higher AUC value (P<0.001). The ROCs and confusion 
matrixes are shown in Figure 4. For the joint model, the TP 
is 349 and the TN is 866, which are both higher than that 
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of the clinical and ResNet models.
Representative Grad-CAM samples of different grades 

of colposcopy images are shown in Figure 5. Deep learning 
locates the most core lesion area, which proves the 
effectiveness of our proposed model.

Comparison with colposcopists

To evaluate the performance of our CAD, we randomly 
selected 300 samples from the testing set and asked a junior 
colposcopist and a senior colposcopist to make diagnoses. 
The related diagnosis results are listed in Table 6. For the 

Figure 3 Classification results of NC vs. LSIL+. (A) ROC curves; (B) confusion matrix of the model based on clinical features; (C) confusion 
matrix of the model based on ResNet50; (D) confusion matrix of the model based on the combination of ResNet50 and clinical features. 
NC, normal cervix; LSIL, low-grade squamous intraepithelial lesions; ROC, receiver operating characteristic; ResNet, residual neural 
network.

Table 5 The classification results of HSIL− vs. HSIL+

Model AUC Accuracy Sensitivity Specificity PPV NPV

Clinical only 0.700  
(0.676–0.723)

0.675  
(0.650–0.698)

0.724  
(0.679–0.766)

0.655  
(0.626–0.684)

0.451  
(0.414–0.490)

0.858  
(0.833–0.881)

CNN only 0.887  
(0.870–0.903)

0.797  
(0.776–0.818)

0.802  
(0.761–0.839)

0.796  
(0.770–0.819)

0.606  
(0.564–0.647)

0.911  
(0.891–0.928)

CNN + clinical 0.900  
(0.884–0.915)

0.807  
(0.786–0.826)

0.823  
(0.783–0.858)

0.800  
(0.775–0.823)

0.618  
(0.576–0.658)

0.920  
(0.901–0.937)

Data were presented with 95% CIs. HSIL, high-grade squamous intraepithelial lesions; AUC, receiver operating characteristic curve; PPV, 
positive predictive value; NPV, negative predictive value; CI, confidence interval; CNN, convolutional neural network.
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Figure 4 Classification results of HSIL− vs. HSIL+. (A) ROC curves; (B) confusion matrix of the model based on clinical features; (C) 
confusion matrix of the model based on ResNet50; (D) confusion matrix of the model based on the combination of ResNet50 and clinical 
features. HSIL, high-grade squamous intraepithelial lesions; ROC, receiver operating characteristic; ResNet, residual neural network.

Figure 5 Grad-CAM maps. Each example shows the ROI and corresponding CAD map, and the red region represents a larger contribution 
for classification. Grad-CAM, gradient weighted class Activation mapping; ROI, region of interest; CAD, computer aided diagnosis.
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diagnosis of NC and LSIL+, the performance of the CAD 
system is comparable to that of the senior colposcopist, 
and it can significantly improve the diagnostic level of the 
junior colposcopist. For the diagnosis of HSIL− and LSIL+, 
although the accuracy, specificity, and PPV of our CAD 
system are lower than those of the senior colposcopist, the 
sensitivity and NPV are much higher than those of the 
senior colposcopist, which we think is a great advantage in 
clinical applications. It is worth noting that the ROIs were 
outlined by a junior colposcopist. Therefore, with the help 
of our CAD system, the diagnostic performance of the 
junior colposcopist can be significantly improved.

Discussion

HPV screening, cytology, and colposcopy are the three 
strategies recommended by the WHO for cervical cancer 
screening (5). Although cytology has greatly reduced 
the incidence of cervical cancer, we must recognize the 
limitations of cytology in cervical cancer screening. The 
repeatability of cytology is poor, the sensitivity is between 
43% and 96%, and the development of cytology requires 
a large number of cytopathologists (26). HPV has become 
a promising screening method due to its high negative 
predictive value and sensitivity. However, the false positive 
rate of HPV screening increases patients' subsequent 
unnecessary treatment (10,27). However, combined cytology 
and HPV screening is still the most recommended screening 
method at present. Obtaining a biopsy through colposcopy 

followed by histological analysis is the gold standard for 
detecting cervical disease. Although colposcopy is very 
successful in high-income countries, its application requires 
good organization, expensive equipment, and well-trained 
personnel, including colposcopists and pathologists (8). 
In view of the high incidence of cervical cancer and the 
importance of timely diagnosis and treatment, scholars are 
very interested in developing accurate and cost-effective 
screening and diagnosis methods. In our study, cytology and 
HPV are useful clinical factors. Therefore, we compared 
clinical features (cytology and HPV), ResNet, and the 
combination of clinical feature results with ResNet and 
finally evaluated their performance.

In our study, the accuracy of using clinical feature 
(cytology and HPV) data to identify LSIL+ and HSIL+ 
was low. This is mainly because the combined screening 
of cytology and HPV increases the false positive rate of 
diagnosis. Atypical squamous cells of unknown significance 
or higher (ASCUS+) or HPV positive referral colposcopy 
increased the workload of colposcopy, especially HPV 
positivity. A considerable proportion of HPV infections 
are transient infections. HPV combined with cytology 
screening reduces the false positive rate to a certain extent. 
However, in clinical applications, to reduce the missed 
diagnosis rate, the problem of a high false positive rate still 
exists. ResNet has shown good performance in our study. 
The combination of clinical feature results with ResNet 
performed better than ResNet alone. This result shows that 
the significance of colposcopy images in diagnosing cervical 

Table 6 Comparison with colposcopists

Task Model Accuracy Sensitivity Specificity PPV NPV

NC vs. LSIL+ CAD 0.883  
(0.841–0.917)

0.954  
(0.904–0.983)

0.827  
(0.762–0.881)

0.812  
(0.742–0.871)

0.959  
(0.912–0.985)

Senior 0.857  
(0.812–0.894)

0.924  
(0.865–0.963)

0.803  
(0.735–0.861)

0.787  
(0.714–0.849)

0.931  
(0.877–0.966)

Junior 0.750  
(0.697–0.798)

0.886  
(0.819–0.935)

0.642  
(0.565–0.715)

0.661  
(0.586–0.730)

0.878  
(0.807–0.930)

HSIL– vs. HSIL+ CAD 0.810  
(0.761–0.853)

0.828  
(0.732–0.900)

0.803  
(0.743–0.854)

0.632  
(0.536–0.720)

0.919  
(0.870–0.954)

Senior 0.833  
(0.786–0.874)

0.448  
(0.341–0.559)

0.991  
(0.966–0.999)

0.951  
(0.835–0.994)

0.814  
(0.762–0.860)

Junior 0.757  
(0.704–0.804)

0.195  
(0.118– 0.294)

0.986  
(0.959–0.997)

0.850  
(0.621–0.968)

0.750  
(0.695–0.799)

Data were presented with 95% CIs. CAD, computer aided diagnosis; NC, normal cervix; LSIL, low-grade squamous intraepithelial lesions; 
HSIL, high-grade squamous intraepithelial lesions; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.
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lesions is much greater than that of combined cytology 
and HPV screening. Our CAD model is more suitable for 
underdeveloped countries that cannot achieve combined 
cytology and HPV screening.

LSIL is considered to be a transient expression of HPV 
infection. Most of the LSIL will regress spontaneously (26). 
HSIL may develop into cervical cancer and requires 
further treatment (5). Based on this, we carried out two 
classification modes, NC vs. LSIL+ and HSIL− vs. HSIL+. 
We developed a CAD system based on deep learning for 
colposcopy images classification. Although this is not the 
first study on AI in the field of colposcopy, the performance 
of the diagnosis system we developed is better than previous 
studies. First, we asked a junior colposcopist to mark the 
cervical transformation area and the suspicious cervical 
lesion area, and used ResNet to diagnose the severity of the 
lesion. The accuracy, sensitivity, and specificity of ResNet 
are all approximately 0.8. Then, we added cytology and 
HPV to ResNet to build a joint model, and achieved better 
performance than ResNet alone.

Acetate whitening, vascular changes, lesion location, and 
lesion size are the most important features that distinguish 
LSIL from HSIL (8). However, these tiny features are 
not enough for the system to recognize. Therefore, as 
far as our system is concerned, it is still necessary to 
repeatedly correct and train to enhance the performance 
of the system. Nevertheless, the performance of ResNet 
in diagnosing LSIL+ and HSIL+ is still higher than that 
of colposcopists. We randomly selected 300 patients from 
the testing set and compared the results with the diagnosis 
of a senior colposcopist and a junior colposcopist. The 
diagnostic performance of the model is comparable to that 
of the senior colposcopist, and has a greater performance 
than the diagnostic level of the junior colposcopist. It is 
true that our proposed model can improve the diagnostic 
ability of colposcopists, enhance the judgment ability of 
colposcopists, and finally compensate for the lack of junior 
colposcopists.

Despite the encouraging performance of CAD in 
colposcopy imaging, there are still some challenges and 
obstacles that need to be resolved. For patients with 
cervical canal lesions and Type 3 transformation zone, 
the colposcopy doctor still needs to combine the patient's 
personal medical history to conduct a comprehensive 
assessment of the patient and make a final diagnosis. We 
analyzed patients ≥50 years of age, and the CAD system 
we developed had a lower sensitivity in both classifications 
(Tables S1 and S2). This is mainly because the group 

that age ≥50 years old has a higher proportion of type 
3 transformation zone (62.7% vs. 19.1%), and is more 
likely to develop cervical canal lesions. Besides, CAD is 
applicable to the examination of a large range of people. 
In our study, after a junior colposcopist marked the cervix 
after acetic acid, the CAD model was applied to evaluate 
cervical lesions. The main purpose of this CAD is still to 
help colposcopists improve their diagnostic capabilities, not 
to replace them. The diagnosis result of CAD is regarded as 
a “second set of eyes” of human colposcopists, and human 
colposcopists are responsible for the final diagnosis result.

According to a recent report that made by the Australian 
Institute of Health and Welfare, the PPV of diagnose 
HSIL+ through colposcopies is 0.578 (28). The PPV of 
our CAD system is 0.618, which proves its potential for 
large-scale application. However, the relatively low PPV 
may have the problem of overtreatment. Positive patients 
diagnosed with CAD needed to be referred to colposcopists 
to finally determine whether a biopsy is needed. This is also 
the reason why CAD can only help colposcopists reduce 
work pressure and improve accuracy but cannot completely 
replace them. If we need to increase PPV to reduce 
overtreatment, we need higher quality colposcopy images 
and more advanced algorithms.

There are several limitations to this study. First, we 
only collected samples from a single medical center, which 
might introduce bias due to the lack of different types 
of colposcopy equipment. We will collect samples from 
different centers to enhance the diversity of samples. In 
addition, we will also establish a colposcope cloud platform 
based on our model to provide medical assistance to areas 
with resource shortages and narrow the diagnosis and 
treatment gap. Second, to obtain clear images, we excluded 
patients with cervical polyps, cervical benign neoplasms, 
cervical abnormalities, and cervical incomplete exposure, 
which will limit the application of the CAD model in 
actual clinical practice. Third, this is a retrospective study. 
We need to carry out prospective studies to validate the 
performance of our model. Fourth, the clinical features we 
included in the study were insufficient, and smoking history, 
age at first sex, and number of sexual partners should also be 
taken into consideration.

Conclusions

In this research, we developed a deep learning-based CAD 
system that combined colposcopy images and clinical 
features for colposcopy image classification. The proposed 
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CAD system shows performance comparable to that of the 
senior colposcopist in colposcopy image classification. The 
CAD system can provide an objective diagnostic basis for 
colposcopists and has potential clinical application value. 
In the future, we will collect multicenter data and conduct 
more extensive research to apply this CAD model to clinical 
practice.
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Table S1 The classification results at different age groups (NC vs. LSIL+)

Model AUC Accuracy Sensitivity Specificity PPV NPV

Clinical only 0.692 (0.668–0.715) 0.681 (0.657–0.705) 0.644 (0.607–0.680) 0.713 (0.681–0.744) 0.657 (0.620–0.693) 0.710 (0.668–0.732)

Age <50 0. 685 (0.658–0.711) 0.674 (0.646 –0.700) 0.623 (0.582–0.662) 0.719 (0.683–0.754) 0.668 (0.626–0.708) 0.678 (0.641–0.713)

Age ≥50 0.728 (0.673–0.779) 0.714 (0.658–0.765) 0.750 (0.661–0.826) 0.690 (0.615–0.757) 0.617 (0.531–0.698) 0.805 (0.733–0.866)

CNN only 0.945 (0.933–0.956) 0.882 (0.865–0.898) 0.901 (0.876–0.922) 0.867 (0.841–0.890) 0.853 (0.825–0.878) 0.910 (0.888–0.930)

Age <50 0.942 (0.928–0.955) 0.877 (0.858–0.895) 0.907 (0.880–0.930) 0.851 (0.821–0.878) 0.847 (0.816–0.874) 0.910 (0.884–0.931)

Ag ≥50 0.955 (0.924–0.976) 0.903 (0.863–0.935) 0.871 (0.796–0.926) 0.925 (0.876–0.960) 0.886 (0.813–0.938) 0.915 (0.863–0.952)

CNN + clinical 0.953 (0.941–0.963) 0.886 (0.869–0.901) 0.932 (0.911–0.950) 0.846 (0.819–0.870) 0.838 (0.810–0.863) 0.936 (0.916–0.953)

Age <50 0.951 (0.937–0.962) 0.882 (0.862–0.899) 0.938 (0.915–0.956) 0.831 (0.799–0.859) 0.833 (0.803–0.862) 0.936 (0.913–0.955)

Age ≥50 0.962 (0.932–0.981) 0.903 (0.863–0.935) 0.905 (0.837–0.952) 0.902 (0.848–0.942) 0.861 (0.786–0.917) 0.935 (0.886–0.967)

Data were presented with 95% CIs. NC, normal cervix; LSIL, low-grade squamous intraepithelial lesions; AUC, receiver operating characteristic curve; PPV, 
positive predictive value; NPV, negative predictive value; CNN, convolutional neural network; CI, confidence interval.

Supplementary

Table S2 The classification results at different age groups (HSIL- vs. HSIL+)

Model AUC Accuracy Sensitivity Specificity PPV NPV

Clinical only 0.700 (0.676–0.723) 0.675 (0.650–0.698) 0.724 (0.679–0.766) 0.655 (0.626–0.684) 0.451 (0.414–0.490) 0.858 (0.833–0.881)

Age <50 0.691 (0.664–0.717) 0.671 (0.644–0.697) 0.705 (0.653–0.753) 0.658 (0.625–0.689) 0.443 (0.401–0.486) 0.852 (0.823–0.878)

Age ≥50 0.735 (0.680–0.785) 0.690 (0.632–0.742) 0.800 (0.699–0.879) 0.644 (0.574–0.709) 0.482 (0.397–0.568) 0.886 (0.824–0.932)

CNN only 0.887 (0.870–0.903) 0.797 (0.776–0.818) 0.802 (0.761–0.839) 0.796 (0.770–0.819) 0.606 (0.564–0.647) 0.911 (0.891–0.928)

Age <50 0.878 (0.859–0.896) 0.783 (0.759–0.806) 0.814 (0.769–0.854) 0.771 (0.742–0.798) 0.579 (0.533–0.623) 0.915 (0.892–0.934)

Age ≥50 0.928 (0.892–0.955) 0.859 (0.813–0.897) 0.753 (0.647–0.840) 0.902 (0.853–0.939) 0.762 (0.657–0.848) 0.898 (0.848–0.936)

CNN + clinical 0.900 (0.884–0.915) 0.807 (0.786–0.826) 0.823 (0.783–0.858) 0.800 (0.775–0.823) 0.618 (0.576–0.658) 0.920 (0.901–0.937)

Age <50 0.892 (0.873–0.909) 0.791 (0.767–0.814) 0.826 (0.781–0.865) 0.778 (0.749–0.805) 0.589 (0.544–0.634) 0.920 (0.899–0.939)

Age ≥50 0.937 (0.903–0.962) 0.872 (0.828–0.909) 0.812 (0.712–0.888) 0.898 (0.848–0.935) 0.767 (0.666–0.849) 0.920 (0.873–0.954)

Data were presented with 95% CIs. HSIL, high-grade squamous intraepithelial lesions; AUC, receiver operating characteristic curve; PPV, positive predictive 
value; NPV, negative predictive value; CNN, convolutional neural network; CI, confidence interval.
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