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The use of explainable artificial intelligence to explore types of 
fenestral otosclerosis misdiagnosed when using temporal bone 
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Background: The purpose of this study was to explore the common characteristics of fenestral otosclerosis 
(OS) which are misdiagnosed, and develop a deep learning model for the diagnosis of fenestral OS based on 
temporal bone high-resolution computed tomography scans. 
Methods: We conducted a study to explicitly analyze the clinical performance of otolaryngologists in 
diagnosing fenestral OS and developed an explainable deep learning model using 134,574 temporal bone 
high-resolution computed tomography (HRCT) slices collected from 1,294 patients for the automatic 
diagnosis of fenestral OS. We prospectively created an external test set with 31,774 CT slices from 144 
patients, which contained 86 fenestral OS ears and 202 normal ears and used it to evaluate the performance 
of our otosclerosis-Logical Neural Network (LNN) model to assess its potential clinical utility. In addition, 
we compared the diagnostic acumen of seven otolaryngologists with the otosclerosis-LNN approach in the 
clinical test set, which was mixed with 78 fenestral OS and 62 normal ears. Finally, to evaluate the assisting 
value of the model, the seven participants were again invited to classify all cases in the clinical test set after 
referring to the diagnostic results of the model, to which they were blinded. 
Results: The diagnostic performance of otologists was not satisfactory, and those CT samples which were 
misdiagnosed had similar characteristics. Based on this finding, we defined three subtypes of fenestral OS 
lesions that are suitable for clinical diagnosis guidance: “focal”, “transitional”, and “typical” fenestral OS. 
The most encouraging result is that the model achieved an area under the curve (AUC) of 99.5% (per-ear-
sensitivity of 96.4%, per-ear-specificity of 98.9%) on the prospective unknown external test. Furthermore, 
we used this model to assist otologists and observed a consistent and significant improvement in diagnostic 
performance, especially for the newly defined focal and transitional fenestral OS, which led to the initial high 
misdiagnosis rate. 
Conclusions: Our findings of the fine-grained classification of fenestral OS could have implications for 
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Introduction

According to the World Health Organization (WHO), over 
5% of the world’s population (about 466 million people) 
have disabling hearing loss and it is estimated that by 
2050 over 900 million will have disabling hearing loss (1).  
Hearing loss has a variety of causes including genetic 
causes, complications at birth, infectious disease, chronic 
ear infections, the use of particular drugs, exposure to 
excessive noise, and aging. Any disease that can affect sound 
transmission may lead to hearing loss, of which otosclerosis 
(OS) is one that is both easy to be ignored and leads to 
progressive hearing loss.

Known also as otospongiosis, OS is an inner ear disease 
characterized by primary cavernous degeneration of the 
labyrinthine cysts. Clinical OS is not uncommon and occurs 
most commonly among Caucasians with an incidence of 
0.3–1.2%, followed by Asians around 0.006–0.5% (2-4). 
Histologically, the incidence of OS is about 2.5%, which is 
much higher than the clinical incidence (5-10). The most 
frequent type of otosclerosis was fenestral otosclerosis, 
accounting for 91.8% of otosclerosis. It can be inferred that 
the incidence of fenestral otosclerosis is about 0.005% to 
0.5% in clinic.

OS can be divided into stapedial OS, cochlear OS, and 
mixed OS based on the different locations and scope of the 
lesions. Cochlear OS is the terminal form of OS, which is 
not difficult to diagnose because of its typical clinical and 
CT manifestations, and the treatment is limited to the 
wearing of hearing aids or cochlear implantation (11). OS 
first effects and is most commonly found in the anterior 
area of the vestibular window, which causes stapedial OS, 
resulting in conductive hearing loss due to fixation of the 
stapes footplate. In addition to the diagnosis of OS based 
on clinical symptoms, signs, and audiological examination, 
the diagnostic value of high-resolution CT has also been 
widely recognized. With a positive diagnosing rate of 74% 
to 95.1% (10,12,13), high-resolution computed tomography  

(HRCT) is considered the first choice for the diagnosis of 
OS.

However, stapedial OS is often misdiagnosed, and 
most likely to be misdiagnosed as sensorineural deafness, 
congenital stapes fixation and tympanosclerosis. Missed 
diagnosis can also occur when combined with other ear 
diseases such as chronic otitis media (COM). According to 
Huang’s retrospective study of 37 cases, the incidence of 
misdiagnosis of fenestral otosclerosis is around 27% (14). 
Several reasons may account for this. Firstly, the clinical 
manifestation of stapedial OS is not typical, and most 
patients see a doctor with simple hearing loss. Secondly, 
compared with common ear diseases such as chronic 
suppurative otitis media and middle ear cholesteatoma, 
the incidence of OS is relatively low. Thirdly, and most 
importantly, although temporal bone CT is a highly 
specific examination in otology, stapedial OS lesions are 
not obvious using this method because the lesions are very 
small. A misdiagnosis may carry serious implications as 
untreated hearing loss may affect the ability of patients 
to communicate with others, hinder their daily activities 
and ability to work, and cause loneliness and depression. 
Wrongly diagnosed conditions may also subject patients to 
potentially unnecessary or harmful medical treatment. 

Multiple etiologies have been postulated, including, 
genetic, hereditary, sex, ethnicity, pregnancy, and viral 
infections. Sodium fluoride is prescribed to slow the 
disease, however, the efficacy is still controversial. Surgical 
correction of sound transmission disorder caused by stapes 
fixation is an effective method to improve hearing. Also, 
hearing aids are used in many patients to improve their 
hearing. The timely and accurate diagnosis of stapedial OS 
renders successful treatment with stapes implantation more 
likely and often results in the recovery of complete normal 
hearing function. Therefore, it is necessary to design an 
intelligent diagnosis system based on temporal bone CT 
scans to improve stapedial OS diagnostic efficiency.

future diagnosis and prevention programs. In addition, our deep OS localization network is an effective 
approach providing assistance to otologists to deal with the significant challenge of the misdiagnosis of 
fenestral OS.
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In recent years, artificial intelligence (AI) technology 
represented by deep learning has achieved great success 
in various fields. Deep learning is a machine learning 
technique that automatically learns the most informative 
and representative features from input images given a large 
data set of labeled examples, which avoids man-induced 
factors such as extensive preprocessing and extraction 
of handcrafted visual features. This technique uses an 
optimization algorithm called back propagation to indicate 
how a machine should change its internal parameters to 
best predict the desired output of an image. Recently, 
introducing deep learning technique into computer-aided 
detection or diagnosis (CAD) has attracted great attention 
and is considered to be one of the revolutionary directions 
for future medical development. 

Deep learning based CAD of CT abnormalities has 
achieved great success in various fields (15,16) such as 
integrating chest CT with other medical information 
for detecting patients with COVID-19 (17),  lung 
nodule detection based on CT images (18), monitoring 
organs at risk delineation in CT images (19), and low-
dose CT image reconstruction for improving lesion 
detectability (20). However few studies have been devoted 
to diagnosing ear diseases using CT volume. Mei et al. 
developed an approach for rapidly diagnosing disease by 
using chest CT and the clinical history (17) and achieved 
an area under the curve (AUC) of 0.92 and a sensitivity 
of 84.3% when tested on 279 patients. These results 
showed chest CT is an important method for screening 
early suspected COVID-19 infection patients. Hwang 
et al. used a deep learning model to classify 54,221 chest 
radiographs into normal and abnormal, and achieved 
an AUC of 0.979 (0.973–1.000) for image classification 
and 0.972 (0.923–0.985) for lesion detection (21). Shan  
et al. proposed an iterative CT enhancement deep neural 
network for improving low-dose CT image quality (20) 
and demonstrated a superior visual quality compared with 
three commercial algorithms. Collectively, these studies 
demonstrate the feasibility and effectiveness of utilizing 
CT images for disease diagnosis.

The CT value of the fissula ante fenestram of patients 
with stapedial OS is  significantly lower than that of normal 
people, and developing a diagnostic system of stapedial OS 
based on AI is a promising choice. However, there are few 
studies on AI in the diagnosis and treatment of otological 
disease using CT images. To date, only one retrospective 
study based on temporal bone CT has described the 
application of AI in the distinction between COM and 

middle ear cholesteatoma (22). This is because the imaging 
manifestations of ear diseases are much smaller in size than 
those of other diseases. Therefore, it is a great challenge 
to train an AI model to detect stapedial OS lesions because 
lesions are extremely “indistinct” in CT.

We conducted a study to assess the clinical performance 
of otolaryngologists to diagnose OS and made an in-depth 
analysis of the results. We found that otolaryngologists 
have a clear concentration tendency to diagnose some ear 
samples and based on this finding, we then subdivided the 
types of OS and newly defined them as focal, transitional, 
and typical fenestral OS. We contend this new fine-grained 
classification can provide a guide for screening OS in 
clinical settings. In addition, the unsatisfactory results of 
otolaryngologists to diagnose OS prompted us to develop 
a novel explainable OS localization deep neural network 
[otosclerosis-Logical Neural Network (LNN)] for the 
automatic diagnosis of fenestral OS in temporal bone high-
resolution CT images. The otosclerosis-LNN model 
demonstrates a promising diagnosis result that outperforms 
the diagnostic level of otolaryngologists. Interestingly, 
it also shows a similar distribution in the diagnosis of 
our newly defined fenestral OS types on the test set. 
Finally, we used the otosclerosis-LNN model to assist all 
otolaryngologists and found this improved their diagnosis 
level, especially for focal and transitional fenestral OS which 
had an initially high misdiagnosis rate. 

Our study is the first to apply deep learning techniques 
to extract the region of interest from whole-volume 
HRCT scans of temporal bones for diagnosing fenestral 
otosclerosis. We validated the proposed model to be an 
effective computer-aided diagnosis model of fenestral 
otosclerosis in a large-scale study containing 31,774 CT 
slices from 144 patients. The model achieved an AUC of 
99.5% (per-ear-sensitivity of 96.4%, per-ear-specificity of 
98.9%) on the collected test set, indicating great diagnostic 
performance. Furthermore, we used this model to assist 
otologists and observed a consistent and significant 
improvement in their diagnostic performance. We present 
the following article in accordance with the STARD 
reporting checklist (available at http://dx.doi.org/10.21037/
atm-21-1171).

Methods

Dataset collection

The study was conducted in accordance with the 

http://dx.doi.org/10.21037/atm-21-1171
http://dx.doi.org/10.21037/atm-21-1171


Tan et al. Exploring fenestral OS in HRCT using explainable AI

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(12):969 | http://dx.doi.org/10.21037/atm-21-1171

Page 4 of 19

Figure 1 Flow chart of the training set collection.

1,769 participants

Training set: 990 stapedial otosclerosis/341 normal

994 cases were retrieved (discharge 
diagnosed as otosclerosis)

Excluded cases without CT scans in 
fenyang CT room

Preprocessed: split into left and right ears, 
eliminated normal/cochlear otosclerosis/

mixed otosclerosis cases

Preprocessed: split into left and right ears, 
removed CT scans with suspected middle/

inner ear diseases 

712 cases were selected
794 scans were available for 

analysis

990 ears of stapedial otosclerosis 
CT

775 cases were retrieved (discharge 
diagnosed as external auditory 

canal tumor/new organism)

300 cases with preoperative CT 
were determined

341 ears of normal CT scans

Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional committee of Eye and ENT 
Hospital, Fudan University (No. 2020005) and informed 
consent was taken from all the patients. All authors had 
access to the study data and reviewed and approved the 
final manuscript. All training CT scans were collected 
from the central CT room of Eye and ENT Hospital, 
Fudan University and were carried out by a 128-channel 
multidetector SOMA TOM Definition Edge CT scanner 
(Siemens Inc., Munich, Germany). Each CT scan contained 
the complete structure of the temporal bone. Axial sections 
of 0.6 mm thick were obtained with the following CT 
scanner settings: collimation of 128 mm × 0.6 mm, field of 
view of 220 mm × 220 mm, pitch of 0.8 mm, matrix size of 
512×512, voltage of 120 kV, and current of 240 mAs. The 
number of axial CT slices in each scan was around 100 and 
all images were downloaded from the Cloud server and 
saved in a 512×512 size and DCM format for training.

A total of 994 cases in the training set who received 
artificial stapes implantation in the central area of Eye 
and ENT Hospital, Fudan University from July 16, 2014, 
to November 13, 2019, were identified (see Figure 1 and 
Table S1). Among them, 712 cases that underwent one or 
more CT scans were selected, and a total of 794 scans were 
available for analysis. After removing the normal/cochlear 
OS/mixed OS ears  and operated ears, 990 ears of stapedial 

OS CT were obtained. Finally, we sought cases with 
external auditory meatus tumor/new organism resection 
in the central area of Eye and ENT Hospital, Fudan 
University from July 16, 2014, to November 13, 2019. We 
obtained 775 cases, determined 300 cases, removed the 
suspected middle ear/inner ear disease ear CT scans by 
checking the medical history and examination results, and 
finally pretreated 341 ears of CT scans as a normal control 
study.

All testing CT scans were collected from the new CT 
room of Eye and ENT Hospital, Fudan University from 
December 1, 2019, to April 30, 2020. These scans were 
carried out by a 128-channel multidetector SOMA TOM 
Definition Flash CT scanner (Siemens Inc., Munich, 
Germany) and with the same CT scanner settings, axial 
sections of 0.6 mm thick were obtained. All images were 
downloaded from doctors’ workstation and saved in a 
512×512 size and JPG format for testing.

Manual labelling

To train the otosclerosis-LNN model, we manually 
annotated the ear axis CT in the training set and 
developed a Bounding-Box Marker annotation software 
to facilitate the annotation process of otologists. Each CT 
was then preprocessed, split into left and right ears, and 

https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
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combined with the preprocessing algorithm to determine 
a rectangular clipping box. This was to ensure that the 
structure of the inner ear, middle ear, and outer ear could 
be displayed on each level, thus removing irrelevant areas 
and enlarging related areas to facilitate further labelling. 
For stapedial OS region labelling, otologists consulted 
the case information (mainly surgical records) and image 
reports to ensure the accuracy of labelling and annotated 
each CT slice with special attention to the vestibular 
window area. For the reduced bone mineral density shadow 
(the location of stapedial OS), experienced doctors used a 
rectangular red box to mark as close as possible to the focus 
and after the annotation of each mark, a new folder was 
be generated for the AI model to learn. The non-OS CT 
samples were then annotated. We first ensured there was no 
OS by carefully checking the medical history and imaging 
reports, then marked a rectangular area around the stapes 
footplate with a green box because the location of stapedial 
OS is relatively fixed. This space is relatively large, 
covering the possible location of stapedial OS lesions, and 
contains more labelling layers, covering the possible layers 
of fenestral OS. Similarly, the annotation result of each ear 
CT image was placed in the newly generated folder for AI 
model training.

Model architecture

The main purpose of this study was to develop an 
explainable OS local izat ion deep neural  network 
(otosclerosis-LNN) for the detection and triage of ears 
based on whole-volume temporal bone HRCT scans. The 
average number of CT slices per patient was 103 , and only 
about 3% contained lesions, indicating CT slices containing 
fenestral OS accounted for a very small proportion of the 
total number of CT slices in the collected dataset. The 
stapedial OS region is also small in the whole CT slice, 
accounting for less than 0.2%, resulting in a severe class 
imbalance problem. To deal with this, we decomposed the 
fenestral OS diagnosis of ear CT volume diagnosis into 
three stages; a pre-processing stage, OS detection network, 
and post-processing stage (Figure 2A,B). The first stage is 
a conventional image processing algorithm, which is used 
to filter out non-ear CT slices and automatically crop out 
areas that may be ears and there was a relative class balance 
between normal and fenestral OS in the cropped ear slices. 
Following this, the cropped ear regions were fed into the 
deep detection network for localizing the OS area. There 
will usually be several continued slices and discrete slices of 

the input 3D head CT scan detected including OS lesions 
and normal structure. Therefore, the post-processing stage 
was to heuristically fuse all CT diagnosis results, producing 
the final ear diagnosis result, which will be normal or 
fenestral OS.

Pre-processing stage

A conventional image processing algorithm was developed 
to automatically crop out ear regions from the temporal 
bone HRCT slices. The first step was based on the first 
temporal bone CT image, and the algorithm binarized this 
with a brightness threshold of T1=50. Those regions with 
brightness greater than T1 were maintained and resized to 
122×364 using the Bicubic algorithm. The right and left 
ear areas in those regions were then cropped out in the 
pattern of [x1, y1, x2, y2], where [1, 181, 184, 295] were for 
the right ear and [184, 185, 364, 295] were for the left ear. 
Finally, the cropped ear areas were resized to 888×1,496 and 
normalized to 0–1 facilitating the detection of the following 
detection network.

Detection network

The detection network was used to detect fissula ante 
fenestram areas in the cropped ear CT slices produced by 
the pre-processing stage. The overall network structure 
of the detection network was mainly based on the Faster-
RCNN model (23), which is a classic deep network model 
for detecting natural objects. We modified this by replacing 
its backbone using the pre-trained VGG-19 model (24), 
which helped to extract more general and discriminative 
visual features (512×25×42). These visual features were used 
to generate the features of each bounding box region in 
the input CT slice by the region proposal network (RPN) 
and region of interest pooling (RoI Pooling) (23,25). By 
performing bounding box regression and classification, 
we obtained the OS detection results for each CT slice. In 
general, there were multiple continued slices and discrete 
slices of the input 3D head CT scan detected including OS 
lesions. Therefore, we needed a post-processing stage to 
heuristically fuse all CT detection results, producing the 
final ear diagnosis result, which was normal or OS.

Post-processing stage

This stage output the final ear diagnosis result (normal 
or fenestral OS) by fusing the detection results of all CT 
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Figure 2 Overview of our proposed otosclerosis localization neural network (otosclerosis-LNN). (A) Processing pipeline of the otosclerosis-
LNN model. This mainly consists of three stages: the pre-processing stage for automatically cropping out possible ear regions by using a 
conventional image processing algorithm, the detection stage for localizing otosclerosis lesion areas by using a deep learning-based detection 
network, and the post-processing stage for outputting the final ear diagnosis result (normal or otosclerosis) by heuristically fusing the 
diagnostic results of all CT slices. (B) Detailed structure of the detection network. LNN, Logical Neural Network. 

Head CT scan

CT slice size: 512×512

ear region

Input

Cropped ear region 
(Resized to 888×1,496)

Detection 
Network

Detection Network
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otosclerosis area

Ear diagnosis result

Otosclerosis 

Normal

Output
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(fusing diagnostic 

results of all CT slices)
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Regression

Classification
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ear region)

Feature number =512

VGG-19 
(backbone)

Region Proposal 
Network

Region of 
Interest Pooling

Feature size =25×42

#CT slice 
(n≈100)

A

B

slices. Firstly, those CT slices with a low probability of 
normal and OS bounding box (less than threshold P1=0.5) 
were filtered out. The purpose of this step was to make 
a preliminary screening and directly exclude the results 
with a significantly low confidence level, thus avoid the 
selection of the subsequent longest subsequence. Therefore, 
the threshold setting could be relatively relaxed. The 
subsequence with the longest consecutive CT layers was 
then selected from the remaining stratification results. If 
there were multiple subsequences with the same length, the 
one with higher maximum confidence was selected. Since 
the fissula ante fenestram area is continuous, the purpose of 
this step was to determine the area of the stapes footplate 

in the CT layer. Next, the confidence of the results in 
the subsequence was filtered, and all the results whose 
confidence probability was less than the threshold P2=0.99 
were eliminated. The purpose of this step was to select the 
most valuable results in the subsequence for subsequent 
diagnosis, so the threshold setting should be relatively high. 
Finally, we calculated the ratio between the number of 
slices of the selected subsequences detected as lesions and 
the total number of remaining slices. We considered that 
stapedial OS was present when the ratio was greater than 
0.25 and if not, the ear was considered to be normal. The 
purpose of this step was to synthesize all CT slice results to 
obtain the final diagnosis result.
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Training details

The otosclerosis-LNN model was trained on the collected 
training set. Data augmentations such as random horizontal 
flipping and adding noise were employed in the training 
process to enhance the generalization ability of the model. 
We used the Adam optimizer (26) with a small initial 
learning rate 1e-5 to minimize the bounding box regression 
and classification losses. The output of the otosclerosis-
LNN model represented the probability that the CT slices 
were OS or normal; if the probability was greater than 
0.5, the slice was classified as fenestral OS and otherwise, 
as normal. We trained the otosclerosis-LNN model on a 
Nvidia RTX 2080Ti graphics processing unit with 8 Gb of 
memory and Intel i5-8400@2.80GHz with 24GB RAM with 
the training batch size set to 4. The number of training 
iterations was 269 epochs, which took about three days  
(68 hours) and the model was implemented with the 
PyTorch library (27) and Python 3.7 language.

Statistical analysis

We evaluated the performance of our otosclerosis-LNN 
model to assess its potential clinical utility by prospectively 
collecting an external test set. Given the temporal bone 
HRCT volume of an ear, the model localized the position 
of OS lesions in the input CT volume and output its 
probability that the ear was fenestral OS or normal. 
According to the setting confidence for CT slices, ROC 
was obtained. The sensitivity, specificity, accuracy, 
PPV, and NPV of this approach on the external test set 
were 96.43%, 98.86%, 98.07%, 97.59%, and 98.30%, 
respectively. In addition, we compared the otosclerosis-
LNN approach with seven otolaryngologists (two chief 
physicians, three associate chief physicians, one attending 
doctor, and one resident doctor) on the clinical test set. 
Each otolaryngologist independently classified each case as 
fenestral OS or normal, there was no limit to the screening 
time of each doctor, and only the diagnostic accuracy was 
assessed. Finally, we evaluated the ability of the otosclerosis-
LNN model to assist otolaryngologists in diagnosis. All 
otolaryngologists were blind to the performance of the 
model and after three months, all participants were invited 
to classify all cases in the clinical test set after referring to 
the diagnostic results of the model.

Results

Study of otolaryngologists’ performance in clinically 
diagnosing OS

To explore the clinical performance of otolaryngologists 
in diagnosing OS, we invited seven otolaryngologists 
to assess their diagnostic level of stapedial OS on the 
collected test set (see Figure 3 for the collection process). 
Participants included two chief physicians with over 20 years 
of experience, two associate chief physicians with about 
15 years of experience, one associate chief physician with 
about 10 years of experience, one attending physician with 
about 10 years of clinical experience, and one resident with 
about 2 years of experience. Each doctor was required to 
independently diagnose stapedial OS and normal temporal 
bone by only reading CT scans in the absence of other 
clinical information. It is important to note that before we 
invited the seven doctors to participate in the test, we also 
invited other doctors who had just entered the hospital 
or had worked for 5 years to take the test. As most of the 
latter group did not know the CT manifestation of fenestral 
OS, their results were a right or wrong guess, which fully 
reflected the challenges in the clinical diagnosis of fenestral 
OS and the high diagnostic level of the seven invited 
otolaryngologists. 

The external test set was prospectively collected as 
shown in Figure 3. By April 30, 2020, a total of 42 cases of 
bilateral stapedial OS and two of unilateral stapedial OS 
were collected (see Table S2). The operative ear diagnosis 
was based on what was seen during the operation, which 
was considered as the gold standard. The contralateral 
ear diagnosis was based on the comprehensive analysis 
of imaging experts reports and medical history, forming  
86 ears with stapedial OS in the external test set. In 
addition, the information of outpatients in new area of 
Eye and ENT Hospital, Fudan University in April 2020 
was collected, and 100 cases of completely normal CT 
images were included in the test set according to the 
diagnosis report of imaging experts combined with clinical 
manifestation and examinations.

In summary, the external test set consisted of 86 ears of 
stapedial OS and 202 normal ears. To reduce the diagnostic 
deviation caused by fatigue in reading the images, we 
randomly selected 30 cases from 100 cases with normal 
CT and 40 cases from 44 cases with stapedial OS, finally 

https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
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144 participants

Otosclerosis-LNN model helps otolaryngologists 
to improve the diagnostic level

42 cases of bilateral stapedial 
otosclerosis

100 cases of completely 
normal

86 ears of stapedial 
otosclerosis

Clinial test set: 78 ears of 
stapedial otosclerosis/62 

normal ears

Study of otolaryngologists’ 
clinical diagnosis performance

202 normal ears

External test set: 86 ears of 
stapedial otosclerosis/202 

normal ears

Evaluation of otosclerosis-LNN 
model 

2 cases of unilateral stapedial 
otosclerosis, contralateral normal

Figure 3 Flow chart of the collection of the retrospective clinical test set. LNN, Logical Neural Network. 

forming the clinical test set for doctors to read as 78 ears of 
stapedial OS mixed with 62 normal ears. The prospective 
and complete collection of OS cases admitted in the new 
area of Eye and ENT Hospital, Fudan University began 
on December 1, 2019 and was part of our project Artificial 
intelligence in diagnosis and treatment decision-making of middle 
ear diseases based on temporal bone CT scans (Registration 
number: ChiCTR1900027535) and strictly carried out 
in accordance with the plan. This trial was verified on 
November 17, 2019, and detailed information can be seen 
on the website, Chinese Clinical Trial Registry.

This clinical study demonstrated the performance 
of otolaryngologists to diagnose stapedial OS was 
unexpectedly low (see Figure 4). The two chief physicians 
achieved the best diagnostic average results in terms of 
sensitivity and accuracy (Figure S1 and Table S3) and the 
two associate chief physicians achieved average sensitivity 
and specificity of 70.07% and 67.70%, respectively. The 
attending physician (~10 years) achieved sensitivity and 
specificity of 67.90% and 62.90%, respectively, and the 
resident (~2 years) achieved sensitivity and specificity of 
66.70% and 100%, respectively. The results show that 

while compared with other doctors, the chief physicians 
demonstrated a higher diagnostic level in the test set, there 
is still much room for improvement and that misdiagnoses 
occur frequently.

Defining new lesion types of fenestral OS based on the 
analysis of otolaryngologists’ diagnosis results

The unsatisfactory performance of otolaryngologists 
promoted us to further analyze what types of fenestral 
OS led to misdiagnoses. We counted the diagnosis results 
of each ear by each doctor in the test set and obtained 
the average diagnosis accuracy and variance of each ear 
(Figure 5A). It should be noted that we did not include 
the diagnosis of the attending physician in the definition 
process. The attending physician pays more attention than 
others to the facial nerve, as he believes that the fenestral 
OS will blur the horizontal segment of the facial nerve 
in images. Although this has a certain diagnostic efficacy, 
we believe that only typical fenestral OS will have this 
manifestation. As a precaution, we removed his diagnosis 
during the definition process, and the diagnosis of the 

https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
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Figure 4 Demonstration of the performance of otolaryngologists to diagnose otosclerosis using the retrospective test set. (A,B,C) Show the 
sensitivity, specificity, and accuracy of seven otolaryngologists, respectively.

other six otologists contributed to this new subdivision. 
According to their average diagnostic accuracy, we further 
classified the fenestral OS lesions (see Figure 5B) with an 
average diagnostic accuracy of 0.33, 0.5 or 0.67, 0.83, or 

1.0 as “focal”, “transitional”, or “typical” fenestral OS, 
respectively. These three types were highly related to the 
misdiagnosis rate of otologists, and we counted the number 
of these three types of OS in the test set (Figure 5C and 
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Figure 5 Statistical analysis of the otolaryngologists’ diagnosis findings. Based on this, the otologists further classified the lesion types 
of fenestral OS as “typical”, “transitional”, and “focal” fenestral OS. (A) Demonstration of the average diagnostic accuracy of seven 
otolaryngologists for 140 ears in the clinical test set. The shade denotes the standard deviation of each ear. (B) Counting the number of ears 
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Figure S2).
We found that there was an obvious concentration trend 

in the diagnosis results of doctors for some ear samples. 
For example, some ears were misdiagnosed by most 
otolaryngologists, and some were correctly diagnosed with 
high confidence. The diagnosis results of some ears showed 
large variance, indicating that the otolaryngologists have 
differed considerably in the diagnosis of these ears. Based 
on this finding, we brought these CT images to experienced 
otologists for further discussion and study. The otologists 
found that these images with different diagnostic accuracy 
demonstrated a relatively slight appearance difference (see 
Figure 6). 

The appearance of typical fenestral OS in high-resolution 
CT (HRCT) images is of a hypodense demineralised plaque 
in the region of the fissula ante fenestram, or as heaped-up 
bony otosclerotic plaques causing oval window narrowing. 
Thickened stapes footplate can also be seen. Transitional 
fenestral OS is ambiguous to diagnose as HRCT shows 
mild new bone involving the stapes footplate, narrowing of 
the oval window, a slight thickening of the stapes footplate, 
or new bony plaque formation at the fissula ante fenestram. 
Focal fenestral OS is also difficult to diagnose because the 
HRCT shows very subtle demineralization at the fissula 
ante fenestram and there is no thickening of the stapes 
plate.

https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
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Appearance characteristic. Axial view of a high 
resolution computed tomography image of temporal 
bone in bone window of normal participant without 
otosclerosis. The red frame refers to a normal 
appearing of fissula ante fenestram.

Appearance characteristic. The appearing of this type 
in HRCT images is that a hypodense demineralised 
plaque is noted in the region of the fissula ante 
fenestram, or heaped-up bony otosclerotic plaques are 
noted causing oval window narrowing. Also, thickened 
stapes footplate can be seen.

Appearance characteristic. It is ambiguous to diagnose 
transitional fenestral otosclerosis as HRCT shows mild new 
bone involving the stapes footplate, narrowing the oval 
window, or a slight thickening of stapes footplate, or new 
bony plaque formation at the fissula ante fenestram.
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Figure 6 Visualization of the four types of the fissula ante fenestram region in HRCT images. The three types of stapedial otosclerosis 
demonstrated different detailed CT appearances, where the “focal” type showed similar CT features as the “normal” type, which may easily 
lead to a misdiagnosis. HRCT, high-resolution computed tomography. 

Figure 7 Assisting otolaryngologists to screen fenestral OS with the assistance of the otosclerosis-LNN model. (A) Demonstration of the 
diagnostic performance of the otosclerosis-LNN model, all otolaryngologists, and their diagnostic performance assisted by the model. (B) 
We showed another type of confusion matrix for demonstrating the detailed prediction results of our newly defined fine-grained otosclerosis 
types. OS, otosclerosis; LNN, Logical Neural Network. 

Development and validation of an OS localization deep 
neural network based on temporal bone high-resolution 
CT images

The unsatisfactory results of the study evaluating the 
performance of otolaryngologists in clinical diagnosis 
results caused us to develop a CAD system to help otologists 
obtain a better diagnosis performance. For this purpose, 
we developed an explainable OS localization deep neural 
network (otosclerosis-LNN) for the detection and triage 
of ears based on whole-volume temporal bone HRCT 

scans (see Figure 7A,B for detailed model architecture). To 
develop the model, we collected 134,574 CT slices from 
1,294 patients who underwent a CT examination at Eye 
and ENT Hospital, Fudan University from July 16, 2014, 
to November 13, 2019 (Table S3). All scans were performed 
by radiologists using a standard chest CT protocol and the 
dataset included 994 OS patients and 300 normal patients 
(see Figure 1 for the collection process). All CT scans were 
preprocessed, split into left and right ears, and each CT 
image was cut into a rectangular region (containing ear 

https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
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structure) to facilitate further labelling of the lesions.
In the labelling process, we carefully checked the case 

information (mainly surgical records and imaging reports), 
eliminated normal/cochlear OS/mixed OS temporal bone 
CTs, and finally obtained 990 ears of stapedial OS. The 
label (diagnosis) of the surgical ear was marked according 
to the intraoperative diagnosis while for the unoperated 
ear, the label was a comprehensive diagnosis based on 
imaging reports of an imaging expert and medical history. 
The average number of CT slices per patient was 103, and 
only about 3% contained visible lesions. Additionally, the 
proportion of fenestral OS in the total number of CT slices 
of temporal bone was 1.83% (see the rightmost figure in 
Figure S3). Such a small proportion indicates that CT slices 
containing fenestral OS account for a very small proportion 
of the total number of CT slices in the collected dataset and 
shows the number of normal and non-ear CT slices is large 
and represents a serious class imbalance problem. Class 
imbalance typically poses a great challenge to designing 
model structures (25,28), updating model parameters 
for convergence, and maintaining the balance of test 
performance for each category.

To deal with this extreme class imbalance problem, we 
employed an end-to-process strategy that could effectively 
turn this into a class balance problem by fully exploiting the 
advantages of conventional image processing algorithms 
and deep learning technology. Specifically, we used ear CT 
slices instead of whole temporal bone CT slices to train 
the deep learning-based OS detection network because 
the proportion of fenestral OS in the total number of ear 
CT slices of temporal bone was 71.21% (see the rightmost 
figure in Figure S3). Therefore, the class imbalance 
problem was largely alleviated.

To evaluate the effectiveness of our otosclerosis-LNN, 
we conducted the fenestral OS localization experiment 
on the collected test set containing 31,774 CT slices 
from 288 ears (see Figure 3 and Table S1). The whole-
volume temporal bone HRCT scans were fed into the 
otosclerosis-LNN model. The model then output the 
positions of fenestral OS in the inputted ear CT scans 
and the classification result of normal or fenestral OS 
for that ear. The AUC, sensitivity, and specificity of our 
otosclerosis-LNN approach were 99.5%, 96.4%, and 
98.9%, respectively. Figure 7A and Figures S4,S5 show the 
comparison with all otolaryngologists, which had a higher 
screening performance than both the two chief physicians 
(~20 years) and other doctors.

It is also interesting to understand the diagnostic 

performance of the otosclerosis-LNN model for our 
newly defined three types of fenestral OS mentioned 
in the above section. We demonstrated another type of 
“confusion matrix” (see Figure 7B), where the vertical 
axis denotes the true class containing four types and the 
horizontal axis denotes the predicted class containing only 
two types (normal or abnormal) because the output of 
the otosclerosis-LNN model is two types, i.e., normal or 
fenestral OS. This new type of confusion matrix clearly 
demonstrated the detailed prediction results for the newly 
defined fine-grained OS types. The matrix demonstrated 
that the otosclerosis-LNN model achieved good diagnostic 
performance for transitional and typical types, while 
showing ambiguous judgment when dealing with focal ear 
CT scans. This result indicates that compared with doctors, 
the improvement of diagnostic performance of the model is 
mainly due to the improvement of diagnostic accuracy on 
the transitional ears. Simultaneously, we observed a gradual 
decline trend of the diagnostic accuracy of the model 
for typical, transitional, and focal types, which indirectly 
indicated the further classification of fenestral OS discussed 
in the above section was reasonable. In addition, we found 
that the serious class imbalance problem did not lead to 
significant class bias in the test results of our otosclerosis-
LNN model.

Improving the ability of otolaryngologists to screen 
fenestral OS with the assistance of the otosclerosis-LNN 
model

We further conducted an experiment using the otosclerosis-
LNN model to assist otolaryngologists in screening 
fenestral OS in temporal bone CT scans. Firstly, we set up a 
week for memory washing out, then after three months, we 
invited the seven otolaryngologists to again screen fenestral 
OS in the temporal bone CT scans of the test set with 
reference to the results of the otosclerosis-LNN model 
while the diagnostic performance of the otosclerosis-LNN 
model was blind to the otolaryngologists. The experimental 
results (see Figure 8, Figure S6 and Table S4) demonstrated 
that the diagnostic performance of all otolaryngologists 
was significantly improved with the assistance of the 
otosclerosis-LNN model. The category of significant 
improvement was in the focal and transitional ear samples, 
probably because these two types are the main reasons 
for the high rate of misdiagnoses. Overall, the average 
diagnostic ability of the seven otolaryngologists improved 
in all lesion types. 

https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
http://Figure S3
https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1171-supplementary.pdf
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Figure 8 Demonstration of the average diagnostic accuracy of the otosclerosis-LNN model, all otologists, and their diagnostic performance 
assisted by the model. LNN, Logical Neural Network. 

Explanation of the detection network in the otosclerosis-
LNN model

The interpretable artificial intelligence in our study means 
that the proposed diagnostic model not only provides 
diagnostic results, but also provides diagnostic basis for 
doctors. The diagnosis basis we provide includes three 
aspect. The neural responses learned by the detection 
network are visualized, showing a pleasing phenomenon 
that the areas highlighted by the detection network are 
exactly the fissula ante fenestram areas carefully labelled by 
experienced otologists. The learned lesion representation 
is visualized on 2D plane by using PCA to reduce its 
dimension. The visualization result shows that the normal 
and fenestral otosclerosis ear samples are well separated 
by the diagnostic model. Most importantly, compared to 
previous deep learning-based diagnosis works that only 
output a diagnostic result with a probability, our diagnostic 
model not only outputs the diagnostic result of normal or 
fenestral OS but also outlines the possible lesion regions in 
CT slices. This greatly increases its applicability in clinical 
practice and helps doctors understand the diagnosis basis of 

the model. 
To understand why the otosclerosis-LNN model works, 

we visualized the neural responses learned by the detection 
network in the model. To visualize this, we performed a 
forward inference of the model for inputting HRCT slices, 
then randomly selected six feature maps outputted by the 
convolutional layers before the final fully connected layer. 
This experiment was conducted on an independent test 
set and the results (see Figure 9) demonstrated the areas 
focused by the detection network were the fissula ante 
fenestram areas carefully marked by experienced otologists 
(Figure 9C,D). This explains to a certain extent why the 
model could accurately diagnose lesions around the stapes 
footplate. In addition, after using PCA to reduce the feature 
dimension of the classification layer and visualizing it on 
a 2D plane, we observed that normal and fenestral OS ear 
samples were well divided (see Figure 9B).

Discussion

Several AI-based CAD approaches have been developed 
to assist doctors in recent years, such as predicting the 
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Figure 9 Visualizations of the attention areas of the detection network in our otosclerosis-LNN model. (A) Visualization of otosclerosis 
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Network.
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prognosis of lung cancer patients (18,29), detecting 
abnormality in lower extremity radiographs (21,30), 
delineating all organs at risk (19), and predicting drug-
protein interaction (19). While compared with these 
rapidly developing medical directions, the research on 
otology diagnosis based on AI is still in its infancy, we took 
a substantial step forward by proposing a novel explainable 
OS localization deep neural network for the detection 
and triage of ears based on temporal bone HRCT. The 
proposed otosclerosis-LNN model, involving supervised 
training on a collected dataset containing 134,574 CT slices 
from 1,331 patients, demonstrated a favorable performance 
for automated OS localization in three-dimensional 
temporal bone CT scans. The model achieved an AUC of 
99.5% (per-ear-sensitivity of 96.4%, per-ear-specificity of 
98.9%) on the collected test set containing 31,774 CT slices 
from 144 patients, which is an encouraging result in view of 
the high variability in input CT slices such as the diversity 
of patients, and the presence of various, and unlabeled other 
abnormalities.

This study is the first to apply deep learning technique 
to extract the region of interest from whole-volume high-
resolution CT scans of temporal bones for diagnosing 
fenestral OS. Previous diagnostic works based on deep 
learning paid less attention to otological diseases and more 
to the skin, breast, lung, liver, retina, esophagus, and colon 
(18,19,21,29,31-38). Some diagnostic works for ear disease 
achieved promising results such as the diagnosis of COM 
based on temporal bone CT scans using deep learning (22), 
diagnosis of secretory otitis media with machine learning 
algorithm (22), diagnosis of ear diseases based on otoscope 
images using ensemble deep models (39), and prediction 
of hearing and speech perception in children with cochlear 
implants using AI technology (40). However, there are no 
studies devoted to diagnosing fenestral OS lesions, which is 
the most likely ear disease to be misdiagnosed and has the 
most obvious therapeutic effect. In addition, because the 
model can automatically extract all stapes footplate regions 
in CT scans, the potential application of the otosclerosis-
LNN model can be used not only for the diagnosis of 
fenestral OS, but for the diagnosis of other otological 
diseases in the region of the stapes footplate.

We conducted a detailed analysis of the diagnosis results 
of otolaryngologists in the clinical diagnostic study and 
observed that there was a significant trend of concentrated 
diagnosis for some ear samples through statistics. Based 
on the statistical results, we further subdivided stapedial 
OS into focal, transitional, and typical types and found 

that the otosclerosis-LNN model also showed similar 
diagnostic results in these three OS types, evidenced by the 
diagnostic accuracy gradually decreasing from the typical 
type to the focal type. This result indirectly demonstrated 
the rationality of the fine-grained classification for fenestral 
OS. Our newly defined OS types can provide a guide for 
fenestral OS diagnosis in clinical practice.

In addition, our otosclerosis-LNN model employs an 
end-to-process strategy instead of end-to-end deep neural 
networks widely used in existing works. CT scans-based 
on end-to-end diagnostic approaches (20,23,29,36,41-43)  
can output desired results by directly inputting the 
original CT slices. Researchers only need to focus on 
how to design an appropriate deep network structure and 
define corresponding objective loss to optimize network 
parameters. The advantage of the end-to-end model is 
that all processing works can be transferred to the model 
and the disease diagnosis model can be trained by using a 
large amount of training data and time. Its disadvantage 
is that little human prior knowledge is incorporated into 
the diagnosis process. When dealing with the problem 
of the serious imbalance of categories, the end-to-end 
model needs to design a more complex network to deal 
with the categories with fewer samples, and the model is 
often difficult to converge. In contrast, the end-to-process 
strategy employed in our model is a combination of a 
heuristic image processing algorithm and deep learning 
technique, which allows a deep learning-based detection 
network to make full use of its advantages in dealing with 
the category imbalance problem. The superior performance 
of the otosclerosis-LNN model, including high sensitivity, 
high specificity, and low computational time, demonstrates 
that the end-to-process strategy is a reasonable choice for 
the OS localization task. It is hoped that this strategy can 
provide a good reference for other diagnostic work in model 
design, especially when dealing with extremely imbalanced 
categories.

Compared to previous deep learning-based diagnosis 
works (13,17,18,30,36,39,40,44,45), which only output a 
diagnostic result with a probability, our otosclerosis-LNN 
model not only outputs the diagnostic result of normal or 
fenestral OS but also outlines the possible lesion regions in 
CT slices. This greatly increases its applicability in clinical 
practice and helps doctors understand the diagnosis basis 
of the model. For example, for abnormal examinations, 
the model can provide valuable diagnostic evidence for 
otologists, which encourages them to quickly check the 
abnormal areas on the CT slices suggested by the model. 
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The model can quickly identify normal examinations with 
a high confidence score of thresholds, allowing otologists 
to allocate more time and energy to abnormal and complex 
cases.

The proposed otosclerosis-LNN model evaluated on 
the collected test set performs comparably or favorably 
compared to chief physicians (~20 years) and other 
otologists. The test results of the seven otologists invited 
into the comparison study showed that in addition 
to the two chief physicians, the diagnostic sensitivity 
and specificity of other doctors have much room for 
improvement. This result also reveals an important message 
that the diagnostic conclusions of doctors may not be as 
accurate as they think, especially for junior and middle-
level doctors. Therefore, it is of great significance to build 
clinically applicable CAD systems for assisting doctors by 
using deep neural networks which imbue the rich clinical 
experience and knowledge of senior doctors. Such a 
diagnostic system is particularly important for areas with 
scarce medical resources. To demonstrate the effectiveness 
of the CAD system, we conducted an experiment using 
it to assist doctors in diagnosis. The experimental results 
demonstrated most otologists, including chief physicians, 
achieved significant improvement in terms of sensitivity, 
specificity, and accuracy.

Our study has some limitations. Firstly, we have 
evaluated the otosclerosis-LNN model on the collected test 
set from two different institutions, showing encouraging 
results. However, the performance of the model may vary 
in different hospitals, ways of operating, patient differences, 
and imaging equipment. In addition, the model outputs 
the binary classification results of normal or fenestral OS 
based on the automatically detected fissula ante fenestram 
space in three-dimensional HRCT images and further 
studies are needed to diagnose other diseases in the 
stapes footplate region. Finally, otologists often combine 
various patient information such as CT scans, clinical 
symptoms, medical records, and audiological examination 
in clinical diagnosis. Therefore, a CAD model based on 
deep learning can further consider combining multi-modal 
information and learn how doctors synthesize this to make 
a final diagnosis. Despite these limitations, the achieved 
diagnostic performance of our otosclerosis-LNN model 
is encouraging in that it is either comparable or better 
than that of senior otologists. Furthermore, otologists can 
significantly improve their diagnostic level when assisted by 
the otosclerosis-LNN model. The diagnosis of ear diseases 
based on deep learning techniques is rare, and far behind 

other fields. It is now time to advance this field and design 
AI diagnosis models to help otologists perform routine 
clinical diagnosis, thus effectively reducing their diagnostic 
burden and avoiding “harmful” misdiagnosis.

In conclusion, we have presented a deep learning-based 
OS diagnostic model that can automatically localize OS 
lesion regions in three-dimensional HRCT scans. Though, 
our artificial intelligence technology has not been used in 
clinic for the time being, it shows superiority compared 
with the test results of doctors and plays an auxiliary role 
in existing cases. With further verification by randomized 
controlled trials, the model may eventually enter into 
clinical application and be used to assist otologists in 
automatically and quickly diagnosing fenestral OS. 
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Table S1 Basic characteristics of enrolled participants in the training set

Dataset Male Female Total

Training Set (discharge diagnosed as otosclerosis)

Number of patients(retrieved) 298 696 994

Age (mean ± SD) 39.11±10.97 41.49±10.62 40.76±10.78

Number of CT scans 238 556 794

Labels assigned to ears (stapedial) 288 702 990

Total number of CT slices - - 101,446

Cropped ear slices - - 2,458

Training Set (discharge diagnosed as external auditory canal tumor/new organism)

Number of patients(chosen) 151 149 300

Age (mean ± SD) 48.89±19.82 44.95±18.52 46.93±19.29

Number of CT scans 151 149 300

Labels assigned to ears 173 168 341

Total number of CT slices - - 33,128

Cropped ear slices - - 994

Table S2 Basic characteristics of enrolled participants in the retrospective clinical test set

Dataset Male Female Total

Testing Set (bilateral stapedial otosclerosis)

Number of patients 13 29 42

Age (mean ± SD) 32±14.31 40.71±10.42 38.14±12.36

Number of CT scans 13 29 42

Labels assigned to ears 26 58 84

Total number of CT slices - - 9,160

Testing Set (unilateral stapedial otosclerosis)

Number of patients 0 2 2

Number of CT scans 0 2 2

Labels assigned to ears 0 4 4

Testing Set (bilateral normal)

Number of patients 37 63 100

Age (mean ± SD) 39.11±14.37 48.71±15.58 44.98±15.91

Number of CT scans 37 63 100

Labels assigned to ears 74 126 200

Total number of CT slices - - 22614

Supplementary
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Figure S1 Demonstration of the study results of the ability of otolaryngologists to clinically diagnose otosclerosis. We showed the 
comparison of average diagnostic performance between chief physician, associate chief physician, attending physician, and resident physician 
in terms of sensitivity, specificity, and accuracy.
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Figure S2 Histogram of the average diagnosis accuracy of otolaryngologists of each ear in the clinical test set.

Table S3 Comparison of our otosclerosis-LNN model with seven otologists in terms of sensitivity and specificity on the prospectively collected 
clinical test set, which contains a total of 140 ears (otosclerosis =78, normal =62)

Otologist
Diagnosis time 
(seconds per 

ear)

Total number of ears, n=140 (otosclerosis =78, normal =62)

True 
positives

False 
negatives

True 
negatives

False 
positives

Sensitivity Specificity

Otosclerosis-LNN 0.06 75 3 62 0 96.15% 100%

Chief physician A (~20 years) 34.3 76 2 28 34 97.44% 45%

Chief physician B (~20 years) 32.2 71 7 62 0 91.03% 100%

Associate chief physician A (~15 years) 30 50 28 57 5 64.10% 92%

Associate chief physician B (~15 years) 42.9 72 6 41 21 92.31% 66%

Associate chief physician C (~10 years) 77.1 42 36 28 34 53.85% 45%

Attending physician (~10 years) 20 53 25 39 23 67.95% 63%

Resident (~2 years) 30 52 26 62 0 66.67% 100%
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Figure S3 Demonstration of the number of the temporal bone CT slices and ear CT slices in the training and test sets. The rightmost 
figure shows the ratio of the number of CT slices with otosclerosis to the total number of temporal bone CT slices and the number of ear 
CT slices, respectively and the proportions are 1.83% and 71.21%, respectively. Therefore, our otosclerosis-LNN model employs an end-
to-process strategy instead of end-to-end deep neural networks widely used in existing works to train the deep learning-based otosclerosis 
detection network. The end-to-process strategy allows us to train the deep learning model using ear CT slices instead of whole temporal 
bone CT slices, which avoids the extreme class imbalance problem.

Figure S4 Demonstration of the diagnostic performance of our otosclerosis-LNN model on the external test set.
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Figure S5 Comparison of our otosclerosis-LNN model with otologists. The otosclerosis-LNN model demonstrated higher screening 
performance than both two chief physicians (~20 years) enrolled in the comparison study on the prospectively collected test set. The 
otosclerosis-LNN model achieved sensitivity and specificity of 96.15% and 100%, respectively (Table S3), and the average sensitivity and 
specificity of the two chief physicians (~20 years) attending the comparison study are 94.20% and 72.55%, respectively. These two important 
indicators are lower than the otosclerosis-LNN model. In addition, two associate chief physicians achieved average sensitivity and specificity 
of 70.07% and 67.70%, respectively, which is lower than that of two chief physicians. The attending physician (~10 years) achieved 
sensitivity and specificity of 67.90% and 62.90%, respectively and the resident (~2 years) achieved sensitivity and specificity of 66.70% and 
100%, respectively. Overall, compared with other doctors, the chief physicians demonstrated a higher diagnostic level in the test set, but still 
lower than the otosclerosis-LNN model.
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Figure S6 Demonstration of the diagnostic performance of otologists with the assistance of our otosclerosis-LNN model.
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Table S4 Using the otosclerosis-LNN model to assist otolaryngologists in the diagnosis of stapedial otosclerosis in the temporal bone high-
resolution CT images

Otologists

Total number of ears, n=140 (otosclerosis =78, normal =62)

True 
positives

False 
negatives

True negatives False positives Sensitivity Specificity

Otosclerosis-LNN 75 3 62 0 96.15% 100.00%

Chief physician A (~20 years) 78 0 12 50 100.00% 19.35%

Chief physician B (~20 years) 70 8 62 0 89.74% 100.00%

Associate chief physician A (~15 years) 70 8 58 4 89.74% 93.55%

Associate chief physician B (~15 years) 76 2 49 13 97.44% 79.03%

Associate chief physician C (~10 years) 76 2 55 7 97.44% 88.71%

Attending physician (~10 years) 77 1 56 6 98.72% 90.32%

Resident (~2 years) 66 12 62 0 84.62% 100.00%
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