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Roxithromycin attenuates inflammation via modulation of  
RAGE-influenced calprotectin expression in a neutrophilic asthma 
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Background: Roxithromycin (RXM), a macrolide antibiotic, exhibits anti-asthmatic effects, but its specific 
mechanism of action remains elusive. We evaluated the effects of RXM on airway inflammation, the 
expression of calprotectin, and the activity of the receptor of advanced glycation end products (RAGE) to 
determine whether RXM alleviates inflammation by regulating RAGE activation, and thereby calprotectin 
expression, in neutrophilic asthma.
Methods: Male Brown Norway rats were sensitized with ovalbumin (OVA) and Freund’s complete adjuvant 
(FCA) mixture, followed by OVA challenge to induce neutrophilic asthma. RXM (30 mg/kg) or FPS-ZM1 
(RAGE inhibitor, 1.5 mg/kg) was administered 30 min prior to each challenge. The infiltration of airway 
inflammatory cells and cytokines, as well as the expression of calprotectin and RAGE, was assessed.
Results: The expression of airway inflammatory cells and cytokines was found to be significantly elevated 
in OVA + FCA-induced rats. Increased expression of both calprotectin and RAGE was also detected in OVA 
+ FCA-induced asthma [bronchoalveolar lavage fluid (BALF) calprotectin: 15.07±1.79 vs. 3.86±0.69 ng/mL;  
serum calprotectin: 20.47±1.64 vs. 9.29±1.31 ng/mL; lung tissue homogenates calprotectin: 28.82±1.01 
vs. 12.02±1.38 ng/mg; BALF RAGE: 762.93±36.47 vs. 294.25±45.92 ng/mL; serum RAGE: 906.43±58.95 
vs. 505.60±30.16 ng/mL; lung tissue homogenates RAGE: 1,585.24±177.59 vs. 461.53±63.40 ng/mg; all 
P<0.001]. However, all of these changes were interrupted by RXM and FPS-ZM1.
Conclusions: RXM exerted similar effects as the RAGE inhibitor FPS-ZM1 in terms of reducing airway 
inflammation and downregulating the expression of calprotectin and RAGE in a neutrophilic asthma model. Our 
findings provide novel insights into the mechanisms underlying the effect of RXM pretreatment on neutrophilic 
asthma. Furthermore, FPS-ZM1 may be useful as an intervention specific to the neutrophilic asthma phenotype.
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Introduction

Asthma is a heterogeneous disease with various phenotypes, 
and is mainly characterized by airway inflammation and 
airway hyperresponsiveness (1). Increasing evidence 
indicates that airway neutrophil infiltration in asthma 
is associated with disease severity and acute asthma 
exacerbation (2). Therefore, having safe and effective 
treatments for neutrophilic asthma is crucial.

MRP8 and MRP14, members of the S100 protein family, 
exist as the protein heterodimer calprotectin (also called 
S100A8/A9). Calprotectin is predominantly expressed by 
activated neutrophils, and comprises >30% of neutrophil 
cytoplasmic proteins (3). Recently, it was identified as an 
important damage-associated molecular pattern (DAMP) via 
the receptor of advanced glycation end products (RAGE) and 
Toll-like receptor 4 (TLR4) (4,5). Emerging evidence suggests 
that calprotectin is a useful biomarker of inflammatory 
processes, including rheumatoid arthritis, juvenile idiopathic 
arthritis, and inflammatory bowel disease (6). The recent study 
has shown that calprotectin levels in patients with asthma 
correlated negatively with forced expiratory volume in one 
second/forced vital capacity, body mass index, and positively 
with smoke amount and blood neutrophil percentage (7). 
In addition, calprotectin has a pivotal role in inflammation 
by inducing the secretion of inflammatory cytokines (8,9). 
Owing to its critical involvement in inflammatory reactions, 
calprotectin has received significant attention in studies of 
asthma (10,11).

RAGE, a multi-ligand receptor belonging to the 
immunoglobulin receptor superfamily, is an important 
transmembrane protein (12). There is a growing body of 
evidence implicating RAGE, via the binding of its ligands, 
including calprotectin, as a major driving mechanism in the 
pathogenesis of inflammatory states (13-15). Furthermore, 
one study showed that RAGE and its ligands may be 
potential hallmarks for inflammatory disorder progression 
and severity (16). Nevertheless, little has been revealed 
about RAGE’s role in asthma to date.

It has been shown that macrolides appear to be beneficial 
in the prevention of myocardial remodeling via matrix 
metalloproteinase (MMP) and nitric oxide (NO) regulation, 
which indicates that macrolides may be alternative therapies for 
suppressing inflammatory remodeling (17,18). Roxithromycin 
(RXM), a broad-spectrum macrolide antibiotic, enhances 
phagocytosis and the bactericidal activities of neutrophils (19).  
Studies demonstrated that RXM ameliorates colitis by 
suppressing oxidative stress and downregulating NF-κB-

mediated proinflammatory signaling (20,21). Furthermore, 
it has become increasingly evident that RXM has efficacy in 
reducing the risk of asthma exacerbations (22,23); however, the 
mechanisms underlying this effect are not yet fully understood.

In this study, we established a neutrophilic asthma 
model to investigate the effects of RXM and its underlying 
mechanisms. To this end, we hypothesized that RXM may 
alleviate airway inflammation via inhibition of RAGE, 
which modulates the expression of calprotectin.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/atm-21-859).

Methods

Animals and grouping

Male Brown Norway rats, aged 6–8 weeks and weighing 
150–180 g, were obtained from the Beijing Vital River 
Laboratory Animal Center (Beijing, China) and allowed 
to acclimate to their environment for 7 days. The rats 
were kept in a pathogen-free environment at 25 ℃ with 
a 12-h light/dark cycle, and were allowed access to food 
and water ad libitum. Experiments were performed under 
a project license (protocol wydw2019-019) granted by 
the Animal Care and Protection Committee of Wenzhou 
Medical University, in compliance with the Animal Care 
and Protection Committee of Wenzhou Medical University 
guidelines for the care and use of animals. The rats were 
randomly assigned to four groups (each comprising six rats): 
control, asthma, asthma + FPS-ZM1, asthma + RXM.

Neutrophilic asthma model and treatments

Our neutrophilic asthma model was established according 
to the improved method of Dejager et al. (24). Briefly, the 
rats were sensitized with an intraperitoneal (i.p.) injection of 
0.5 mg ovalbumin (OVA, Sigma-Aldrich, USA) emulsified 
in 0.5 mL Freund’s complete adjuvant (FCA, Sigma-
Aldrich, USA) in 0.5 mL normal saline (NS) on days 1 and 8. 
From days 15–19, the sensitized rats were challenged with 
1% OVA aerosol for 30 min once daily. Rats in the asthma 
+ RXM group had intragastric (i.g.) administration of 
RXM (MedChemExpress, USA; 30 mg/kg), and rats in the 
asthma + FPS-ZM1 group had i.g. administration of FPS-
ZM1 (SelleckChem, USA; 1.5 mg/kg) 30 min before the 
challenge. Rats in the control group were sham-sensitized 
and challenged with NS (Figure 1A).

http://dx.doi.org/10.21037/atm-21-859
http://dx.doi.org/10.21037/atm-21-859
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Collection of serum and bronchoalveolar lavage fluid 
(BALF)

The rats were anesthetized and humanely killed 24 h after 
the last challenge. Blood samples were collected from the 
abdominal aorta and the supernatants were centrifuged at 
1,006 g for 15 min and stored at –80 ℃. The rats’ left lungs 
were washed with saline solution via a tracheal cannula, 
and the fluid collected was centrifuged at 112 g for 15 min 
at 4 ℃. The supernatants were kept as BALF and stored at 
–80 ℃. The cell pellet was resuspended in saline solution 
using a hemocytometer (Bio-Rad, USA) to count the total 
number of cells. Wright’s staining was performed to obtain 
differential cell counts. 

Histopathological analysis

The rats’ right lungs were fixed in 4% paraformaldehyde 

and stained with hematoxylin and eosin (H&E) for light 
microscopy (Leica, Germany). The inflammation score was 
evaluated by a sample-blinded pathologist using the H&E-
stained sections (25). 

Enzyme-linked immunosorbent assay

The concentrations of calprotectin, RAGE, interleukin (IL)-
17, and IL-6 in BALF and serum, and the concentrations 
of calprotectin and RAGE in lung tissues, were quantified 
using enzyme-linked immunosorbent assay (ELISA) kits 
(Absin, China) according to the manufacturer’s protocols. 

Western blotting analysis

The isolated lungs were flash-frozen in liquid nitrogen, 
then homogenized and sonicated in ice-cold RIPA 
lysis buffer (Beyotime, China) containing protease and 
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Figure 1 Effects of roxithromycin (RXM) on bronchoalveolar lavage fluid (BALF) cells of ovalbumin (OVA)+ Freund’s complete adjuvant 
(FCA)-induced rats. (A) Experimental protocols for the neutrophilic asthma model and treatments. Total cells (B), percentage of neutrophil 
(C), and percentage of eosinophil (D) in BALF. Data are expressed as mean ± standard deviation (SD) (n=4–6 per group). ##, P<0.01 
compared to the control group; **, P<0.01 compared to the asthma group.
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phosphatase inhibitor (Applygen, China) to obtain protein 
extracts. A total of 50 μg of protein was loaded onto 10% 
or 12% sodium dodecyl sulfate (SDS)-polyacrylamide gels 
for electrophoresis (SDS-PAGE) and transferred onto 
polyvinylidene difluoride (PVDF) membranes (Millipore, 
USA). Membranes were blocked with Tris-buffered saline 
containing 5% non-fat dried milk for 2 h prior to incubation 
with primary antibodies against RAGE (Santa Cruz, USA) 
and GAPDH (CST, USA), respectively, overnight at 4 ℃. 
The membranes were incubated with HRP-conjugated 
anti-mouse or anti-rabbit secondary antibodies (Biosharp, 
China) for 1.5 h at room temperature. After treatment 
with enhanced chemiluminescent reagents (Pierce, USA), 
the target protein was quantitatively analyzed using Image 
Lab software (Bio-Rad, USA) (target protein gray value/
GAPDH gray value). 

Statistical analysis

The data are expressed as mean ± standard deviation (SD). 
Comparisons among groups were performed using one-way 
analysis of variance followed by Tukey’s (equal variances 
assumed) or Dunnett’s (equal variances not assumed) 
post-hoc multiple comparisons. Correlation analysis was 
conducted using Pearson’s correlation coefficient. SPSS 
21.0 software (SPSS, USA) was used for statistical analyses, 
and P<0.05 was considered statistically significant. 

Results

Effect of RXM on airway inflammatory cells in BALF

Our results revealed a notable increase in the total number 
of inflammatory cells in OVA + FCA-induced rats relative 
to controls [(24.12±2.49) vs. (4.82±1.68) ×105/mL, P<0.001, 
Figure 1B], especially in the percentage of neutrophils 
(21.50%±2.35% vs. 3.17%±1.17%, P<0.001, Figure 1C). 
The percentage of eosinophils was also increased in OVA 
+ FCA-induced rats relative to controls (8.67%±0.82% vs. 
1.33%±0.52%, P<0.001, Figure 1D). Treatment with RXM 
significantly reduced these effects compared with the asthma 
group [(13.63±2.36) vs. (24.12±2.49) ×105/mL; 9.17%±0.75% 
vs. 21.50%±2.35%; 3.67%±0.82% vs. 8.67%±0.82%; all 
P<0.001, Figure 1].

Effect of RXM on infiltration of airway inflammatory cells

Relative to the controls, OVA + FCA-induced rats 

developed evidently narrowed airways, increased mucosal 
wrinkles, and extensive inflammatory cell infiltration and 
aggregation in the bronchi, perivascular, and alveolar 
spaces (Figure 2A). The RXM treatment suppressed these 
histopathological responses, demonstrating more anti-
inflammatory activity relative to the asthma group (Figure 2). 

Effect of RXM on inflammatory cytokines in BALF and 
serum

The concentrations of IL-17 and IL-6 in the BALF 
(136.31±6.18 vs. 32.65±9.17 ng/mL; 69.60±6.02 vs. 
10.62±3.83 ng/mL; all P<0.001) and serum (185.76±18.82 
vs. 89.15±15.24 ng/mL; 99.16±9.60 vs. 46.65±5.59 ng/mL; 
all P<0.001) were markedly elevated in the asthma group 
compared with controls (Figure 3A,B). Of note, all of these 
elevated expression levels were reduced by RXM compared 
with the asthma group (108.12±8.28 vs. 136.31±6.18 ng/mL,  
P=0.002; 39.07±6.95 vs. 69.60±6.02 ng/mL, P<0.001; 
138.42±15.13 vs. 185.76±18.82 ng/mL, P=0.007; 64.81±4.65 
vs. 99.16±9.60 ng/mL, P<0.001, Figure 3). 

Effect of RXM on expression of calprotectin in OVA + 
FCA-induced rats

Calprotectin plays a critical role in the inflammatory 
response (26), so we examined its expression in BALF, 
serum, and lung tissue. Our results revealed a notable 
increase in the concentration of both BALF and serum 
calprotectin in the asthma group relative to the control 
group (15.07±1.79 vs. 3.86±0.69 ng/mL; 20.47±1.64 vs. 
9.29±1.31 ng/mL; all P<0.001, Figure 3C). Similar results 
were found according to the ELISA results for the lung 
tissue homogenates (28.82±1.01 vs. 12.02±1.38 ng/mg,  
P<0.001, Figure 4A). In contrast, RXM reversed the 
expression pattern of calprotectin compared with the 
asthma group (11.21±0.76 vs. 15.07±1.79 ng/mL, P=0.001; 
14.36±0.78 vs. 20.47±1.64 ng/mL, P<0.001; 16.94±1.40 vs. 
28.82±1.01 ng/mg, P<0.001, Figures 3C,4A). 

Involvement of RAGE in the effect of RXM on OVA + 
FCA-induced changes in calprotectin expression

As illustrated in Figure 4B,C, RAGE was upregulated after 
OVA + FCA exposure (1.06±0.05 vs. 0.18±0.05, P<0.001). 
ELISA analysis also showed high levels of RAGE in 
BALF, serum, and lung tissue compared with controls 
(762.93±36.47 vs. 294.25±45.92 ng/mL; 906.43±58.95 vs. 



Annals of Translational Medicine, Vol 9, No 6 March 2021 Page 5 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(6):494 | http://dx.doi.org/10.21037/atm-21-859

505.60±30.16 ng/mL; 1,585.24±177.59 vs. 461.53±63.40 
ng/mg; all P<0.001, Figures 3D,4D); RXM treatment 
significantly inhibited this elevation (559.70±64.32 vs. 
762.93±36.47 ng/mL; 649.85±61.33 vs. 906.43±58.95 
ng/mL; 860.30±134.56 vs. 1,585.24±177.59 ng/mg; all 
P<0.001). To further investigate the mechanisms of RXM 
intervention in calprotectin expression and neutrophilic 
asthma, we used the FPS-ZM1 group for comparison. As 
expected, FPS-ZM1 suppressed calprotectin expression 
and reduced airway inflammation, further supporting 
a preeminent role for RAGE in the pathogenesis of 
neutrophilic asthma.

Correlative analysis of various parameters

The ELISA revealed that the concentration of calprotectin 
correlated positively to the concentration of RAGE 
(r=0.9611, 0.9063, 0.9353; all P<0.001; Figures 4E,5A,B). 
The concentration of calprotectin correlated positively 
to IL-17 in both serum and BALF (r=0.8674, 0.9670; all 

P<0.001; Figure 5C,D), and it also correlated positively 
to IL-6 in both serum and BALF (r=0.9037, 0.9362; all 
P<0.001; Figure 5E,F). Moreover, there was a positive 
correlation between calprotectin and both total BALF 
cells and total neutrophils (r=0.9096, 0.8760; all P<0.001; 
Figure 5G,H).

Discussion

Neutrophils and their harmful secretions are well 
recognized as one of the reliable clinical biomarkers of lung 
disease progression (27). Pronounced airway neutrophil 
infiltration is a central feature of neutrophilic asthma, which 
is a major cause of both severe and refractory asthma (1,2). 
Based on our earlier findings, we developed a neutrophilic 
asthma model induced by OVA and FCA. Our results 
revealed airway hyperresponsiveness and a notable increase 
in neutrophil-predominant inflammatory cells in the OVA 
+ FCA-induced rats. Neutrophil infiltration is known to 
involve a vast array of chemokines and cytokines. IL-17 
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and IL-6, among other cytokines, are crucial mediators of 
neutrophil recruitment and activation (28,29). Previous 
research has demonstrated that the airway tissues of 
asthmatic subjects with severe and persistent symptoms are 
characterized by preferential neutrophilic infiltration with 
elevated levels of both IL-17 and IL-6 (28-30). In addition 
to the increased airway neutrophils, our current study 
detected upregulation of IL-17 and IL-6 in both the serum 
and BALF from the asthmatic rats, which corroborated our 
model of neutrophil-mediated inflammation. Our primary 
finding was that pretreatment with RXM alleviated airway 
inflammation and modulated the expression of calprotectin 
and RAGE in neutrophilic asthmatic rats. Further, we found 
that blocking RAGE activation suppressed calprotectin 
expression and weakened the inflammatory response.

Calprotectin, as one of the DAMPs belonging to the 
family of Ca2+-binding proteins, has been identified as a 
critical component of inflammatory diseases, including 
asthma (8,10). Differential proteomic analysis of BALF from 
asthmatic subjects has revealed that calprotectin is strongly 
linked to the pathogenesis of airway inflammation (31). 
The expression of calprotectin in lung tissue is significantly 
elevated during the early stage of OVA-induced asthma, so 
calprotectin may be involved in the initiation of the early 

inflammatory response in asthma (9). Moreover, proteomic 
identification of MMP-2–/–/MMP-9–/– asthmatic mice 
demonstrated that calprotectin was upregulated and that 
function-blocking antibodies to calprotectin meaningfully 
inhibited the migration of inflammatory cells into the 
alveolar space. This finding indicates that calprotectin 
induces chemotaxis and migration of airway inflammatory 
cells in asthma (32). 

Recent evidence has shown that calprotectin exerts its 
proinflammatory functions mainly by binding to the pattern 
recognition receptor (PRR) RAGE and thus activating 
inflammation-related downstream signaling pathways and 
upregulating the expression of proinflammatory cytokines (33). 
Another study showed that calprotectin could be upregulated 
with a high AGE burden, thereby aggravating proinflammatory 
conditions via the activation of RAGE; calprotectin expression 
and proinflammatory conditions were significantly suppressed 
by RAGE antagonism (34). In our previous experiment, we 
found that the concentration of S100A8 in asthmatic rats was 
notably increased, with relatively higher levels of RAGE (35). 
In this study, we added the FPS-ZM1 group, to further verify 
that the significant elevation of calprotectin in our neutrophilic 
asthma model positively correlated with the concentration of 
RAGE and airway inflammation. Most importantly, all of these 

Figure 3 Effects of roxithromycin (RXM) on inflammatory cytokines, calprotectin and the receptor of advanced glycation end products 
(RAGE) in serum and bronchoalveolar lavage fluid (BALF). The concentrations of interleukin (IL)-17 (A), IL-6 (B), calprotectin (C), 
and RAGE (D) in serum and BALF by Enzyme-linked immunosorbent assay (ELISA). Results were obtained from three independent 
experiments. The data are expressed as mean ± standard deviation (SD) (n=4–6 per group). ##, P<0.01 compared to the control group; *, 
P<0.05 compared to the asthma group; **, P<0.01 compared to the asthma group.
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changes were alleviated by FPS-ZM1. These findings are in 
accordance with the results from the other studies discussed 
above.

As a PRR, RAGE has emerged as a key regulator of 
inflammatory processes (36), and it is strongly expressed 
in the lungs (12). Genome-wide association studies 
have identified RAGE as an important player in the 
pathogenesis of human asthma (37). Clinical studies have 
suggested an increased level of RAGE is present in sputum 
samples from asthmatic subjects; such levels correlate 
with disease severity (38). In a house dust mite asthmatic 
model, RAGE-knockout mice were devoid of most of the 
pathological features, including airway hypersensitivity, 
airway inflammation, and airway remodeling, that are 
found in wild-type mice. Furthermore, these findings were 
reproduced in an OVA-induced asthmatic model, which 

demonstrated the fundamental importance of RAGE 
in asthma (39). Additional analysis revealed that RAGE 
promoted IL-33 expression and mediated its downstream 
inflammatory signaling effects in response to asthma; the 
absence of RAGE impeded this reaction (40). In the present 
study, OVA + FCA-induced rats showed elevated RAGE 
expression levels, and RAGE inhibition attenuated OVA 
+ FCA-induced airway inflammation, which confirms the 
pronounced significance of RAGE in neutrophilic asthma. 

Given the inefficacy of corticosteroids in neutrophilic 
asthma, considerable interest has been given to potential 
alternative therapeutics. Because infections with bacteria and 
viruses are moderately associated with asthma severity (41),  
antibiotics, especially macrolides, have shown promise, 
as presented in decreased sputum neutrophil counts and 
alleviation of symptoms (42-44). Our previous study found 

Figure 4 Effects of roxithromycin (RXM) on calprotectin and the receptor of advanced glycation end products (RAGE) in lung tissue. The 
concentration of lung tissue calprotectin (A) by Enzyme-linked immunosorbent assay (ELISA). The expression of RAGE in lung tissue 
was analyzed by Western blotting (B) and normalized to the levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (C). The 
concentration of lung tissue RAGE (D) by ELISA. The correlation between RAGE and calprotectin in lung tissue (r=0.9611; E). Results 
were obtained from three independent experiments. Data are expressed as mean ± standard deviation (SD) (n=4–6 per group). ##, P<0.01 
compared to the control group; **, P<0.01 compared to the asthma group.
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that RXM could reduce airway inflammation by inhibiting 
the PI3K-δ/Akt signaling pathway and upregulating histone 
deacetylase 2 (HDAC2) expression (22). In the present 
study, RXM treatment reduced the number of airway 
inflammatory cells, neutrophils, and the concentration of 
inflammatory cytokines. RXM was also associated with 
downregulation of calprotectin and RAGE. 

In conclusion, pretreatment with RXM exerted similar 
effects as the RAGE inhibitor FPS-ZM1, and RXM may 
suppress calprotectin expression via inhibition of RAGE 
activation, further suppressing the secretion of inflammatory 

cytokines and airway inflammation, which improves the 
neutrophilic asthma. Our findings provide novel insights 
into the mechanism of RXM in neutrophilic asthma; namely, 
that a RAGE inhibitor may be a potential candidate for 
neutrophilic asthma therapy. Additional studies are underway 
that are exploring the promising new therapeutic options for 
neutrophilic asthma of inhibiting calprotectin and RAGE. 
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