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Background: Treatment with radiolabeled ligands to prostate-specific membrane antigen (PSMA) is 
gaining importance in the treatment of patients with advanced prostate carcinoma. Previous imaging with 
positron emission tomography/computed tomography (PET/CT) is mandatory. The aim of this study was 
to investigate the role of radiomics features in PSMA-PET/CT scans and clinical parameters to predict 
response to 177Lu-PSMA treatment given just baseline PSMA scans using state-of-the-art machine learning 
(ML) methods.
Methods: A total of 2,070 pathological hotspots annotated in 83 prostate cancer patients undergoing PSMA 
therapy were analyzed. Two main tasks are performed: (I) analyzing correlation of averaged (per patient) 
values of radiomics features of individual hotspots and clinical parameters with difference in prostate specific 

antigen levels (ΔPSA) in pre- and post-therapy as a therapy response indicator. (II) ML-based classification 
of patients into responders and non-responders based on averaged features values and clinical parameters. 
To achieve this, machine learning (ML) algorithms and linear regression tests are applied. Grid search, cross 
validation (CV) and permutation test were performed to assure that the results were significant.
Results: Radiomics features (PET_Min, PET_Correlation, CT_Min, CT_Busyness and CT_Coarseness) 

and clinical parameters such as Alp1 and Gleason score showed best correlations with ΔPSA. For the 
treatment response prediction task, 80% area under the curve (AUC), 75% sensitivity (SE), and 75% 
specificity (SP) were obtained, applying ML support vector machine (SVM) classifier with radial basis 
function (RBF) kernel on a selection of radiomics features and clinical parameters with strong correlations 

with ΔPSA.
Conclusions: Machine learning based on 68Ga-PSMA PET/CT radiomics features holds promise for the 
prediction of response to 177Lu-PSMA treatment, given only base-line 68Ga-PSMA scan. In addition, it was 

shown that, the best correlating set of radiomics features with ΔPSA are superior to clinical parameters for 
this therapy response prediction task using ML classifiers.
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Introduction

Machine learning (ML) has gained essential importance 
in therapy planning and patient selection for certain 
treatments recently (1,2). The role of radiomics features 
for patients screening for certain therapies has been under 
investigation as well (3,4). Prostate cancer (PC) is one 
of the most common malignancies in men worldwide. 
If spread beyond the prostate it can lead to a significant  
mortality (5). Although treatment of advanced PC has 
improved significantly in recent years, more than 250.000 
fatalities are caused by PC per year.

Radioligand therapy targeting the prostate specific 
membrane antigen (PSMA) gained great importance in the 
last years and a clear benefit for patients who do not respond 
to any other available treatment was shown (6). In these 
patients, pretherapeutic imaging is performed using PSMA 
analogues labeled mainly with positron emitters Gallium-68 
or Fluorine-18 as theranostics approach (7). However, 
about 10% to 32% of the patients show progressive disease 
during treatment with 177Lu-PSMA (8). Therefore strategies 
to differentiate patients who may benefit from therapy 
from patients who may not benefit are of great importance. 
Pretherapeutic PSMA positron emission tomography/
computed tomography (PET/CT) scans as well as different 
clinical parameters like initial Gleason score or serum levels 
of prostate-specific antigen (PSA) have been investigated for 
this purpose without clear findings (9).

In the past years, radiomics features such as textural 
parameters have been gaining importance in the analysis 
of PET/CT data. The significance of textural features 
analysis in diagnosis and therapy response prediction using 
PSMA PET/CT scan has been shown as well (3,4,10,11). 
Our previous findings showed that machine learning (ML) 
can facilitate detection of pathological uptake in 68Ga-
PSMA PET/CT scans with nuclear medicine (NM) expert 
accuracy (12). Also, for the prediction of treatment response 
to 177Lu-PSMA therapy in PC patients first results have 
been published by Khurshid et al. showing that there is a 
significant correlation between the mean homogeneity and 
entropy of PET scans as patient-based textural features 
on the one hand, and the PSA level difference as a therapy 

response indicator on the other hand (13). While many 
studies aimed at analyzing the correlation between each 
clinical or textural parameter and tumor malignancy or 
therapy response, respectively (11,13), many ML methods 
are available that outperform independent feature analyses 
by combining several parameters to perform similar  
tasks (1,2,12).

In the presented study, we propose a method for 
treatment response prediction in patients undergoing 
177Lu-PSMA therapy. In the first step, the baseline scans 
are manually annotated to detect the pathological uptakes 
of the whole cohort resulting in 2070 hotspots. Then, 
the radiomics features of all the annotated hotspots are 
calculated individually. Afterwards, linear regression is 
performed to identify best correlating features and clinical 
parameters with changes in PSA-level as surrogate marker 
for treatment response and survival (14). Finally, ML 
methods are applied on different combinations of the 
features and clinical parameters to predict response to 177Lu-
PSMA treatment. We aim at quantifying the classification 
accuracy of different ML classifiers for the prediction task.

We present the following article in accordance with the 
MDAR checklist (available at http://dx.doi.org/10.21037/
atm-20-6446).

Methods

Patients and Volume of interest (VoI) definition and 
annotation

A total of 83 male patients with advanced PC scheduled 
for treatment with 177Lu-PSMA were included in this 
retrospective analysis. The patients’ age range varied 
from 48 to 87 years and their Gleason score ranged from 
6 to 10. The serum PSA level range of the cohort was 
between 4.7 and 5,910 ng/mL. All patients underwent pre-
therapeutic 68Ga-PSMA PET/CT scans 5 to 21 days before 
the beginning of the treatment. The scans were carried out 
between November 2014 and August 2019. About 40 to  
80 minutes after intravenous injection of 98 to 159 MBq 
in-house produced 68GA-HBED-CC PSMA, a Biograph 
2 PET/CT system (Siemens Medical Solutions, Erlangen, 

(PET); computed tomography (CT); machine learning (ML)
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Germany) was used to take the low-dose CT (16 mAs,  
130 kV) from the base of skull to mid thigh. Then, the PET 
scan acquired over the same area with 3 or 4 minutes per 
bed position depending on the body weight of the patient. 
The PET data were reconstructed in 128 by 128 matrices 
with 5 mm slices thickness. The CT data were reconstructed 
in 512 to 512 matrices with 5 mm slice thickness. As 
implemented by the manufacturer, an attenuation-weighted 
ordered subsets expectation maximization algorithm was 
utilized for attenuation and scatter corrections (8 iterations, 
16 subsets), a 5 mm Gaussian post-reconstruction-filter was 
applied afterwards. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). All 
patients gave written and informed consent to the imaging 
procedure and for anonymized evaluation and publication 
of their data. Due to the retrospective character of the data 
analysis an ethical statement was waived by the institutional 
ethical review board according to the professional 
regulations of the medical board of Nordrheinwestfalen, 
Germany.

For each scan, all the pathological hotspots have been 
identified and delineated by a trained nuclear medicine 
physician (NM) (board certified with 7 years’ experience 
in PET/CT analysis) using InterView Fusion software 
(Mediso Medical Imaging, Hungary, Version 3.08.005). 
The hotspots include the primary tumor if present as well 
as metastatic uptakes in any organs. Per hotspot, a total of 
73 (37 PET-based + 36 CT-based) features were calculated  

(Table 1). The features include first and higher order 
statistics features (mean, max, kurtosis, etc.), shape based 
features (max diameter and volume), textural features 
(entropy, contrast, homogeneity, etc.), and volumetric zone 
and run length statistics (grey-level non-uniformity, short 
run emphasis, etc.).

In addition to the radiomics features, fourteen numerical 
clinical parameters have been taken into account for each 
individual patient. These clinical parameters include age, 
weight, height as well as therapeutic parameters such as 
Gleason score, ALP1 and base-line serum PSA level. For 
the detailed list of the clinical parameters, see Table 2.

According to previous findings (14) and as surrogate 
markers for treatment response, prostate specific antigen 
(PSA) serum values have been collected at the time point 
of the PET/CT examination and seven to eight weeks after 
the treatment. Changes in PSA levels (∆PSA) between these 
time-points have been used for further analyses. Based on 
the calculated ∆PSA values, out of the 83 patients, 59 and 
24 patients have been classified as responders and non-
responders respectively.

Statistical analysis

Linear regression
After accumulating the data from all the scans, radiomics 
features and clinical parameters of individual patients were 
combined to form feature vectors for further analyses. 

Table 1 List of the radiomics features from both PET and CT modalities. Please note that the total lesion glycolysis (TLG is PET-specific)

First or higher order 
statistics

Shape and size Textural Volumetric zone length statistics Volumetric run length statistics

Deviation Max. diameter Entropy Short zone emphasis Short run emphasis

Mean Homogeneity Long zone emphasis Long run emphasis

Max Correlation Low grey-level zone emphasis Low grey-level run emphasis

Min Contrast High grey-level zone emphasis High grey-level run emphasis

Sum Size variation Short zone low grey-level emphasis Short run low grey-level emphasis

PET-TLG Intensity variation Short zone high grey-level emphasis Short run high grey-level emphasis

Kurtosis Coarseness Long zone low grey-level emphasis Long run low grey-level emphasis

Busyness Long zone high grey-level emphasis Long run high grey-level emphasis

Complexity Zone percentage Grey-level non-uniformity

Run length non-uniformity

Run percentage

PET, positron emission tomography; CT, computed tomography.
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To achieve these, the values of the radiomics features of 
the individual pathological hotspots of each patient were 
averaged to calculate the mean values of the features. The 
clinical parameters of the individual patients were then 
merged with their corresponding radiomics features.

To correlate individual features and clinical parameters 
with ∆PSA, linear regression has been used for all the 73 
features and 14 numerical clinical parameters. The ∆PSA is 
calculated by subtracting the PSA level at the post therapy 
scan from the corresponding PSA level at the pre-therapy 
scan. Therefore, a negative value of ∆PSA means the patient 
had responded to the 177Lu-PSMA therapy and vice versa.

As the numbers of responders and non-responders (59 
and 24 patients respectively) to the 177Lu-PSMA therapy in 
the original cohort did not match, for the linear regression 
task, a balanced subset of the cohort with 24 patients 
in each category of responders or non-responder was 
formed. The 24 responders have been randomly selected 
out of the whole 59 responders (the demographic and 
physiological distributions were maintained during the sub-
sampling). As will be described in the classification and 
cross-validation (CV) sub-sections, each of the balanced 

and unbalanced cohorts were sub-divided into training and 
validation data-sets to assess the prediction performance 
for the classification task. Hence, the linear regression 
analyses have been conducted on training data-sets of 
balanced and unbalanced cohorts separately. As a result, 
best sets of radiomics features and clinical parameters which 
had strong correlations (P value <0.05) with ∆PSA were 
identified for both balanced and unbalanced groups. These 
best correlating features and parameters were used for the 
analyses of treatment response prediction in the further 
steps. This strategy of identifying the best correlating 
parameters by only considering training cohorts helps to 
avoid over-fitting (15).

Classification
As support vector machines (SVMs) and decision tree 
based methods are widely used for clinical treatment 
outcome predict ion [e .g. ,  predict ion outcome of  
chemotherapy (16), prediction of optimal cancer drug 
therapies (17), and risk stratification in primary prostate 
cancer (18)], we have applied several classifiers from these 
groups for the therapy response prediction task. The 
five ML classifiers [linear, radial basis function (RBF), 
and polynomial kernel SVM (19), ExtraTrees (20), and 
RandomForest (21)] were used to investigate the relative 
importance of different groups of radiomics features and 
clinical parameters. The accuracy measures [area under 
the curve (AUC), sensitivity (SE), and specificity (SP)] are 
averaged to calculate the total precision for each of the 
tasks. Thus, for each pair of classifier and feature group, we 
calculate AUC, SE, and SP separately.

Cross-validation (CV)
It is essential to have separate data for hyperparameter 
tuning and for quantifying final accuracy to achieve 
generalizable results and to avoid over-fitting. To this end, 
two different CV steps are taken. In the first step, the whole 
data-set with 83 patients, including 59 responders and  
24 non-responders, is taken into account. In the second 
step, a balanced subset of the cohort with 48 subjects (the 
same subset as used for the prior linear regression task) is 
used for CV. This strategy of having an extra CV step based 
on a balanced cohort helps to identify if the classifiers’ 
scores on the unbalanced cohort were realistic.
Unbalanced cohort
First, the whole cohort of 83 patients was randomly sub-
divided into two subsets: (I) the training cohort with 56 
subjects, and (II) the validation or hold-out set with 27 

Table 2 Descriptions of the numerical clinical parameters

Parameter Description

Age Age at the first PSMA PET

Weight Weight at the first PSMA PET

Height Height at the first PSMA PET

Gleason score Describes abnormality degree of cancer 
cells in prostate

ALP1 Serum alkaline phosphatase at the first 
PSMA PET

PSA1 Serum PSA level at the first PSMA PET

Time difference Time between the first diagnosis and the 
first PSMA PET

Crea1 Serum creatinine at the first PSMA PET

CRP1 C-reactive protein in serum at the first 
PSMA PET

Hb1 Hemoglobin at the first PSMA PET

Erys1 Erythrocytes at the first PSMA PET

Thrombose1 Thrombocytes at the first PSMA PET

Leukos1 Leicozytes at the first PSMA PET

PSMA, prostate specific membrane antigen; PET, positron 
emission tomography.
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subjects. The demographics and clinical states of the cohorts 
were similar. The ratios of responders to non-responders 
in the training and validation sets were also comparable. 
To standardize and normalize the data, MinMaxScaler  
method (22) was used. Stratified-KFold CV with 3 folds 
applied to the training cohort for hyperparameter tuning.

In each CV step, a grid search has been performed to find 
the best set of parameters for each of the ML algorithms 
to predict the true labels for each category. For the grid 
search, several parameters with wide ranges of values  
(C=[1, 10, 100, 1000, 2-5, 2-3, ..., 215], gamma=[1e-3, 1e-
4, 2-15, 2-13, 2-11..., 23], etc.) were used to fine-tune the ML 
classifiers.

After tuning the best set of hyperparameters for each ML 
method based on the accuracies achieved on the training 
cohort, the prediction performances of the ML classifiers 
were quantified, comparing with the ground truth labels 
from the hold-out cohort. Again, the relative importance of 
different radiomics features groups and clinical parameters 
were analyzed individually.
Balanced cohort
As the numbers of the responder and non-responder 
groups did not match, additional CV steps have been taken 
based on a balanced subset of the cohort with 48 patients 
(including 24 responders and 24 non-responders). This 
balanced cohort was separated into training and validation 
sets as well. This time, the training cohort consisted of 
32 subjects and the validation or hold-out set consisted of 
16 patients. Again, the responder to non-responder ratio 
was equal in both of the training and validation subsets. 
Similar to the first CV step (for the unbalanced cohort), 
stratified KFold with 3 folds have been applied on the 
training set to fine-tune the hyperparameters, including 
standardization of the feature values as well as grid search 
on each CV iteration. Afterwards, as the final validation 
step and for each classifier applied to each group of features 
or clinical parameters, prediction accuracies were calculated 
on the validation subset. Finally, the accuracy measures 
of each classifier on each feature group applied to the 
validation (hold-out) cohort will be reported as the achieved 
performance.

Permutation test
To assure that the results are significant, a permutation 
test is performed. The permutation test rejected the null 
hypothesis which stated that permuted distribution of 
ground truth labels could have resulted in similar prediction 
scores. Hence, a separate three-fold CV on the cohort with 

32 patients from the second CV step is conducted. There 
were 80,000 total iterations with exactly similar groups of 
radiomics features and clinical parameters as well as ML 
classifiers as for the prior CV steps. In each CV step, the 
ground truth binary labels were permuted. All the AUCs 
equal to or higher than the threshold of 0.61 (the worst 
AUC achieved by our classifiers on the hold-out set) are 
counted. Then, to calculate the P value of the permutation 
test, the resulting number is divided by the total number of 
iterations [80,000]:

(n AUCs thrp
N

≥
=

）
	 [1]

where p is the P value of the permutation test, n() is the 
number  of the test scores over the given threshold (thr), 
AUCs are the calculated areas under the ROC curves for 
each classifier on each feature group at each iteration, and 
N is the total number of iterations (Eq. [1]).

Results

Linear regression-unbalanced cohort

Among all the 73 radiomics features and 14 numerical 
clinical parameters, the linear regression tests on the 
training set of the unbalanced cohort illustrated that 5 
radiomics features from both PET (Min and Correlation) 
and CT (CT_Min, CT_Coarseness, and CT_Busyness) 
modalities (named best correlating features or Best-
Radiomics from now on) have the best correlation scores 
with PSA level difference (P values <0.05) as the surrogate 
marker for therapy response. Figure 1A shows the regression 
diagrams of the 5 best correlating features with ∆PSA.  
Table 3 shows these 5 features and their corresponding 
r- and P values of the regression tests on the unbalanced 
group.

Linear regression-balanced cohort

As for the unbalanced cohort, the linear regression analyses 
on the training set of the balanced cohort resulted in a 
group of 3 radiomics features (PET_Min, CT_Busyness, 
and CT_Coarseness) and 3 clinical parameters (Alp1, 
Time difference, and Gleason score). The results are 
shown in Figure 1B and Table 4. For further analyses, 
two different groups of best correlating parameters are 
created. First group (Best-Radiomics) includes only the best 
correlating radiomics features and the second group (Best-
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Mixed) includes features or parameters which had strong 
correlation with ∆PSA from both of the radiomics and 
clinical groups.

Classification-unbalanced cohort

As shown in Table 5, the SVM classifier with RBF kernel 
had the best performance (83% AUC, 99% SE, and 99% 
SP) on the best correlating radiomics features with ∆PSA 
(named Best-Radiomics group) in the first CV step on the 
unbalanced training cohort with 56 subjects. The relatively 
low values of specificity for some classifiers applied to all 
the radiomics features or the mixture of all the 73 radiomics 
features and 14 numerical clinical parameters (named the 
Mixed group) reflect the unbalanced characteristic of the 
cohort.

Based on the grid search results on the CV step, 
hyperparameters of each classifier have been tuned  
(Table 6). These tuned values for the parameters have 

been used in the validation step to calculate the prediction 
score of the classifiers as applied to the hold-out set. In the 
validation step, the cohort of 56 subjects was used as the 
training data-set and the cohort of 27 subjects was used as 
the test set. The results of this validation step is shown in 
Table 7 and Figure 2. Here, the clinical parameters group 
showed relatively weak scores, compared to the scores 
achieved by the other groups. The results reveal that the 
polynomial kernel SVM with parameters degree =3 and 
C=1 had the best performance as applied to the mixture 
of all radiomics and clinical values (99% AUC, 84% SE, 
and 99% SP). Also, the SVM classifier with linear and 
RBF kernels achieved reasonable scores (95% AUC, 84% 
SE, and 88% SP and 96% AUC, 63% SE, and 99% SP 
respectively) as applied to the Mixed and Best-Radiomics 
groups respectively.

Classification-balanced cohort

Similar to the analyses of the unbalanced cohort, another 
CV step followed by a validation step has been conducted 
on the balanced training and test cohorts including 32 and 
16 subjects respectively. The results of the CV step are 
shown in Table 8. Here, as compared to the CV step for the 
unbalanced cohort, more consistent results are achieved. 
The highest scores (up to 99% AUC, 99% SE, and 99% 
SP) are achieved by almost all of the pairs of classifier-
parameter groups. These extremely high scores are achieved 
by the grid search for the purpose of hyperparameter tuning 
and are not considered as final accuracies.

The results of the hyperparameter tuning for the balanced 
cohort are presented in Table 9 and the results of applying 
the classifiers with the tuned parameters to the validation 
cohort are shown in Table 10 and Figure 3. Here, except for 
the clinical parameters group which showed insufficient 
prediction accuracies, the linear, polynomial, and RBF kernel 
SVM classifiers showed the most consistent performances 
(91% AUC, 99% SE, and 62% SP for linear SVM on 
radiomics group, 88% AUC, 99% SE, and 62% SP for 
polynomial SVM on radiomics group, and 80% AUC, 75% 
SE, and 75% SP for RBF SVM on Best-Mixed group).

The final step was the permutation test which has 
resulted in a P value of 0.0043 that assures the significance 
of the results.

Discussion

We showed that parameters of PSMA PET (Min and 

Table 3 List of the 5 best correlating radiomics features with 
PSA level change with their corresponding r- and P values on the 
training data-set of the unbalanced cohort with 56 subjects

Feature/parameter r-value P value

Min 0.3472 0.0087

Correlation −0.3634 0.0059

CT_Min 0.2701 0.0441

CT_Coarseness 0.3079 0.0210

CT_Busyness −0.3495 0.0083

PSA, prostate specific antigen; CT, computed tomography.

Table 4 List of the best correlating radiomics features [3] 
and clinical parameters [3] with PSA level change with their 
corresponding r- and P values on the training data-set of the 
balanced cohort with 32 subjects

Feature/parameter r-value P value

Alp1 0.4913 0.0043

Gleason score 0.3561 0.0455

Time difference −0.4435 0.0110

Min 0.4624 0.0077

CT_Coarseness 0.4287 0.0144

CT_Busyness −0.4492 0.0099

PSA, prostate specific antigen; CT, computed tomography.
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Table 6 Results of hyperparameter tuning step, applying 3-fold cross-validation (CV) for the unbalanced cohort: Tuned hyperparameters of the 
five ML classifiers on the five different feature or parameter groups on the unbalanced data-set of 56 subjects in the first validation step

Feature group Radiomics Clinical Mixed Best-radiomics

Classifier Tuned parameters Tuned parameters Tuned parameters Tuned parameters

Linear Kernel SVM C=2, gamma=0.001 C=1000, 
gamma=0.001

C=10, gamma=0.001 C=1, gamma=0.001

Polynomial Kernel SVM C=1, degree=3 C=1, degree=3 C=1, degree=3 C=32768, degree=3

RBF Kernel SVM C=1000, gamma=0.5 C=10, gamma=0.5 C=128, gamma=0.5 C=10, gamma=8

Extra Trees max_depth=20, min_
samples_leaf=10

max_depth=20, min_
samples_leaf=10

max_depth=10, min_
samples_leaf=8

max_depth=10, min_samples_
leaf=10

Random Forest max_depth=15, min_
samples_leaf=10

max_depth=5, min_
samples_leaf=4

max_depth=20, min_
samples_leaf=8

max_depth=1, min_samples_
leaf=10

SVM, support vector machine.

Table 5 Results of hyperparameter tuning step, applying 3-fold cross-validation (CV) for the unbalanced cohort: Prediction scores of the five ML 
classifiers on the five different feature or parameter groups on the unbalanced data-set of 56 subjects in the first CV step

Feature group Radiomics Clinical Mixed Best-radiomics

Classifier AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%)

Linear Kernel SVM 74/85/80 79/86/99 74/86/60 78/99/60

Polynomial Kernel SVM 74/92/99 79/93/80 74/85/99 78/99/67

RBF Kernel SVM 74/92/99 68/69/99 79/99/99 83/99/99

Extra Trees 84/92/67 84/93/83 89/92/83 84/99/80

Random Forest 79/92/60 84/93/67 84/92/67 79/99/60

AUC, area under the curve; SE, sensitivity; SP, specificity; SVM, support vector machine.

Table 7 Results of validation step for the unbalanced cohort: prediction scores of the five ML classifiers on the five different feature or parameter 
groups on the unbalanced data-set of 56 subjects in the first validation step

Feature group Radiomics Clinical Mixed Best-radiomics

Classifier AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%)

Linear Kernel SVM 88/68/88 46/84/25 95/84/88 99/42/99

Polynomial Kernel SVM 99/58/99 28/63/25 99/84/99 53/58/50

RBF Kernel SVM 81/68/75 37/79/25 76/79/50 96/63/99

Extra Trees 41/11/99 57/79/50 55/16/99 99/21/99

Random Forest 68/26/99 53/95/12 69/32/99 99/53/99

ML, machine learning; AUC, area under the curve; SE, sensitivity; SP, specificity; SVM, support vector machine.

correlation) have statistically significant correlations with 
the PSA level difference as a surrogate marker for therapy 
response prediction, which is in accordance with the 
findings by Khurshid et al. (13). Furthermore, it was shown 
that some of the features from the low-dose CT (CT_

Min, CT-Busyness, and CT-Coarseness) as well as three 
clinical parameters (Alp1, Time Difference, and Gleason 
score as defined in Table 2) have strong correlations with 
PSA level difference. In addition, by applying ML classifiers 
with tuned hyperparameters, we showed that features from 
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Figure 2 Receiver operating characteristic (ROC) curves for the final validation step on the unbalanced data-set. The five different diagrams 
are for the four different feature groups (radiomics, clinical, radiomics and clinical, and best radiomics).

Table 8 Results of hyperparameter tuning step, applying 3-fold cross-validation (CV) for the balanced cohort: Prediction scores of the five ML 
classifiers on the five different feature or parameter groups on the balanced data-set of 32 subjects in the second CV step

Feature group Radiomics Clinical Mixed Best-radiomics Best-mixed

Classifier AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%)

Linear Kernel SVM 90/99/99 91/99/99 99/99/99 90/99/80 99/99/99

Polynomial Kernel SVM 73/99/99 91/99/99 99/99/99 90/99/99 99/99/99

RBF Kernel SVM 90/80/99 99/99/99 99/99/99 90/99/99 99/99/99

Extra Trees 91/99/99 99/99/99 99/99/99 90/99/99 99/99/99

Random Forest 90/99/99 99/99/99 90/99/99 90/99/99 99/99/99

AUC, area under the curve; SE, sensitivity; SP, specificity; SVM, support vector machine.

baseline 68Ga-PSMA scan can help to predict responders to 
177Lu-PSMA therapy with reasonable certainty.

Due to the retrospective characteristic of the study 
and because of the fortunate fact that most of the PC 
patients examined at our 68Ga-PSMA PET/CT center are 

responders to the 177Lu-PSMA therapy, our original cohort 
was unbalanced with regard to response to the therapy. 
Thus, the whole cohort consisted of 59 responders and 24 
non-responders. Although the unbalanced cohort achieved 
reasonable results in terms of prediction accuracies, similar 
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analyzes were conducted on the balanced cohort to check 
if the accuracy scores could be maintained. However, as 
the size of the hold-out set for the balanced cohort (16 
subjects) was relatively small, relatively low specificities 
were achieved in the corresponding validation step. This 
important observation urges for studies on bigger cohorts 
in the future.

Although the clinical parameters have shown insufficient 
prediction performances in the validation steps on balanced 
or unbalanced data-sets, however; the overall best accuracy 
scores (up to 80% AUC, 75% SE, and 75% SP) are 
achieved on the combination of best correlating radiomics 
features and clinical parameters with ∆PSA (Best-Mixed) by 
SVM classifier with RBF kernel (Table 10).

As the results suggest, ML methods have shown their 
potential for further, automated algorithms for treatment 
response prediction in prostate cancer patients based on 

68Ga-PSMA PET/CT data and therefore for decision-
support tools. To implement this goal, our next steps include 
automated segmentation of hotspots, which was beyond the 
scope of this first study. Although in the presented study, 
the additional value of including clinical parameters could 
not be shown, in our opinion this is still an important topic 
and should be part of further studies.

Drawbacks of the study are for sure, that as gold-standard 
visual image analysis was used instead of histopathology as 
a real gold-standard. However, biopsies of more than one 
or two hotspots are hardly possible in patients, so this is 
actually the best option for ground truth data acquisition. 
Although we had just 83 patients included in this first study, 
we analyzed 2070 pathological hotspots in total, so that we 
could show statistical significance in our results. However, 
larger studies need to be performed in the future to enhance 
the predictive performances of the algorithms. Also beyond 

Table 9 Results of hyperparameter tuning step, applying 3-Fold cross-validation (CV) for the balanced cohort: Tuned hyperparameters of the five 
ML classifiers on the five different feature or parameter groups on the balanced data-set of 32 subjects in the second validation step

Feature group Radiomics Clinical Mixed Best-radiomics Best-mixed

Classifier Tuned Parameters Tuned Parameters Tuned Parameters Tuned Parameters Tuned Parameters

Linear Kernel SVM C=1, gamma=0.001 C=100, 
gamma=0.001

C=10, gamma=0.001 C=1, gamma=0.001 C=32,768, 
gamma=0.001

Polynomial Kernel SVM C=1, degree=2 C=10, degree=3 C=10, degree=3 C=32,768, degree=3 C=10, degree=3

RBF Kernel SVM C=1, gamma=2 C=10, gamma=2 C=1, gamma=0.03125 C=100, gamma=0.001 C=100, gamma=8

Extra Trees max_depth=5, min_
samples_leaf=10

max_depth=5, min_
samples_leaf=4

max_depth=10, min_
samples_leaf=10

max_depth=25, min_
samples_leaf=10

max_depth=10, 
min_samples_
leaf=10

Random Forest max_depth=1, min_
samples_leaf=10

max_depth=5, min_
samples_leaf=10

max_depth=10, min_
samples_leaf=8

max_depth=5, min_
samples_leaf=10

max_depth=10, 
min_samples_
leaf=10

SVM, support vector machine.

Table 10 Results of validation step for the balanced cohort: Prediction scores of the five ML classifiers on the five different feature or parameter 
groups on the balanced data-set of 32 subjects in the second validation step

Feature group Radiomics Clinical Mixed Best-radiomics Best-mixed

Classifier AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%) AUC/SE/SP (%)

Linear Kernel SVM 91/99/62 56/62/50 77/99/62 69/99/38 69/75/50

Polynomial Kernel SVM 88/99/62 58/75/50 75/75/62 80/88/50 75/75/62

RBF Kernel SVM 89/99/50 53/75/50 80/75/62 67/99/38 80/75/75

Extra Trees 86/88/50 45/50/38 80/99/50 68/75/50 61/62/38

Random Forest 80/88/50 42/62/25 81/99/50 71/88/38 75/99/25

ML, machine learning; AUC, area under the curve; SE, sensitivity; SP, specificity; SVM, support vector machine.



Annals of Translational Medicine, Vol 9, No 9 May 2021 Page 11 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):818 | http://dx.doi.org/10.21037/atm-20-6446

Figure 3 Receiver operating characteristic (ROC) curves for the final validation step on the balanced data-set. The five different diagrams 
are for the five different feature groups (radiomics, clinical, radiomics and clinical, best radiomics, and best mixed).
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the scope of this study was the analysis of how the results 
can be applied on 68Ga-PSMA PET scans with different 
protocols [such as PET/MRI (23)] or obtained with other 
PET scanners (24). This is an important topic in this field 
and needs to be investigated in further studies.

Conclusions

Machine learning based on pretherapeutic 68Ga-PSMA-
PET/CT radiomics features has shown high potential 
to predict response to treatment with 177Lu-PSMA. The 
application of combination of best correlating radiomic 
features with PSA level change showed its superiority 
compared to clinical parameters for the treatment response 
prediction task.
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