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In the 19th century, Dr. William Coley (the father of 
immunotherapy) mixed streptococcal bacteria with medicine 
and successfully treated a patient with inoperable sarcoma (1).  
The idea was to stimulate an immune response due to the 
bacterial infection, which presumably helped in treating 
the cancer. Although chemotherapy and radiotherapy 
eclipsed this field of research, their adverse effects have 
rekindled research into bacterial therapy. The human body 
is inhabited by trillions of symbiotic bacteria and microbes 
that coevolved with human beings. Bacterial metabolites and 
bacteria-host interactions shape the biological well-being 
of the host by actively impacting multiple host functions. 
One of the important consequential abodes of bacteria is 
the gut. Thanks to the rapidly growing sequencing industry, 
scientists are extensively studying the composition of gut 
microbiota in relation to various demographic and clinical 
characteristics such as geography (2), sex (3), age (4), dietary 
habits (5), and body mass index (6). 

Many studies have revealed the susceptibility of gut 
microbiota to a host’s diseases (7,8). Some studies have 
also shown the role of gut microbiota in modulating 
host response to immune checkpoint inhibitor cancer 
immunotherapy (9). Determination of healthy gut 
microbiota baselines is beneficial in tracking dysbiosis 
in many chronic non-communicable diseases such as 
Alzheimer’s (10), kidney disease (11) and schizophrenia (12). 
As the microbiome plays an integral part in the metabolism 
of its host, recognizing the effect of a dysbiotic microbiome 
in diseases could help in providing alternate therapy. Gut 
microbiota can directly modulate coronary artery disease 

by producing bile acids, coprostanol, short chain fatty acids, 
and trimethylamine-N-oxide, or indirectly by manipulating 
the immune system (13). In cardiovascular disease (CVD), 
heart failure has been associated with specific gut microbial 
species like Escherchia coli, Klebsiella pneumoniae and 
Streptococcus viridian (14). In another study, author showed 
altered gut microbiota in patients with symptomatic strokes 
and transient ischemic attack with increased abundance of 
Enterobacter, Megasphaera, Oscillibacter and Desulfovibrio (15).  
In the case of chronic kidney disease, a dysbiotic gut 
microbiome produces excess uremic toxins such as phenols 
and indoles, which can’t be completely removed during 
dialysis and lead to further complications (16). Wilkins 
et al. identified Bacteroides, Corynebacterium, Anaerococcus, 
Prevotella, Rothia, Sutterella, Eubacterium, Fusobacterium, 
Leptotrichia, Parabacteroides, Peptoniphilus, Porphyromonas, and 
Veillonella bacteria as the major genera associated with kidney 
diseases (17). Shen et al. compared the gut microbiota of 64 
schizophrenic patients with 53 healthy individuals, aiming 
to identify potential biomarkers for schizophrenia (18).  
They identified changes in Gammaproteobacteria (class-
level), Enterobacteriales (order-level) and Bacteroides fragilis 
(species-level) with potential association with schizophrenia. 
Zheng et al. demonstrated that germ-free mice receiving a 
fecal microbiome transplant from a schizophrenia patient 
exhibited lower glutamate and higher glutamine and 
GABA in the hippocampus and displayed schizophrenia-
like behavior (19). They also identified a panel of 
Aerococcaceae, Bifidobacteriaceae, Brucellaceae, Pasteurellaceae, 
and Rikenellaceae bacteria with the capability to distinguish 
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schizophrenia patients from healthy controls. Alzheimer’s 
disease involves deposition of amyloid beta (Aβ) in the brain 
followed by formation of plaques and neurofibrillary tangles 
composed of hyperphosphorylated tau protein (20). These 
amyloid deposits are responsible for neuroinflammation 
leading to synapse loss and neuronal death (21). Gut 
Escherichia coli is a source of curli, a bacterial amyloid (22), 
and it has been shown that rats exposed to curli-producing E. 
coli displayed increased neuronal alpha-synuclein deposition 
in both the gut and brain, and enhanced microgliosis and 
astrogliosis compared to rats exposed to bacteria unable to 
produce curli (23). 

Identifying the gut microbiota through 16srRNA 
sequencing is the first step in microbial therapy. Considering 
the role of gut microbiota in pathways pertaining to 
multiple diseases, researchers are targeting the involved gut 
microbiota for potential therapy. Wang et al. showed how 
a gut microbiota imbalance facilitates infiltration of the 
brain by peripheral immune cells, contributing to cognitive 
impairment by enhancing microglial activation (24). GV-
971, a sodium oligomannate that has shown cognitive 
improvement in phase 3 trials in China, reverses cognitive 
impairment by suppressing gut dysbiosis and associated 
phenylalanine/isoleucine accumulation. 

In another study, targeting the gut microbiome for kidney 
diseases, Devlin et al. described a novel approach to reduce 
the production of indoxyl sulfate (25). Using computational 
methods, the authors identified a tryptophanase gene 
present in some bacteria species colonizing the gut. 
Tryptophanase helps produce indole, a precursor to 
indoxyl sulfate, using tryptophan. Upon colonizing germ-
free mice with mutant bacteria harboring the deleted 
tryptophanase gene, authors observed no detectable serum 
or urinary indoxyl sulfate in the germ-free mice, in contrast 
to mice with wild-type bacteria. To determine if dietary 
intervention could alter the relative abundance of indole-
producing species, the authors colonized mice with both 
indole producer (wild-type Bacteroides theta) and non-
indole producer (wild-type B. caccae) bacteria. A diet rich in 
fructo-oligosaccharides (favors growth of B. caccae) shifted 
the bacterial community structure and decreased urinary 
indoxyl sulfate levels.

Gut microbiota have emerged as a powerful alternative 
for therapy for complex diseases. Modulating the gut 
microbiota has efficiently suppressed disease complications 
in mouse models. Although this field is gaining momentum 
rapidly, this field of research is still in its infancy. The major 
challenge is confirming the dysbiosis of the gut microbiome 

as a cause or consequence of the disease. Also, along with 
gut microbiota, other host factors such as genetics and 
geography might play an important role in the efficacy of 
microbial therapy. Understanding the interactions between 
different bacteria in the gut and in the diseased sites is also 
important to optimize therapeutic conditions. In conclusion, 
understanding the complex interactions of targeted bacteria 
with their surroundings and the host is required to optimize 
the overall impact of bacterial therapy in the host and 
minimize side effects. Whole genome sequencing and a 
multi-omics approach is needed to unveil bacterial structure 
and mechanisms and broaden our understanding of host-
bacteria interactions. Resolving these challenges will bring 
the use of bacterial therapy to its maximum potential and 
possibly initiate a new era of truly personalized medicines.
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