
Page 1 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(4):358 | http://dx.doi.org/10.21037/atm-21-295

Aberrant lactate dehydrogenase A signaling contributes metabolic 
signatures in pancreatic cancer
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Background: Pancreatic cancer (PC) has the lowest 5-year survival rate; therefore, new early screening 
methods and therapeutic targets are still urgently required. Emerging technologies such as metabolomic-
based liquid biopsy may contribute to the field. We found aberrant lactate dehydrogenase A (LDHA) 
signaling to be an unfavorable biomarker for PC.
Methods: A total of 9 genes of the glycolysis pathway were detected by enrichment analysis in the PC 
Gene Expression Omnibus (GEO) dataset. The relationship between LDHA/pyruvate kinase (PKM)/
fructose biphosphate aldolase A (ALDOA)/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 
patient survival was analyzed by Kaplan-Meier plotting analysis of The Cancer Genome Atlas (TCGA). 
The detection of changing metabolites in the serum of PC patients was performed using a nuclear magnetic 
resonance (NMR) spectrometer.
Results: We found LDHA was an independent predictor of overall survival (OS) in PC patients (P<0.001). 
Consistent with genetic aberrance of LDHA, we identified significant alterations in patients’ glycolysis-
related metabolites, including upregulation of lactic acid and downregulation of pyruvic acid. A 0.956 area 
under the curve (AUC) was achieved using the combinative metabolites score of lactic acid, pyruvic acid, 
citric acid, and glucose to distinguish PC from healthy controls.
Conclusions: Aberrant LDHA signaling is an unfavorable biomarker for PC and consequential metabolic 
changes constitute potential diagnostic signatures of PCs.
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Introduction

Pancreatic cancer (PC) is currently one of the 10 most 
commonly diagnosed cancer types in the United States (US), 
and the death rate of PC is 8%, making it the fourth most 
fatal cancer after lung, prostate, and colon cancer in men 

(1,2). The 5-year survival rate of patients with this type of 
cancer is less than 5% due to presentation at late stages and 
the absence of early detection and treatment (3). Hence, it 
is important to explore possible early screening methods 
and therapies for PC. Many studies have focused on this 
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topic in recent years, and liquid biopsy is a promising field 
with great value for application.

 Liquid biopsy has the advantages of low invasive 
sampling, operability, fast turnaround time, and suitability 
for long-term monitoring. Among biomarkers used in liquid 
biopsy, metabolomics has the advantages of early diagnosis 
and treatment development. Metabolites play an important 
role in human cells and organs and are the key components 
in maintaining physiological function and intercellular 
signal transduction, which can reflect the state of the body 
directly and accurately, while genomics and proteomics are 
more about what may happen in organisms (4). Therefore, 
the usage of metabolism is viewed as one of the next-
generation methodologies of liquid biopsy after genomics 
(5-7). Tumors have a special metabolism that leads to 
metabolite alterations in the tumor microenvironment or 
even bodily status.

 Aerobic glycolysis is a metabolic phenomenon that 
always happens in cancer due to the increased need for 
energy consumption. Although aerobic glycolysis creates 
fewer adenosine triphosphates (ATPs) than normal glucose 
metabolism, cancer cells prefer to use the glycolysis 
pathway, which is used for energy supply only under anoxic 
conditions in normal tissue. This progression is known 
as the “Warburg effect”, and leads to the accumulation of 
lactic acid (8,9).

 Although glycolysis has been explored in many types 
of cancers, metabolic analysis in serum combined with 
genetic evidence in PC has not been reported. Here, we 

present the effect of glycolysis in PC on both sides. We 
analyzed PC and normal tissue gene expression data from 
Gene Expression Omnibus (GEO) data repositories and 
verified the differential expression of glycolysis-related 
genes. Then, The Cancer Genome Atlas (TCGA) dataset 
was used to analyze the correlation of these genes with 
the survival time and hazard. Then, serum metabolites 
were detected to determine the alterations between 
cancer patients and healthy controls. Glycolysis-related 
gene expression status and serum metabolite variety in 
PC patients were combined to explain the relationship 
between these 2 aspects. The overall workflow of this 
article is shown in Figure 1. Our results revealed some 
biomarkers that can promote earlier diagnosis and 
monitoring of curative effects. We present the following 
article in accordance with the MDAR checklist (available 
at http://dx.doi.org/10.21037/atm-21-295).

Methods
 

Sample collection

Venous fasting blood samples of the healthy cohort (n=70) 
and PC cohort (n=36) were collected at the Tianjin Medical 
University Cancer Institute and Hospital. All healthy 
controls included in this study were older than 18 years and 
healthy upon medical examination. Cancer samples were 
taken from hospitalized patients before operation, and PC 
status and clinical stages were confirmed by postoperative 
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pathology results. 
Blood samples were drawn into serum vacuum tubes 

and kept at room temperature for 30 minutes before 
centrifugation (1,200 ×g, 10 minutes), and serum samples 
were collected into tubes, stored at 80 ℃, and shipped in dry 
ice. The usage of serum samples in this study was reviewed 
and approved by the Ethics Committee of Tianjin Medical 
University Cancer Institute and Hospital (Scientific Ethical 
Approval No. bc2020101) and informed consent was taken 
from all the patients. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Gene expression and clinical data of PC patients

The microarray-based gene expression data of 36 tumor 
samples and 16 normal samples were obtained from GEO 
datasets (GSE16515; n=52). Gene expression and detailed 
clinical data for 181 PC (PAAD) patients were obtained 
from TCGA (https://cancergenome.nih.gov/abouttcga/
overview). The overall survival (OS) and other PC-related 
clinical data for each sample were all available in TCGA.

Statistical analyses

Differentially expressed genes (DEGs) were defined as more 
than 2-fold change in cancer patients (both upregulation 
and downregulation). The P values between cancer and 
normal cohorts were less than or equal to 0.05, and pathway 
enrichment analysis was performed with these DEGs.

Kaplan-Meier plots were used to estimate the correlation 
between OS and gene expression levels. The median expression 
value of each gene was selected as the grouping criterion, and 
cancer patients were divided into high-expression and low-
expression groups. A significant correlation was judged by  
P values. Univariate and multivariate Cox regression analyses 
were all shown in terms of hazard ratios (HRs), estimated 
95% confidence intervals (CIs), and P values; P values in the 
multivariable Cox proportional hazards model were the key 
indices to identify independent predictors.

The receiver operating characteristic curve (ROC) 
analysis for the combination of 4 metabolites was calculated 
using linear regression. The calculated formula was: 
score (all) =14.143−1.896× (concentrationglucose) −7.812× 
(concentrationcitrate) −2.818× (concentrationlactate) +68.845× 
(concentrationpyruvate).

All statistical analyses and data plotting were performed 
using R software (http:///www.r-project.org). Two-tailed 
P values were obtained, and a significant difference was 

defined with a cutoff value of 0.05.

Serum metabolite detection

Serum samples were prepared and detected according 
to Bruker in vitro diagnostic research standard operating 
procedures (IVDr SOPs) at ProteinT Biotechnology Co., 
Ltd. (Tianjin, China). Briefly, samples were thawed at room 
temperature, 400 µL of serum samples and 400 µL of buffer 
(phosphate buffer pH 7.4 containing TSP-d4, Bruker) were 
fully mixed, and 600 µL of the mixture was transferred to 
a 5-mm nuclear magnetic resonance (NMR) tube pending 
analysis. The detection was performed on a 600 MHz NMR 
Avance III HD spectrometer equipped with a BBI probehead 
and SampleJet autosampler, which was regulated at 6 ℃ 
during detection (Bruker Biospin, Rheinstetten, Germany). 
Before acquisition, automatic tuning and shimming were 
performed on every sample. The free induction decays (FIDs) 
were presented as spectra after Fourier transformation, and 
automatic phase and baseline correction were performed in 
Topspin software as Bruker IVDr. The concentrations of 
metabolites were expressed as mmol/L.

Immunohistochemical analysis

Antibody against LDHA (HuaAn Biotechnology, Huangzhou, 
China) was used to perform immunohistochemical (IHC) 
staining in the PC tissues and paired adjacent normal tissues. 
Briefly, tissue sections were heated at 60 ℃ for 25 minutes, 
de-paraffinized in xylene, and rehydrated using graded 
alcohol. Hydrogen peroxide (0.03%) containing sodium azide 
was used to block endogenous peroxidase before primary 
antibody incubation. The sections were then incubated with 
streptavidin-HRP (streptavidin conjugated to horseradish 
peroxidase in PBS containing an anti-microbial agent) 
and 3,3’-diaminobenzidine (DAB)-substrate-chromagen 
respectively. Positive findings of the IHC staining were 
observed as a brown coloration in the tissue sections under a 
light microscope.

Results

Glycolysis-related differential gene expression in PC

We analyzed the GEO dataset of PC (GSE16515: 36 
cancer samples, 16 normal samples) (10-12) and identified 
794 DEGs (fold change (cancer/normal) >2 or <0.5, 
P<0.05). A total of 186 genes were downregulated, while 
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608 genes were upregulated in cancer patients (Figure 2A).  
Then, we performed pathway enrichment analysis and 
noticed that 9 genes were enriched in the glycolysis 
pathway: phosphofructokinase (PFKP), pyruvate kinase 
(PKM), fructose bisphosphate aldolase A (ALDOA), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
phosphoglycerate kinase (PGK1), lactate dehydrogenase-A 
(LDHA), bisphosphoglycerate mutase (BPGM), enolase 2 
(ENO2), and alcohol dehydrogenase (ADH1B). Except for 
ADH1B, the remaining 8 genes were all overexpressed in 
cancer (Figure 2B,C,D).

Glycolysis-related genes are predictive of prognostic 
potential

To determine the relationship between the expression of 

these 9 genes and survival time in the glycolysis pathway, 
we analyzed the TCGA PC dataset (181 PC samples). The 
median expression value of each gene was selected as the 
grouping criterion, and cancer patients were divided into 
high-expression and low-expression groups. Kaplan-Meier 
plots were generated, resulting in a significant correlation 
between the high expression of 4 genes and lower OS: 
LDHA (P<0.0001), ALDOA (P=0.012), GAPDH (P=0.033), 
and PKM (P=0.012), as shown in Figure 3. The expression 
of the other 5 genes was not significantly related to survival 
probability, as shown in Figure S1.

Moreover, we chose the clinical data in TCGA that are 
associated with PC risk, as reported (13), such as gender, 
age, family history of cancer, and history of diabetes, among 
others. We performed univariate and multivariate Cox 
regression analyses on these clinical data and 4 survival-
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Figure 2 Differential expression and glycolysis-related gene expression in PC. (A) Heatmap analysis of DEGs in the pancreatic cancer GEO 
dataset. (B) Bubble diagram of the top 10 enriched pathways in KEGG (top 10). (C) Heatmap analysis of glycolysis-related gene expression. 
(D) The expression levels of 9 genes of the glycolysis pathway in the cancer and normal cohorts in the GEO dataset. PC, pancreatic cancer; 
DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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related genes in glycolysis (LDHA, ALDOA, GAPDH, 
PKM). In univariate Cox analysis, age, neoplasm histologic 
grade, primary therapy outcome success, and the expression 
of LDHA and PKM were significantly associated with 
survival time. After multivariate regression analyses, age, 
primary therapy outcome success, and the expression of 
LDHA remained remarkable, while neoplasm histologic 
grade and the expression of PKM were no longer significant 
(as shown in Table 1). These results identified LDHA 
expression as an independent predictor of OS in PC 
patients.

Serum metabolites may reflect glycolysis status in PC

We tr ied  to  determine  the  metabol i te  changing 
characteristics in the serum of PC participants, which would 
lead to the possibility of early detection or monitoring 
of cancer recurrence. The detection of metabolites was 
performed using an NMR spectrometer (Bruker Biospin, 
Rheinstetten, Germany) in healthy and cancer cohorts. We 
identified 39 metabolites in serum. The detection values of 
some metabolites were below the limit of detection (LOD) 
in more than 80% of the samples, so we used the remaining 
24 metabolites for the following analysis (shown in Table S1). 
Figure 4A shows the profiling variation of these metabolites, 
and most were upregulated in cancer. Then, we performed 
principal component analysis (PCA) on the dataset, and the 
results showed that the normal and cancer serum samples had 

distinctive metabolomic profiles (Figure 4B).
Glycolysis-related metabolite concentrations showed 

upregulation of glucose and lactic acid and downregulation of 
pyruvic acid and citric acid in cancer patients (Figure 4C). We 
performed ROC analysis on these 4 metabolites alone and 
their combinations in cancer and healthy cohorts (Figure 4D). 
The areas under the curve (AUCs) of these metabolites were 
0.670 (citric acid), 0.732 (pyruvic acid), 0.778 (lactic acid), 
0.841 (glucose), and was best for the combination score of 
0.956 (all). The calculated formula of the combination score 
was: score (all) =14.143−1.896× (concentrationglucose) −7.812× 
(concentrationcitrate) −2.818× (concentrationlactate) +68.845× 
(concentrationpyruvate). The score was significantly lower (with 
more negative values) in cancer patients compared with the 
healthy cohort (shown in Table 2).

LDHA overexpression and metabolites alternation in PC 
specimens

We chose another 3 PC patients, and performed IHC 
staining in the PC and adjacent normal tissues with LDHA 
antibody. The clinical parameters and contrast-enhanced 
computed tomography (CT) scans are shown in Figure 5A. 
Briefly, pre-operative CT scans showed the tumor location 
and rough tumor size (the exact size of tumors were 
measured post-operatively); intraoperatively, the frozen 
section showed that the mass had features of a tumor of the 
pancreas with negative resection margins; the CT scans 
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Figure 3 Kaplan-Meier plots of 4 genes in the glycolysis pathway.

https://cdn.amegroups.cn/static/public/ATM-21-295-Supplementary.pdf


Jiang et al. Lactate dehydrogenase A signaling is aberrant in pancreatic cancer 

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(4):358 | http://dx.doi.org/10.21037/atm-21-295

Page 6 of 11

Table 1 Univariate and multivariate Cox regression analyses of PC in TCGA

Variables
Univariate Multivariate

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 1.028 (1.007–1.049) 0.0092 1.0317 (1.0098–1.054) 0.0043

Gender 0.833 (0.5541–1.252) 0.379

Drugs 1.034 (0.9851–1.086) 0.175

Family history of cancer 1.09 (0.8408–1.414) 0.514

History of diabetes 0.981 (0.7544–1.276) 0.886

Lymph node examined count 0.998 (0.9766–1.02) 0.853

Maximum tumor dimension 1.012 (0.9086–1.128) 0.825

Neoplasm histologic grade 1.335 (1.047–1.703) 0.0197 1.2434 (0.9323–1.658) 0.138069

New tumor event after initial treatment 1.325 (0.9736–1.803) 0.0735

Pathologic M 0.9325 (0.7562–1.15) 0.514

Pathologic N 1.14 (0.8922–1.456) 0.295

Pathologic T 1.354 (0.9822–1.867) 0.0643

Primary therapy outcome success 1.274 (1.092–1.486) 0.00208 1.3153 (1.1208–1.543) 0.00079

New neoplasm event type 1.082 (0.8394–1.394) 0.543

LDHA 1.003 (1.002–1.004) 1.41E-06 1.0039 (1.0024–1.006) 1.12E-06

ALDOA 1 (0.9998–1.001) 0.197

PKM 1.001 (1–1.001) 0.0358 0.9989 (0.9978–1.000) 0.053003

GAPDH 1 (1–1) 0.101

PC, pancreatic cancer; TCGA, The Cancer Genome Atlas; CI, confidence interval; M, metastasis; N, node; T, tumor; LDHA, lactate 
dehydrogenase-A; ALDOA, fructose bisphosphate aldolase A; PKM, pyruvate kinase; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase.

after operation confirmed no cancer was remaining; the PC 
diagnosis was confirmed by histopathology and IHC after 
operation. The clinical parameters of these 3 participants 
are shown in Table 3. 

The results of IHC indicated that LDHA was strongly 
overexpressed in all 3 cancer cases compared with their 
adjacent normal tissues (Figure 5B). In addition, we collected 
the serum samples of these 3 participants before and 1 week 
after their operations, NMR metabolite detection was also 
performed on these paired samples. The metabolites scores 
of preoperative samples were all less than −15, which could 
be grouped in the cancer cohort, and the scores showed 
some improvement in postoperative samples (Figure 5C).

Discussion

Aerobic glycolysis and the Warburg effect have been 

well studied in recent decades, and their high rates in PC 
create a hypoxic and nutrient-poor microenvironment 
(14,15). Glycolysis in PC regulates vigorous tumor growth, 
invasion, and migration via glycolytic enzymes (16,17). 
The overexpression of glycolysis enzymes has been 
reported in many cancer types (18,19). The gene PFKFB4 
was suggested to be a promoter of cancer metastasis in 
breast (20) and bladder cancer (21). Glycolysis induced 
by TP53 and apoptosis regulator (TIGAR) is associated 
with cancer progression and poor prognosis in lung cancer 
(22,23). The overexpression of ALDOA was also associated 
with poorer prognosis and possibility of metastasis (24), 
and the silencing of ALDOA in PAN-1 cells decreased 
proliferation and metastasis, which indicated that ALDOA 
may become a drug target (25,26). In this article, we found 
that 9 genes in glycolysis were overexpressed in PC, 4 of 
which are associated with patient OS. After multivariate 
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Figure 4 Metabolite changing characteristics in PC serum. (A) Sankey diagram of serum metabolite variety in cancer (cancer/normal). (B) 
Comparison of the cancer and normal metabolomes via principal component analysis. (C) Violin plot of serum glycolysis-related metabolites 
in cancer and normal cohorts. (D) ROC curves of glucose, citric acid, lactic acid, pyruvic acid, and their combination (all). PC, pancreatic 
cancer; ROC, receiver operating characteristic.

Cox regression analyses with PC risk factors, LDHA was 
identified as an independent predictor of PC.

In glycolysis, LDHA is a very important rate-limiting 

enzyme. It is the final step in the glycolysis pathway, 
catalyzing the formation of lactic acid from pyruvic acid, 
and has been reported to be overexpressed in many cancers; 
a decrease in LDHA suppresses proliferation and leads 
to cell death (27,28). There have been more studies on 
inhibiting LDHA than ALDOA (29,30). Small-molecule 
inhibitors, such as FX11 [3-dihydroxy-6-methyl-7-
(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid] and 
some novel LDHA inhibitors, were used alone or combined 
with gemcitabine in cell and mouse models, and the results 
showed that LDHA is a promising therapeutic target for 
cancer energy metabolism (31-33).

We tested the serum metabolites of cancer patients using 
NMR spectrometry and found that pyruvic acid and lactic 
acid were significantly downregulated and upregulated 
in cancer patients, respectively, which coincided with the 

Table 2 Glycolysis-related metabolites concentration statistics in 
mmol/L

Name
Cancer median 

(min–max)
Normal median 

(min–max)
P value

Glucose 5.75 (4.1–13) 5 (3.6–7.8) 1.31E-05**

Lactic acid 2.9 (1.6–5.1) 2.1 (1–3.9) 5.27E-06**

Pyruvic acid 0.05 (0–0.12) 0.07 (0.03–0.19) 2.84E-05**

Citric acid 0.09 (0–0.19) 0.11 (0–0.18) 0.0067*

Score −3.4 (−15.3 to 2.7) 3.5 (−1.7 to 7.9) 5.20E-11**

*, P<0.05; **, P<0.001.
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Figure 5 LDHA overexpression and metabolites alternation in pancreatic cancer specimens. (A) Clinical parameters and contrast-enhanced 
CT scans before and after operation in three cases. (B) IHC staining of LDHA in 3 PC and adjacent normal tissues. Magnification, ×200; 
scale bars, 50 μm. (C) Glycolysis-related metabolites score alternation in 3 pancreatic cancer patients before and after operation. LDHA, 
lactate dehydrogenase-A; CT, computed tomography; IHC, immunohistochemistry; PC, pancreatic cancer.

Table 3 Clinical parameters of 3 cases for IHC

Parameters Case 1 Case 2 Case 3

Gender Male Male Male

Age 59 67 59

Tumor size (cm) 3×2×1 6×4×3.5 4×3×3

Tumor location Pancreatic head Pancreatic body/tail Pancreatic head

Clinical staging Ib IIb Ib

Diagnosis Pancreatic ductal adenocarcinoma Pancreatic ductal adenocarcinoma (with 
osteoclast-like giant cell)

Pancreatic ductal adenocarcinoma

IHC, immunohistochemistry.

results of LDHA overexpression (Figure 6). Furthermore, 
we found that  citr ic  acid,  the f irst  metabolite in 
tricarboxylic acid (TCA) that is converted from pyruvic 
acid, was simultaneously downregulated. At the beginning 
of glycolysis, the glucose in the serum of our cancer 
participants was remarkably upregulated. Serum glucose 
concentration was positively associated with PC (34), and 
there were reports that high blood glucose levels of PC 
patients were also associated with poorer outcomes and 
increased mortality hazard (35,36). The ROC results using 
these glycolysis-related metabolites indicated that these 

serum metabolites could be good identifiers of PC; the 
combinative metabolites score was calculated using lactic 
acid, pyruvic acid, citric acid, and glucose, and was shown 
to be significantly higher in healthy cohorts, which may 
indicate potential as biomarkers for monitoring the curative 
effects of LDHA inhibitors. 

To validate LDHA overexpression and the metabolite 
results of our study, we collected the surgical tissue sections 
of another 3 hospitalized patients to perform IHC staining 
using an LDHA antibody. The IHC results showed that 
LDHA was significantly overexpressed in 3 cancer tissues 
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Figure 6 Serum metabolite variety coincides with the overexpression of LDHA. LDHA, lactate dehydrogenase-A.

when compared to their counterparts. We also tested the 
serum metabolites of these 3 patients before and after 
surgery. The metabolite scores were calculated, and the 
scores before operation were all less than −15, which was 
less than the minimum score of the healthy cohort in our 
previous results. These samples could be grouped into 
the cancer cohort via their glycolysis related metabolite 
characters; the scores of postoperative samples showed 
improvement, but had still not recovered to normal status. 
These results validated the overexpression of LDHA and 
the glycolysis-related metabolite characteristics revealed in 
our study.

In this study, we chose the methodology of NMR 
spectrometer using IVDr system (Bruker Biospin, 
Rheinstetten, Germany), which has the advantages 
of excellent reproducibility and accuracy, absence of 
contamination, high throughput, and lower cost per sample 
for better preparation and support of clinical screening (37).

Conclusions

Our results showed that upregulation of lactic acid 

and downregulation of pyruvic acid coincided with 
overexpression of LDHA in glycolysis, and the combination 
of 4 related metabolites (glucose, lactic acid, pyruvic acid, 
and citric acid) has excellent distinguishing power for PC 
and can be used as a biomarker for early diagnosis and 
monitoring of curative effects. However, the sample volume 
of our research was limited, and the use of these metabolites 
to monitor curative effects still requires validation through 
further study.
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Figure S1 Kaplan-Meier plots of another 5 genes in the glycolysis pathway.
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Table S1 Metabolite concentrations of cancer and healthy cohorts in mmol/L 

Name
Median (min–max)

Cancer Normal P value

Glucose 5.75 (4.1–13) 5 (3.6–7.8) 1.31E-05**

Lactic acid 2.9 (1.6–5.1) 2.1 (1–3.9) 5.27E-06**

Pyruvic acid 0.05 (0–0.12) 0.07 (0.03–0.19) 2.84E-05**

Citric acid 0.09 (0–0.19) 0.11 (0–0.18) 0.0067*

Creatinine 0.09 (0.05–0.15) 0.07 (0.03–0.13) 8.38E-05**

Alanine 0.45 (0.26–0.81) 0.47 (0.33–0.62) 0.907

Creatine 0.01 (0–0.06) 0.02 (0–0.08) 0.0132*

Glutamic acid 0.255 (0–1.1) 0.07 (0–0.13) 2.36E-07**

Glutamine 0.725 (0–0.98) 0.765 (0.61–0.98) 0.0013*

Glycine 0.235 (0.12–0.44) 0.285 (0.19–0.45) 0.0321*

Histidine 0.09 (0.05–0.14) 0.1 (0.06–0.19) 0.0018*

Isoleucine 0.07 (0.04–0.17) 0.06 (0.03–0.11) 0.0026*

Leucine 0.13 (0.08–0.29) 0.12 (0.07–0.19) 0.1348

Phenylalanine 0.09 (0.05–0.18) 0.07 (0.04–0.11) 1.95E-06**

Tyrosine 0.06 (0.04–0.08) 0.05 (0.03–0.08) 0.0006**

Valine 0.28 (0.19–0.53) 0.24 (0.15–0.38) 0.0124*

Acetic acid 0.075 (0.03–0.18) 0.01 (0–0.06) 4.47E-13**

Formic acid 0.045 (0.03–0.08) 0 (0–0.03) 6.97E-26**

3-Hydroxybutyric acid 0.09 (0–2.2) 0.06 (0–0.15) 0.0219*

Acetone 0.04 (0–0.56) 0 (0–0.05) 0.0015*

Glycerol 0.205 (0–0.66) 0.18 (0–0.39) 0.0552

Lysine 0.19 (0–0.28) 0.2 (0–0.3) 0.4329

Methionine 0.06 (0–0.13) 0.09 (0–0.12) 0.0026*

Ornithine 0.02 (0–0.14) 0 (0–0.38) 0.0032*

*, P<0.05; **, P<0.001.
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