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Comprehensive serum metabolic and proteomic characterization 
on cognitive dysfunction in Parkinson’s disease
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Background: Given the increased incidence of Parkinson’s disease (PD) and the lack of accurate early 
diagnosis of PD with cognitive impairment (PD-CI), we compared the serum metabolomes and proteomes 
of 26 patients with PD without cognitive impairment (PD-N) and 31 patients with PD-CI by combining 
grade-dependent proteomics and metabolomics analyses.
Methods: Logistic and linear regression analyses were performed for differential metabolic indicators, 
cognition, and clinical diagnosis. Ingenuity pathway analysis (IPA) was used to identify metabolites linked to 
different pathways. Bioinformatics revealed 16 differentially expressed proteins and 32 metabolites.
Results: The positive metabolic indicators related to the differential proteins were one sphingolipid, five 
phosphatidylcholines, and five long-chain fatty acids. The obtained metabolic and proteomics IPA network 
highlighted the central term of this network was inflammation and abnormal lipid metabolism which are 
prominent in PD-CI. There was a strong negative correlation between the Mini-Mental State Examination 
(MMSE)score and LPC (18:1). The receiver operating characteristic (ROC) of LPC (18:1) for PD-N and 
PD-CI showed that the area under the curve (AUC) value was 0.660 (P=0.039).
Conclusions: In conclusion, serum LPC (18:1) is inversely linked to cognition in PD and presented its 
potential clinical value in distinguishing the presence or absence of cognitive impairment in PD. The deeper 
implication of our discovery indicates abnormal lipid metabolism is associated with changes of cognitive 
status and suggests the potential for possibility of immune system- inflammatory involvement.
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Introduction

Parkinson’s disease (PD) is the second-most common 
neurodegenerative disorder; its prevalence is increasing, 
and it currently affects 2–3% of the population ≥65 
years of age (1). Cognitive dysfunction is one of the 
most frequent and troublesome non-motor issues in PD. 
Cognitive dysfunction and other non-motor symptoms 
can be preceded by a prodromal phase of years or even 
decades (2,3). Also, the clinical manifestations of PD usually 
lag behind changes in the brain or blood (4). It is not 
realistic to utilize the postmortem human brain tissue for 
proteomics and metabolomics analyses. Instead, analysis 
of proteins and metabolites in biofluids, such as serum, 
are relatively easy to obtain information and promote 
the understanding of the specific biological system and 
regulatory mechanisms in PD, which is conducive to 
identify the biomarkers and characteristics of PD patients 
with cognitive dysfunction. The precise mechanism of 
cognitive dysfunction in PD remains elusive. Identifying 
the α-synuclein as the first target etiological biomarker 
was especially relevant considering the pathophysiology 
of PD (5). Numerous attempts have been made to explore 
the proteomics and metabolomics of biological fluids such 
as cerebrospinal fluid (CSF), serum, blood, and urine. In a 
previous proteomics study, synaptic proteins in CSF showed 
the potential to detect impairments in synaptic function and 
neurotransmitter transmission (6). Moreover, metabolites 
have been considered a potential reflection of physiologic 
and pathologic conditions.

The emergence of novel methods and methodologic 
improvement promised a bright future geared toward 
identifying and quantifying metabolites and proteins in 
biological samples (7). Specific and sensitive biomarkers 
can assess disease risk during the early phase. For example, 
glutamatergic dysfunction was identified as a contributor 
to neurodegenerative disease pathology (8), and glutamine 
is significantly higher in PD patients than the non-
PD population (9). Some PD indicators are known, and 
evidence exists for others, however, some have yielded 
contradictory findings that makes their true relationship 
with non-motor symptoms unclear. One study reported 
that decreased total tau (t-tau) and phosphorylated tau 
(p-tau) in CSF can predict cognitive impairment in PD (10). 
However, subsequent prospective longitudinal studies failed 
to show associations between t-tau and p-tau levels and 
cognitive decline (11,12). There remains a need to establish 
sensitive, specific, and reliable biomarkers for PD.

Due to each-omics technique’s specificity and the 
limitations of employing a single-omics strategy, it is 
important to use complementary and powerful techniques 
to identify more precise biomarkers; this approach reduces 
the bias inherent from a single method. Our research’s 
primary objective was to use systematic and comprehensive 
technology to reveal the characteristics of metabolism and 
protein in serum biology of PD with significant cognitive 
impairment. Our findings supported significant differences 
in the proteomic and metabolic profiles of PD exhibiting 
an inflammatory and lipid metabolism profile alterations. 
Meanwhile, we hope to find a potential biomarker with 
instructive significance. This could profoundly impact PD 
diagnosis. Additionally, the findings of altered metabolic 
pathways in PD patients will further the understanding of 
the pathophysiological mechanisms underlying cognitive 
impairments in PD. We present the following article 
following the TRIPOD reporting checklist (available at 
http://dx.doi.org/10.21037/atm-20-4583).

Methods

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by clinical research ethics committee of Xuzhou Medical 
University Affiliated Hospital (XYFY2017-KL047-01, 
XYFY2017-KL047-02, XYFY2017-KL047-03) and 
informed consent was taken from all individual participants.

Participants

We enrolled 57 participants with PD.

Inclusion and exclusion criteria
Patients were included if they met the following criteria: (I) 
PD diagnosis confirmed by the UK Brain Bank Criteria (13), 
(II) aged between 50 and 75 years, (III) Hoehn and Yahr 
(H-Y) stage <5; (IV) serum material available for analysis; 
and (V) provided written informed consent. Participants 
were excluded if they had any history of: (I) severe vascular 
encephalopathy or normal-pressure hydrocephalus, (II) 
head injury, (III) metabolic disease, (IV) severe psychiatric 
illness, or (V) medication-induced PD.

Clinical evaluation (behavioral and cognitive 
assessments) and potential study confounders
We collected participant demographic and clinical 
characteristics including age, sex, years of education, 
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age at onset, occupation, anthropometrics, social habits, 
alcohol and tobacco use. The Unified Parkinson’s Disease 
Rating Scale (UPDRS) and H-Y stage were used to classify 
movement disorder severity. Structured questionnaires 
including the Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment (MoCA) were used to assess 
global cognitive function. The cognitive status diagnosis 
in patients with PD was assigned by consensus among 2 
neurologists on the basis of a neuropsychological battery 
(MMSE, MoCA) and the physician-administered neurologic 
examination and physician-visits on daily living status.

Grouping based on cognition function level
First of all, based on the MMSE results, the subjects who 
scored more than 26 were deemed to be no cognitive 
impairment preliminarily. Then the MoCA assessment was 
further combined for further cognition examination. In 
addition, clinicians’ daily follow-up and inquiry of patients’ 
daily cognitive performance is also a big determinant for 
cognitive evaluation. Synthesizing the above three aspects, 
the presence or absence of cognitive impairment of PD 
patients was judged by the clinician. After that, researchers 
in lab began to analyze the cognitive characteristics of these 
two groups and reveal the comprehensive serum metabolic 
and proteomic characterization of these two groups. 
Subjects were grouped by clinician judgment and then data 
was analyzed by researchers to avoid the occurrence of 
selective bias in our study. During the grouping cognitive 
analysis, we found that one group subjects who have relative 
good cognitive performance, hardly any impact on life, so 
defined as cognitively healthy patients with PD group (PD-
N). On the contrary, subjects who scored less than 26 of 
MMSE and were also poor performance in MoCA scale and 
daily life were regarded as cognitively impairment patients 
with PD group (PD-CI).

Serum sample preparation
On the morning of the patient’s enrollment (7:00–9:00), 
vacuum tubes (BD Biosciences, Franklin Lakes, NJ, USA) 
were used to collect peripheral venous blood in a fasting 
state. The supernatant was subjected to centrifugation 
at 3,000 rpm for 15 minutes and was then collected and 
maintained at −80 ℃ until analysis.

Proteomic analysis

Serum high-abundance protein depletion
Serum samples were processed to deplete the top two 

[albumin, immunoglobulin G (IgG)] high-abundance 
proteins using the ProteoExtractTM Albumin/IgG 
Removal Kit (Calbiochem, La Jolla, CA, USA).

Isobaric tags for relative and absolute quantitation 
(iTRAQ) labeling
According to the bicinchoninic acid assay quantitative 
results, 100 μg of protein from each sample was moved to a  
1.5-mL tube, 8 M urea [0.1% sodium dodecyl sulfate (SDS)] 
and ultra-pure water (0.1% SDS) was added, and 4.5 L of 
triethylammonium bicarbonate (1 M) was added. The total 
volume was up to 100 μL, and the urea concentration was 4 M. 
We added 5 μL 200 mM tris(2-carboxyethyl) phosphine, 
and the sample was incubated at 55 ℃ for 1 h. The sample 
was acetylated with 5 μL of 375 mM iodoacetamide, 
followed by 660 μL of acetone overnight. The precipitation 
was washed with acetone, and then 2.5 μg trypsin was 
added for overnight enzyme digestion. The proteins were 
labeled with iTRAQ reagent (catalog no. 4390812; AB 
SCIEX, Framingham, MA, USA) (14). Reverse-phase 
liquid chromatography separation and mass spectrometry 
(Q Exactive mass spectrometer; Thermo Fisher Scientific, 
Waltham, MA, USA) were performed by CaptialBio 
Technology (Beijing, China).

Mass spectrometry and bioinformatic analyses
Protein identification was performed using the Mascot 
search engine (version 2.3.0; Matrix Science, London, 
UK) against the Uniprot_Human Database containing 
216,686 sequences. All proteins were submitted for database 
searching and quantitative analysis using Protein Pilot 
v 3.0 (Applied Biosystems, Foster City, CA, USA). The 
conditions for screening differentially expressed proteins 
were as follows: fold change ≥1.5 and P value ≤0.05; fold 
change ≤2/3 and P value ≤0.05. Blast2GO software (www.
blast2go.org) was used to obtain Gene Ontology (GO) 
annotations. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) was also used to identify pathways (data 
not shown).

Non-targeted metabolomics analysis

Sample preparation
For ultra-high-performance liquid chromatography linked 
to tandem mass spectrometry (UHPLC-Q-TOF/MS),  
400 μL of MeOH/acetonitrile (ACN) (1:1, v/v) containing 
2-chloro-L-phenylalanine (1,000:5, 1 mg/mL stock in 
dH2O) were added to 100 μL of each serum sample, and the 
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samples were vigorously vortexed for 30 s. The solutions 
were then centrifuged at 12,000 rpm for 15 min at 4 ℃. 
Next, 425 μL of the supernatant was transferred to a clean 
vial and dried in a vacuum concentrator. Dried samples 
were subsequently reconstituted with 100 μL of ACN/
H2O (1:1, v/v) and vortexed for 30 s. A 60 μL aliquot of the 
supernatant was then subjected to UHPLC-Q-TOF/MS. 
Additionally, 10 μL of each sample was taken and pooled as 
quality control (QC) samples.

Chromatography and mass spectrometry
UHPLC-Q-TOF/MS analysis was performed using a 
UHPLC system (1,290 series, Agilent Technologies, 
Santa Clara, CA, USA) coupled to a quadrupole time-of-
flight (TOF) mass spectrometer (Triple TOF 5600, AB 
SCIEX). The Triple TOF mass spectrometer was used 
for its ability to acquire mass spectrometry (MS/MS)/MS 
spectra on an information-dependent basis during a liquid 
chromatography (LC)/MS experiment with acquisition 
software (Analyst TF 1.7, AB SCIEX) that continuously 
evaluates the full scan survey of MS data as it collects 
and triggers MS/MS spectra acquisition depending 
on preselected criteria. Electrospray ionization source 
conditions were set as follows: ion source gas 1, 60 Psi; ion 
source gas 2, 60 Psi; curtain gas pressure, 35 Psi; source 
temperature, 650 ℃; ion spray voltage floating, 5,000 V 
in the positive mode or −4,000 V in the negative mode; 
collision energy, 30 eV.

Quality control
The same concentration and amount of internal standard 
substance L-2-chlorophenylalanine were added to each 
sample detected by UPLC-QTOF-MS to monitor 
instrument performance or correct the data.

Metabolomics analysis
MS raw data (wiff) files were converted to the mzXML 
format using ProteoWizard and processed by R package 
XCMS (version 3.2). R package CAMERA was used for 
peak annotation after XCMS data processing. An in-
house MS2 database was used for metabolite identification. 
SIMCA-P 14.1 (Umetrics, Umeå, Sweden) was employed 
for multivariable analysis, including principal components 
analysis (PCA) with mean-centered (ctr) scaling and 
orthogonal partial least squares discriminant analysis 
(OPLS-DA) with unit variance scaling. Variables with VIP 
(variable importance in projection) >1 were considered to 
have significant contributions to the model. R2 and Q2 were 

used to characterize the explanatory and predictive ability of 
the model. Potential metabolic biomarkers with VIP >1 and 
a Student’s t-test P value <0.05 were selected. Differentially 
abundant metabolites were cross-referenced to the pathways 
by further searching commercial databases including 
KEGG (http://www.genome.jp/kegg/) and MetaboAnalyst 
(http://www.metaboanalyst.ca/).

Combined proteomics and metabolomics analysis

Two-way orthogonal partial least squares (O2PLS) 
analysis
O2PLS analysis (15) is an integrative method capable 
of modeling systematic variation while providing more 
parsimonious models that aid interpretation (Figure S1). 
Cross-validation was performed to calculate Q2 values. 
Loadings from O2PLS are interpreted in the same way as 
for PCA; specifically, we looked for clusters, outliers, and 
interesting patterns in the line plots.

Correlation analyses of proteins and metabolites
Spearman algorithm for correlation calculation was used 
to obtain the correlation coefficient matrix and correlation  
P value.

KEGG pathway analysis of sphingolipid and arachidonic 
acid metabolism
Positively correlated metabolomics data obtained as 
described above were divided into the following categories: 
sphingolipid, arachidonic acid (AA), and lecithin. 
Quantitative changes of individual metabolites and proteins 
and adjacent regulated factors were calculated and graphed 
on the KEGG-based pathway map as a grade function.

Creation of network pathway maps
Ingenuity pathway analysis (IPA) was used to identify 
interaction networks among selected candidates from 
the above data using Cytoscape 3.6.1. Signaling pathway 
annotations and relevant networks were generated using 
IPA software (IPA; QIAGEN, Hilden, Germany), which 
was introduced in 2003 and helps researchers analyze omics 
data and model biological systems.

Statistical analysis

Group differences in categorical variables (e.g., sex, levodopa 
use, and smoking status) were assessed with chi-square 
tests. Group comparisons of all other clinical characteristics 

https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
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(e.g., age, UPDRS score), and relative levels of different 
indexes, were performed using the Student’s t-tests test if 
continuous variables follow a normal distribution, otherwise 
Kruskal-Wallis H test. General linear model analysis with 
mixed effects was adapted to investigate metabolite level 
differences. Relationships between metabolites, proteins, 
and clinical measurements were explored using Spearman 
correlation coefficients. The results are shown in the form 
of a matrix. Partial correlation analysis based on a general 
linear model was used to calibrate correlation analysis 
results adjusted for age, sex, smoking status, hypertension, 
diabetes, disease duration, and H-Y grade. Finally, serial 
analysis of MMSE and MoCA results was carried out 
using a linear regression method. Logistic regressions 
were carried out between serum metabolites, baseline 
characteristics, and clinical diagnosis. Receiver operating 

characteristic (ROC) curves were constructed and the areas 
under the ROC curves (AUCs) were calculated to evaluate 
the characteristics of metabolites that could be sensitive 
biomarkers to identify the presence or absence of cognitive 
impairment in PD. All statistical analyses were performed 
using SPSS22.0 software (IBM Corp., Armonk, NY, USA), 
and differences were considered significant with a two-sided 
α=0.05.

Results

Demographic characterization of study subjects

A total of 26 cognitively relatively healthy patients with 
PD (PD-N) and 31 PD patients with cognitive impairment 
(PD-CI) were enrolled. Demographic data and clinical 
data are presented in Table 1. There were no significant 

Table 1 Demographic and clinical data of PD participants

Group PD-N PD-CI X
2
/Z/t P

Total No. of subjects 26 31

Gender: male, N (%) 14 (53.8) 16 (51.6) 0.028 0.866

Age 66.539 (9.961) 68.226 (7.419) −0.732 0.467

Education 8.54 (3.47) 5.13 (4.85) −2.607 0.009*

High blood pressure N (%) 8 (30.8) 10 (32.3)) 0.015 0.904

Diabetes, N (%) 7 (26.9) 7 (22.6) 0.144 0.704

Smoking, N (%) 4 (15.4) 7 (22.6) 0.470 0.493

Drinking, N (%) 6 (23.1) 9 (29.0) 0.259 0.611

PD-related clinical information

Disease duration, years 5.192 (7.047) 6.484 (6.152) −1.792 0.073

Hoehn-Yahr (modified) grading

1 12 7 −2.034 0.042*

1.5 1 2

2 10 13

2.5 0 1

3 3 6

4 0 2

5 0 0

MoCA 24.308 (2.797) 14.00 (4.397) −6.266 0.000*

MMSE 28.423 (1.748) 22.129 (5.512) −5.327 0.000*

*, P<0.05. PD, Parkinson’s disease; PD-CI, PD with cognitive impairment; PD-N, PD without cognitive impairment; MoCA, Montreal 
Cognitive Assessment; MMSE, Mini-Mental State Examination.
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differences between the two groups with regards to age 
(normal distribution and homogeneity of variance, t=−0.732, 
P>0.05), sex ratio, hypertension, diabetes, cigarette smoking, 
or alcohol drinking (chi-square test, P>0.05), but there was 
a difference in education status (Z=−2.607, P=0.009). The 
average PD disease duration was 5.192 (7.047) years for 
the PD-N group, which was not notably different from the 
PD-CI group [6.484 (6.152) years (Z=−1.792, P=0.073)]. 
For the PD scale, the frequency distribution was distinctly 
different between the groups (Z=−2.034, P=0.042). PD-
CI participants had significantly lower scores than PD-N 
patients on the MMSE (Z=−5.327, P=0.000) and MoCA 
(Z=−6.266, P=0.000) assessments.

Identification of differentially serum proteins profiling in 
PD

Differential serum proteins were compared in PD-CI and 
PD-N participants using iTRAQ and LC-MS/MS. Serum 
sample quality was verified by SDS-polyacrylamide gel 
electrophoresis (Figure S2). We observed that indicates 
similar expression patterns within the same groups  
(Figure S3A). We screened for intergroup differentially 
expressed proteins at a 1% false discovery rate (FDR) by 
searching the data in the UnitProt Human Database and 
calculated the p-value and fold change (FC) using a t-test 
in the R language, and the volcano plots of differential 
protein expression analysis was showed in Figure S3B. All 
differentially expressed proteins identified in the iTRAQ 
study are listed in Table S1. The cluster analysis results 
showed that the characteristics of samples from the same 
group were consistent (Figure S3C), which also affirmed 
the 16 differentially expressed proteins and reinforced the 
correlation.

Non-targeted metabolomics analysis

For UHPLC-Q-TOF/MS, there were 1,737 metabolite 
features in the positive ion model and 1,255 metabolite 
features in the negative ion mode. Typical total ion 
chromatograms of the metabolic profiles of the PD-CI and 
PD-N groups’ metabolic profiles are provided in Figure S4.

The PCA score plots obtained for PD-CI and PD-N are 
shown in Figure S5A,B. The parameters of the OPLS-DA 
score plots were R2X=0.691, R2Y=0.845, and Q2=0.32 in the 
positive mode and R2X=0.635, R2Y=0.25, and Q2=−0.0232 in 
the negative mode (Figure S5C,D). The samples in the two 
groups segregated into two distinct clusters, and the values 

indicated clear separation between PD-CI and PD-N.
For UHPLC-Q-TOF/MS, a total of 32 different 

metabolites were selected, with five metabolites in the 
positive and negative mode, respectively (Table S2). The 
screening results were visualized with a volcano plot 
(Figure S6).

Combined proteomics and metabolomics analysis

Serum metabolite and protein associations
Based on differentially expressed proteins and metabolites, 
Spearman rank correlations were used. The results are 
shown as thermograms that depict data with correlation P 
values <0.05 (Figure 1A,B). The metabolic indicators related 
to the differential proteins were mainly divided into the 
three categories: sphingolipid [D-erythro-Sphingosine-1-
phosphate (S1P)], phosphatidylcholines {1-palmitoyl-2-
hydroxy-sn-glycero-3-phosphoethanolamine [LPE(16:0)], 
1-palmitoyl-sn-glycero-3-phosphocholine [LPC(16:0)], 
1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine 
[LPC(18:0)], 1-oleoyl-sn-glycero-3-phosphocholine 
[LPC(18:1)], and PC(20:5/20:5)}, and long chain fatty acids 
(pentadecanoic acid, palmitic acid, AA).

Regulation network analysis by IPA
IPA pathway enrichment analysis (Figure 1C) revealed that 
the regulatory network associated with PD-CI is primarily 
related to the immune system. For example, proteins 
involved in cytokine signaling in the immune system 
include janus kinase 1 (JAK1), proteinase 3 (PRTN3), 
inositol polyphosphate-5-phosphatase (INPP5D) and 
intercellular cell adhesion molecule 1 (ICAM1); those 
involved in the adaptive immune system term include 
intercellular cell adhesion molecule 2 (ICAM2), INPP5D, 
mannose receptor C-type 1 (MRC1), and ICAM1; those 
involved in the interleukin (IL) signaling term include 
JAK1, PRTN3, and INPP5D; and those involved in the 
interferon signaling term include JAK1 and ICAM1. Up- 
or downstream of these terms, the participating metabolites 
include palmitic acid, AA, beta-estradiol, hydrogen 
peroxide, calcium (Ca2+), niacinamide, LPC (16:0), palmitic 
acid, AA; other participating proteins include epidermal 
growth factor receptor (EGFR), mitogen activated protein 
kinase 3 (MAPK3), filamin A (FLNA), and glycoprotein 5 
(GP5). Another regulatory network associated with PD-
CI is lipid metabolism including proprotein convertase 
subtilisin/kexin type 9 (PCSK9), INPP5D, and lecithin 
cholesterol acyltransferase (LCAT); the last is also involved 

https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
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Figure 1 Correlation analysis between differential proteins and metabolites and IPA analysis. (A) Spearman correlation analysis in the positive 
mode and (B) in the negative mode. *, P<0.05. Red (corr =1), Blue (corr =−1), White (corr =0). The horizontal coordinate is differential 
proteins, and the vertical coordinate is differential metabolites. (C) IPA pathway enrichment analysis. IPA, ingenuity pathway analysis.

A

B

C
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in the glycerophospholipid metabolism. Cytokines (tumor 
necrosis factor (TNF) and IL-6), metabolites (Ca2+ and 
hydrogen peroxide), and other proteins (JAK1 and MAPK3) 
are involved.

Mapping the regulatory and metabolic networks of 
sphingolipid, AA, and lecithin

A net map was drawn to visualize interactions in the full 
data set (Figure 2). It shows that 1-acyl-sn-glycero-3-
phosohocholine (LPC) was significantly higher in the PD-
CI group. There are two ways to generate LPC in vivo: 
catalyzed by LCAT to form LPC and cholesterol ester 
or catalyzed by phosphatidylcholine 2-acylhydrolase to 
hydrolyze the acyl chain at the sn-2 position to form LPC 
and long-chain fatty acid, which will lead to an increase 
in LPC. Our research observed increases in both LCAT 

expression and content of long-chain fatty acid (myristoleic 
acid, pentadecanoic acid, palmitic acid, AA, adrenic acid, 
docosatrienoic acid), consistent with the phenomenon of 
LPC. The concentrations of long-chain fatty acid products 
fatty acyl carnitine (L-palmitoylcarnitine and decanoyl-L-
carnitine) were also significantly increased. On the other 
hand, LPE (16:0) was significantly elevated, and we speculate 
that LPE is produced by hydrolysis of phosphatidyl 
ethanolamine (formed by phosphatidylethanolamine) 
catalyzed by phosphatidylcholine 2-acyl hydrolase.

Association of serum metabolites with cognition assessment

We sorted out the targeted metabolites and evaluated 
related literature to guide our focus to three major 
substances. Firstly, we generated a statistical description 
of the serum contents (relative values) of these metabolites 

long chain fatty acid:

Myristoleic Acid, Pentadecanoic Acid, 

Palmitic Acid, Arachidonic Acid,

Adrenic Acid, Docosatrienoic Acid

1-Acyl-sn-glycero-3-phosohocholine:

1-Palmitoyl-sn-glycero-3-phosphocholine, 

1-Stearoyl-sn-glycero-3-phosphocholine, 

1-Oleoyl-sn-glycero-3-phosphocholine

1-Acyl-sn-glycero-3-

phosphoethanolamine:

1-Palmitoyl-sn-glycero-3- 

phosphoethanolamine

Phosphatidylcholine 

2-acylhydrolase

Phosphatidylcholine aterol

O-acyltransferase

Phosphatidylcholine 
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Figure 2 The diagram of regulatory network. Linking metabolites and proteins in serum with a network map to visualize the interactions in 
the full data set. The dotted box: the enzyme that catalyzes the reaction; The solid box: metabolites in the reaction pathway; Red: elevated 
metabolites in PD-CI. PD-CI, Parkinson’s disease with cognitive impairment.
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(Table S3). PD-CI participants had significantly higher S1P 
than the controls. Nonparametric testing showed that both 
indicators were increased in PD-CI. When the raw data 
were normalized, the t-tests confirmed different levels. This 
result was somewhat unexpected and prompted additional 
analyses. Covariance analysis was required to process data 
(shown in Table 1). By adjusting the different covariates, 
we found that when education and H-Y were considered 
as covariates using a general linear model (Model A), LPC 
(18:1) and PC (20:5/20:5) were significantly different 
between the groups. Additional adjustments (Model B and 
Model C, Table 2) confirmed that the significantly different 
indicators were increased between the groups.

Next, we investigated metabolites associated with clinical 
cognition scores using Spearman correlation coefficients 
and linear regression models. Spearman correlation 
results showed four metabolites associated with MMSE 
and three metabolites associated with MoCA (P<0.05, 
Figure 3A). Given the existence of covariates in our study, 
partial correlation analysis was used to analyze further 
the correlations between MMSE and MoCA scores and 
metabolites parameters among participants. The results 
revealed a strong negative correlation between MMSE 
score and LPC (18:1) (b=−0.354, P=0.014). The negative 
correlation with metabolites is shown in Table S4. The 

regression models showed that LPC (18:1) and education 
status were the main factors contributing to cognitive 
dysfunction (Table S5). We built ROC models for the final 
selected metabolite for PD-N and PD-CI. LPC (18:1) was 
the only indicator included in the regression models. The 
resulting AUC value was 0.660 (P=0.039, Figure 3B).

Discussion

This study was to comprehensively characterize the 
metabolic and proteomics of serum in PD-CI, explore 
differential metabolites’ association with clinical cognition 
evaluation, and identify potential early diagnostic 
biomarkers.  Proteomics plays an auxiliary role in 
illuminating related metabolites’ regulatory mechanism, 
which also overcomes some of the deficiencies of using just 
one -omics approach in isolation.

In the present study, correlation and IPA analyses 
revealed that differences in serum metabolites between the 
PD-CI and PD-N groups were mainly classified into three 
categories: sphingolipid, lecithin, and long-chain fatty acids. 
In our analysis, we mapped the regulatory relationships 
between proteins and metabolites. We retrospectively 
assessed clinical data and analyzed the relative quantities 
of three major substances in the serum samples. After 

Table 2 General liner model analysis by controlling different covariates

Variable
Model A Model B Model C

F P F P F P

Long chain fatty acid

Arachidonic acid 3.178 0.08 3.607 0.063 4.724 0.035*

Pentadecanoic acid 0.946 0.335 1.102 0.299 1.296 0.261

Palmitic acid 1.576 0.216 1.823 0.183 1.888 0.176

Haemolytic lecithin

1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine 2.483 0.124 2.641 0.110 3.257 0.078

1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine 1.908 0.173 2.274 0.138 4.059 0.050*

1-Oleoyl-sn-glycero-3-phosphocholine 8.285 0.006* 5.568 0.005* 11.748 0.001*

1-Palmitoyl-sn-glycero-3-phosphocholine 1.319 0.256 1.623 0.208 2.754 0.104

PC(20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)) 4.442 0.04* 4.773 0.033* 6.824 0.012*

Sphingolipid

D-erythro-Sphingosine-1-phosphate 3.655 0.061 4.354 0.042* 4.510 0.039*

Model A: education and H-Y as covariates; Model B: education, H-Y and disease duration as covariates; Model C: gender, age, education, 
hypertension, diabetes, smoking, alcohol intake, disease duration and H-Y as covariates. *, P<0.05.

https://cdn.amegroups.cn/static/public/ATM-20-4583-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-supplementary.pdf
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Figure 3 Spearman correlation analysis between metabolites and clinical features (A) and Receiver operator curve for the selected metabolite 
in PD-N versus PD-CI (B). *, P<0.05. AUC, area under the curve; PD-N, Parkinson’s disease without cognitive impairment; PD-CI, 
Parkinson’s disease with cognitive impairment.

excluding the covariates, a difference in metabolites 
between the groups was observed. Partial correlation and 
regression analyses showed that the LPC (18:1) level and 
education status mostly contributed to cognition evaluation. 
H-Y grade, LPC (18:1) level, and education status were also 
implicated in PD cognitive impairment. Also, the amounts 
of LPC (18:1) alone predicted PD-CI with an ROC AUC 
of 0.66, suggesting a need to investigate the utility of 
measuring circulating LPC (18:1) as a biomarker for PD-CI 
risk and progression.

Associations between cognition and sphingolipid, lecithin, 
and long-chain fatty acid

The differentially expressed metabolites of PD-CI are 
mainly involved in lecithin, long-chain fatty acid, and 
sphingolipid metabolism. Although not all the changes were 
significant, the biological significance cannot be ignored. 
Dysfunctional sphingolipid metabolism has been implicated 
in numerous neurological conditions and is a powerful factor 
for the occurrence and development of neurodegenerative 
diseases. The bioactive sphingolipid metabolite S1P 
affects various neuronal functions including cell fate and is 

irreversibly degraded by the enzyme S1P lyase, regulating 
sphingolipid metabolism and apoptosis. It plays important 
regulatory roles in cell growth, proliferation, adhesion, 
apoptosis, autophagy (16,17) and intracellular trafficking in 
the central nervous system (CNS) (18). S1P is one of the 
most compelling sphingolipids. The S1P-related signaling 
pathway regulates the synthesis of various neurotrophic 
factors and pro-inflammatory cytokines, and cellular 
communication. S1P attenuates free radical generation 
and increases survival of SH-SY5Y neuronal cells (19). S1P 
concentration is strongly inversely correlated with tissue Aβ 
levels and tau hyperphosphorylation in postmortem brain 
tissue from patients with Alzheimer’s disease (20). Our 
results indicate that S1P is significantly increased in PD-CI 
serum, presumably because the substance is destroyed in the 
brain and metabolites are then found in serum. This process 
could induce neuronal oxidative stress. In addition, excessive 
S1P causes cell death accompanied by deoxyribonucleic acid 
(DNA)fragmentation via the p38 MAPK pathway-mediated 
release of cytochrome c by neurons. Moreover, sphingolipid 
metabolites also regulate AA metabolism. A previous study 
showed that D-erythro-analogs of sphingosine stimulated 
AA release in PC12 cells. There was synergistic variability 
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between sphingolipid and AA. This suggests that S1P could 
be an appropriate biomarker of cognitive dysfunction in PD.

We also found that PD-CI patients had significantly 
increased serum levels of fatty acylcarnitine and long-
chain fatty acids compared to PD-N, as well as a strong 
association between cognition and serum levels of fatty 
acylcarnitine and long-chain fatty acids (Tables S3-S5). 
Abnormalities in metabolic intermediates of fatty acid 
oxidation suggest that PD cognitive dysfunction is likely 
closely related to fatty acid oxidation. Abnormal regulation 
of fatty acid oxidation—typically an enzymatic deficiency 
in fatty acid metabolism (e.g., acyl-CoA dehydrogenase 
deficiency) or disruption of fatty acid transport across 
the mitochondrial membrane through defects in the 
carnitine transport system—primarily results in a metabolic 
disorder in which fatty acids reach cytotoxic levels (21). 
Increases in haemolytic lecithin, especially 1-Oleoyl-sn-
glycero-3-phosphocholine, is evident in PD-CI patients 
and are independent of other variables such as age, sex, 
hypertension, diabetes, smoking, and alcohol consumption 
(Tables S3,S5). The metabolomics analysis showed 
consistent results, suggesting that the association of fatty 
acid β-oxidation disorders with PD is likely real (22).  
Energy is the basis of neural activity, and normal energy 
metabolism is required for cognition and memory (23).  
However,  during pathological  conditions such as 
neurodegeneration, hypoxia/ischemia, or post-traumatic 
brain injury, an insufficient energy supply stimulates 
the brain to signal the liver to induce fat metabolism 
to produce ketone bodies (24), which are delivered to 
the brain to ensure adequate energy (Figure S7). Lipid 
metabolism is affected in numerous neurodegenerative 
diseases (25,26). Therefore, increased fatty acid oxidation 
observed in the serum of PD-CI patients may be an attempt 
to reduce neuronal cell death related to low energy levels. 
Collectively, these results suggest that fatty acid oxidation 
may be an important pathogenetic mechanism of PD 
cognitive impairment, and metabolic intermediates of 
fatty acid oxidation may be useful diagnostic biomarkers to 
distinguish between PD-CI and PD-N.

LPC can reflect cell membrane integrity and is associated 
with neurodegenerative diseases (27,28). We found that 
PD-CI patients had significantly elevated serum levels 
of LPC compared to the PD-N group (Tables S4,S5,  
model 3). LPC is synthesized from phosphatidylcholine by 
the enzyme phospholipase A2 (PLA2), which catalyzes the 
hydrolysis of the sn-2 ester bond of glycerophospholipids 

to produce free fatty acids and LPC (29). The sn-2 
position of phospholipids is mostly occupied by AA, and 
increased PLA2 activity can hydrolyze phospholipids of 
cell membranes to produce AA. In this study, LPC and 
AA levels were significantly increased, presumably due 
to the increased concentration and activity of PLA2. In 
addition, LPC can be produced by lecithin; cholesterol 
acyltransferase (LCAT) catalyzes the transfer of a fatty 
acyl residue from the sn-2 position of phosphatidylcholine 
to the 3-beta-hydroxyl group of cholesterol, resulting in 
the formation of a cholesteryl ester (30). Our proteomics 
study revealed an increase in serum LCAT activity, and it 
is speculated that this is also associated with the increase in 
LPC. Also, phosphatidylcholine can damage other enzymes 
during reacylation or deacylation. However, due to the 
lack of literature on the other enzymes’ roles of these other 
enzymes in PD and PD-like pathology, further enzymatic 
follow-up studies are needed.

PLA2 products, including LPCs, are involved in various 
downstream pathways; they induce coordinated signaling 
through a second messenger that promotes inflammatory 
mediator biosynthesis and inhibits neurotransmitter  
release (31). LPCs play a major role in inflammatory 
signaling, including the release of various cytokines (IL-
1β, IL-6, chemokine ligand 2, chemokine ligand 4, and 
TNF alpha) (32-34). LPC, an endogenous inflammatory 
phospholipid that is produced under physiological and 
pathological conditions, has been implicated in the 
immunomodulatory function of glial cells in the CNS 
(35,36). LPC is a secondary product of S-adenosylmethionine 
(SAM)-dependent phosphatidylethanolamine (PTE) 
methylation and an effective cytotoxin involved in PD 
pathogenesis (37). SAM injection into the brain results in 
PD-like changes in rodents (38). In addition, 1-methyl-4-
phenylpyridinium (MPP+), a drug that induces PD, increases 
LPC formation by stimulating the PTE methylation 
pathway (39). This illustrates the inhibitory effect of LPC on 
the dopaminergic system. Increased serum LPC in patients 
with PD-CI suggests that the inflammatory response is 
involved in PD cognitive dysfunction, while abnormally 
elevated lysolecithin further inhibits the dopamine system, 
aggravating cognitive impairment. Serum LCAT was 
considered a key target based on our multi-omics analysis. 
The relative levels of metabolites were inversely associated 
with cognition evaluation. LPC (18:1) was included in 
the regression equation, suggesting that it was a major 
contributor to cognition dysfunction.

https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-4583-Supplementary.pdf
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Limitations and future directions

Although our study revealed the profile of differentially 
expressed proteins and metabolites in PD-CI, the sample size 
was relatively small. The associations between indicators and 
cognition status are worthy of further exploration. Potential 
confounders such as medications and body mass index 
should be considered more comprehensively. Nonetheless, 
measuring sphingolipid, lecithin, and long-chain fatty acid 
levels will help clarify their metabolism and potential PD 
mechanisms. Importantly, LPC (18:1) alone was able to 
predict PD with or without cognition impairment.
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Supplementary

Figure S1 The concept map of O2PLS method.

Figure S2 SDS-PAGE analysis of quality control for samples.
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Figure S3 Serum differentially expressed proteins between PD-CI and PD-N. (A) Correlation analysis between samples. The color changes 
from white to blue, indicating negative correlation. The color varies from white to red, indicating a positive correlation. The closer the 
correlation coefficient is to 1 (-1), the higher the similarity of the expression patterns between samples. (B) Volcano plots of differential 
protein expression analysis. The red dot represents the expression of the up-regulated protein, and the green dot represents the expression of 
the down-regulated protein, and the black dot represents the site with no significant difference. Abscissa: the ratio of the relative expression 
of protein in the two groups of samples, that is Fold Change and log2 logarithmic processing. Ordinate: P value and -Log10 logarithmic 
processing. (C) Cluster analysis of differential protein. The color changes from green to red, indicating that the expression of protein in each 
sample changes from low to high.

Figure S4 Typical TICs of metabolic profiles in PD-CI and PD-N based on UHPLC-Q-TOF/MS analysis. (A) positive ion mode of PD-
CI; (B) negative ion mode of PD-CI; (C) positive ion mode of PD-N; (D) negative ion mode of PD-N.
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Figure S5 PCA score plots and OPLS-DA score plots of metabolic profiles in PD-CI and PD-N. (A) PCA score plot in the positive mode; (B) 
PCA score plot in the negative mode; (C) OPLS-DA score plot in the positive mod; (D) OPLS-DA score plot in the negative mod. Boxes 
and dots denote samples from PD-CI and PD-N, respectively.
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Figure S6 Volcano plot for PD-CI group versus PD-N group. (A) Volcano plot in the positive mode. (B) Volcano plot in the negative 
mode. Each point in the volcano plot represents a metabolite, the abscissa represents the fold change of each substance (take the base 2 
logarithm), and the ordinate represents the P-value of the t test (take the negative of the base 10 logarithm). The scatter size represents the 
VIP value of the OPLS-DA model. The larger the VIP value, the larger the scatter. The scatter color represents the final screening result, 
the significantly up-regulated metabolites are shown in red, the significantly down-regulated metabolites are shown in blue, and the non-
significantly different metabolites are gray.
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Figure S7 Concept map of fat metabolism.
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