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Abstract: Increasing clinical contributions and novel techniques have been made by artificial intelligence 
(AI) during the last decade. The role of AI is increasingly recognized in cancer research and clinical 
application. Cancers like gastric cancer, or stomach cancer, are ideal testing grounds to see if early 
undertakings of applying AI to medicine can yield valuable results. There are numerous concepts derived 
from AI, including machine learning (ML) and deep learning (DL). ML is defined as the ability to learn 
data features without being explicitly programmed. It arises at the intersection of data science and computer 
science and aims at the efficiency of computing algorithms. In cancer research, ML has been increasingly 
used in predictive prognostic models. DL is defined as a subset of ML targeting multilayer computation 
processes. DL is less dependent on the understanding of data features than ML. Therefore, the algorithms 
of DL are much more difficult to interpret than ML, even potentially impossible. This review discussed the 
role of AI in the diagnostic, therapeutic and prognostic advances of gastric cancer. Models like convolutional 
neural networks (CNNs) or artificial neural networks (ANNs) achieved significant praise in their application. 
There is much more to be fully covered across the clinical administration of gastric cancer. Despite growing 
efforts, adapting AI to improving diagnoses for gastric cancer is a worthwhile venture. The information yield 
can revolutionize how we approach gastric cancer problems. Though integration might be slow and labored, 
it can be given the ability to enhance diagnosing through visual modalities and augment treatment strategies. 
It can grow to become an invaluable tool for physicians. AI not only benefits diagnostic and therapeutic 
outcomes, but also reshapes perspectives over future medical trajectory.
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Introduction

While the complete incorporation of artificial intelligence 

(AI) into daily medical use is still decades away, its growth 

and potential applications for improving medicine cannot 

be denied (1-3). Cancers like gastric cancer, or stomach 

cancer, are ideal testing grounds to see if early undertakings 
of applying AI to medicine can yield valuable results.

There are numerous concepts derived from AI, including 
machine learning (ML) and deep learning (DL) (Figure 1) (1). 
In brief, ML is defined as the ability to learn data features 
without being explicitly programmed. It arises at the 
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intersection of data science and computer science and aims 
at the efficiency of computing algorithms (2). Exceptional 
performances of ML can be achieved in a comparable short 
time on a dataset of comparably small size (1). It contains 
several steps, including data input, pre-processing, feature 
extraction, feature selection, classification and output 
interpretation (1-3). Conventionally, the subgroups of ML 
include supervised learning and unsupervised learning (2).  
To translate ML into the field of medicine, Deo Rahul 
suggested an additional division: learning on the subjects 
that physicians are advantageous at and the ones with 
limited success (2). In cancer research, ML has been 
increasingly used in predictive prognostic models (1).

DL is defined as a subset of ML targeting multilayer 
computation processes (1). It contains several layers, such 
as subsampling layer and convolutional layer (1). Of note, 
DL is less dependent on the understanding of data features 
than ML. Therefore, the algorithms of DL are much more 
difficult to interpret than ML, even potentially impossible (1).

To further delineate the current status of AI/ML/DL, 
we performed a search query regarding the number of 
published papers index in PubMed. The search query of AI, 
ML and DL was as follow: (AI[Title/Abstract]) AND (gastric 
cancer[Title/Abstract]), (Machine learning[Title/Abstract]) 
AND (gastric cancer[Title/Abstract]), (Deep learning[Title/
Abstract] )  AND (gastr ic  cancer[Tit le/Abstract] ) , 
respectively. Interestingly, a noticeable increasing number 
of published papers relating to AI/ML/DL were found at 
the last three years (Figure 2). Although by definition, both 

ML and DL belongs to AI, this result demonstrated AI has 
been increasingly popular in the field of gastric cancer.

Typical workups for individuals with suspected gastric 
cancer involve barium swallows, followed by upper 
endoscopy for visualization and biopsies (4). This opens 
the door for one of AI’s most practical applications in the 
form of convolutional neural networks (CNNs) and their 
prospective integration into cancer detection with the aid 
of important instruments like the endoscope, and other 
imaging modalities (5).

The importance of integrating DL methods for 
improving detection of gastric cancer cannot be understated. 
Gastric cancer currently has the 5th highest total for number 
of new cases of all specific organs and ranks as high as 3rd 
for number of deaths (6). Both Western and Eastern Asia 
account for majority of cases worldwide, while Asian-
Americans have a 5 times higher incidence, than other 
groups in the United States (6,7). The most common 
cause of gastric cancer remains Helicobacter Pylori infection, 
followed by chronic gastritis and diet (8). Pathologic 
sub-classification indicates that the most common types 
are adenocarcinomas and are also further classified into 
intestinal type associated with metaplasia and diffuse type 
associated with signet ring cells and linitis plastica (9).

Treatment options and strategies can be enhanced 
by DL. The quantities of specific information for the 
carcinogenesis of gastric cancer give it an edge over other 
cancer types, whose causes may not be wholly understood or 
completely deciphered. Knowing the most common cause, 
H. pylori, means finding ways to prevent gastric cancer are 
specific and allow for the predictive analytics arm of AI to 
be able to contribute. A more formidable challenge comes 
from finding therapeutic solutions in confirmed cancer 
cases, whether they are pharmaceutical or surgical therapy.

Finally, even though a basic understanding of gastric 
cancer has been attained, there’s sti l l  much more 
information to uncover when it comes to the genomics of 
gastric cancer. The roles of genomic alteration by FGFR2, 
KRAS, and others need to be further examined (10). The 
expansion of potential biomarkers can also help elucidate 
an unclear picture, which not only can look at the cancer 
itself, but also how the causes of gastric cancer work as in 
the case of H. pylori (11,12). This information benefits not 
only the ability to diagnose, but also allows for specific 
targeted treatment. General problems do arise though when 
considering the scarcity of information and research being 
done in these areas. We present the following article  in 
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Figure 1 Schematic display of artificial intelligence (AI) and 
machine learning (ML) and deep learning (DL).
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accordance with the Narrative Review reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-6337).

The role of AI in diagnosis of gastric cancer

Important first steps are being undertaken with regards 
to integrating AI directly into the diagnostic process of 
gastric cancer. The first ventures into how we can improve 
existing medical technologies, namely, our visual modalities, 
have begun. The diagnostic process for gastric cancer is an 
integrated approach but ultimately synonymous with the 
endoscope. It remains the gold standard for diagnosing 
gastric cancer, thus, is the tool that has garnered most 
attention for integrating DL (13). Additionally, other 
aspects of imaging have been impacted by the CNN branch 
of AI. MRI and CT greatly benefit and enhance their value 
to the diagnostic process allowing for increased accuracy 
and confirmation. Lastly, the actual pathological diagnosis 
has shown promise that it can benefit greatly from AI. 
This ranges from how we understand the disease process, 
methods of how we reach conclusions, or even how we 
classify causes and cancers.

AI for the endoscopic diagnosis

When it comes to AI applications for endoscopy, Togashi 
believes that we are currently initiating a “Golden Era” (14).  
This is because there has been an explosion of research 
that has been initiated, which is currently setting the 
groundwork for the future. In the United States alone, 
AI-related research papers presented by members of the 
American Society of Gastrointestinal Endoscopy increased 
from 3 to 30 in one year’s time (2017 to 2018), with similar 
trends in Japan. Research, he annotates, is still mostly 
confined to reading tests that analyze the sensitivity of AI 
detection algorithms through various image types, i.e., 
plain, magnified, augmented, or videos that make use of 
computer vision (14,15). In 2018, research topics from 
Japan Digestive Disease Week saw 8 presentations, 6 for 
colorectal cancer, 1 esophageal and 1 gastric. Sensitivity for 
detection ranged depending on experiments. Ranges for 
sensitivities in the 8 experiments were: 100% (colon N+ 
in T1), 90% (colon lesions), 97.6% (colon lesions), 95.7% 
(colon adenoma), 95.2% (colon adenoma), 82.4 to 90.4% 
(colon), 98% (esophageal cancer), and 93.7% (fundic gland 
polyp) (14). While boasting high sensitivities, specificity 

Figure 2 A search result of the number of published papers index in PubMed regarding artificial intelligence (AI) and machine learning (ML) 
and deep learning (DL).
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remained inconsistent ranging from 43.1 to 99% (14). It 
should be noted that there is a severe lack of clinical trials, 
due mainly to the fact that this technology is fairly new, 
but also, ethical questions about computer-aided diagnosis 
(CAD) with AI have yet to be answered (16).

An important step forward in improving the endoscope 
as a tool has been through the improvements to video 
quality and video fidelity. Higher quality endoscopic vision 
allows for technicians to be able to identify structures 
and abnormalities more clearly by increasing resolution 
by roughly 16 times using 8K technology (7,680×4,320 
pixels, or roughly 33 million pixels) compared to standard 
high definition (1,920×1,080 pixels, or roughly 2 million  
pixels) (17). Though added tools like increased zoom 
capability and increased field of view are helpful to surgeons, 
segmentation technology, powered by AI, provides an even 
bigger help than just image quality enhancements (18). 
Segmentation uses CNNs to identify and partition images 
or sections more clearly. Segmentation uses a metric for 
measuring and quantifying the accuracy of detecting an 
object appropriately called Intersection-over-Union (IoU), 
also referred to as the Jaccard Index (19). This is helpful when 
comparing the accuracy of different algorithms using the 
same dataset.

Ali et al. devised an “Endoscopic Artefact Detection 
challenge” to compare various algorithms to see if there was 
a method to objectively see how segmentation algorithms 
vary using a uniform dataset of video frames (20). Artefacts 
seen in the image dataset included objects like bubbles, 
image quality issues (pixel saturation), and organ debris (20). 
The overall goal of segmentation in a medical setting is to 
reduce any interference and allow for the highest quality 
interpretation of findings. Ideally, this leads to more specific 
and accurate diagnosing. Ali et al. postulate that technicians 
run into issues without segmentation technology, these 
include, different endoscopic modalities making tissues 
appear differently, physical phenomena, and variability and 
potential overlap of objects (20). Since segmentation works 
to address and recognize unique objects, it can present as a 
massive advantage to CAD, more so than seeing something 
clearly and still not being able to differentiate what is. 
The study found that the most important factors for 
identification were the size of the artefact and how much 
overlap with other objects is present (20).

Though the majority of endoscopy related AI research is 
heavily aimed towards colonoscopy, inroads have been made 
to emphasize the importance of upper GI applications. 
Hirasawa, et al. constructed a CNN system to automatically 

detect gastric cancer via endoscopic images (21). Formed 
around on the Single Shot Multibox Detector architecture, 
the algorithm used a dataset of 13, 584 endoscope images 
taken from 4 institutions over a span of 12 years (April 2004 
to December 2016), which were inspected by a certified 
expert (21). To detect the accuracy of the algorithm, 
investigators compiled a further 2,296 images from 77 
gastric lesions in 2017 to appraise and compare. The CNN 
featured a yellow rectangular box, which notified of “early 
or advanced gastric cancer” and location. Results showed 
that the CNN required 47 seconds to evaluate all images 
leading to 92.2% sensitivity (71/77), with missed lesions 
being superficially depressed or differentiated intra-mucosal 
cancers (21). False positives were caused by gastritis and 
anatomical variation (21). Ruffle et al. give insight to this 
type of experiment, which is referred to as supervised learning, 
which refers to a human providing the correct answer, 
i.e., this is cancer, which a model can be built around (22).  
The opposite of supervised learning is referred to as 
unsupervised learning and allows for specific information to 
be given to without specifying correct or incorrect answers 
allows conclusions to be drawn from patterns, more akin to 
data mining (22).

Applying DL to various endoscope modalities is another 
method by which researchers have improved the standard 
endoscope. Narrow band imaging (NBI) operates by altering 
standard red, green and blue optical filters (23). This allows 
for differing wavelengths and penetration leading to less red 
light being applied, and more blue and green wavelengths 
to penetrate, resulting in greater detail and visualization of 
surface mucosa and microvasculature (23). Li et al. created 
a system that incorporates CNNs for analyzing NBI  
images (24). The study involved observation by 2 
experienced endoscopists diagnosing gastric mucosal lesions 
from patients using NBI to classify lesions as non-cancerous 
or early gastric based on (I) Vessels + surface classification 
system and (II) magnifying endoscopy simple diagnostic 
algorithm for early gastric cancer (MESDA-G) (24).  
Th i s  was  fo l lowed  by  2  pa tho log i s t s  r ev i ewing 
histopathology of the lesions using the revised Vienna 
classification. Category 1 to 3 lesions were considered non-
cancerous, while category 4 to 5 was considered early gastric 
cancer (EGC).

The study initially began by collecting images from 
4 facilities resulting in 386 non-cancerous lesion images 
and 1,702 images of cancerous lesions, but led to issues 
of generalization so sample size needed to be increased to 
20,000 images to appropriately train the algorithm (10,000 



Annals of Translational Medicine, Vol 9, No 3 February 2021 Page 5 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(3):269 | http://dx.doi.org/10.21037/atm-20-6337

non-cancerous and 10,000 cancerous) (24). Algorithm 
architecture used the Inception v3 model, with changes 
made to boost accuracy by increasing image input type 
from 299×299 pixels to 512×512 pixels. Additionally, 4 
individuals (2 experts and 2 non-experts) were utilized to 
interpret images and to divide them into non-cancerous or 
cancerous to be compared with the algorithm. 171 cases of 
non-cancerous lesions and 170 of cancerous lesions were 
used to see the diagnostic ability of the CNN algorithm. 
The CNN correctly interpreted 155 of 170 cancerous 
lesions (sensitivity of 91.1%) and 155 of 171 non-cancerous 
lesions (sensitivity of 90.6%), whilst 2 experts respectively 
identified non-cancer or cancer 78.2 and 81.1% of the 
time and the 2 non-experts 77.6 and 74.1% of the time. 
Lan, et al. note how much more sensitive and specific 
NBI is for diagnosing is compared to standard white light 
(WL) and the importance of incorporating AI into existing 
technologies, as early detection is important to patient 
outcome (24).

Additionally, researchers have been incorporating AI as 
an aid to diagnosing for certain endoscopic examinations. 
Ogawa et al. used a support vector machine (SVM) for 
diagnosing and classifying EGC (25). They attempted to 
try and reduce subjectivity of diagnosis by integrating 3D 
vectors with RGB values to help show color differences for 
areas believed to be cancerous or non-cancerous, which 
was assessed by an SVM. SVM is a practical AI tool, whose 
strength allows for categorizing and classifying information. 
Standard endoscopy is usually done under WL, whilst 
indigo carmine chromoendoscopy (indigo) allows for 
general cancer diagnosing, and acetic acid-indigo carmine 
chromoendoscopy (AIM) allows mucus differentiation 
and boasts a high diagnosability (25). The SVM was 
incorporated to allow for discrimination in using different 
endoscopic techniques.

18 subjects were admitted for endoscopy using WL, 
Indigo, and AIM followed by resection. Images were 
identified histopathologically and diagnosed as EGC. 
Imaging was performed and captured in stepwise order, 
first by standard WL endoscopy, then indigo carmine was 
introduced and distributed for 12 seconds, then finally, 
acetic acid was distributed and captured (25). 54 images 
from the 18 patients’ lesions were assessed according to 
macroscopic and histopathology to determine an area 
where cancer was found. The researchers extracted pixels 
randomly from cancerous and non-cancerous images, which 
were further evaluated by having each pixel calculated 
using RGB values in order to ensure there was not a major 

difference in luminance. In total, 2,000 pixels with equal 
luminance from both cancerous and non-cancerous images 
were taken (4,000 total), which are then represented as 3D 
vectors that have an RGB value. The 2,000-pixel samples 
for cancerous segments allowed for the calculations of mean 
vector and covariance matrix, and the same was done with 
noncancerous. Furthermore, the measure of Mahalanobis 
distance, which is a clear delineation via color differences of 
cancerous or noncancerous areas, was done for WL, indigo, 
and AIM. The mean distance between different types of 
modalities were compared amongst themselves (25).

One hundred samples from cancerous and 100 from 
noncancerous were used for training the LIBSVM and 
the remaining 3,800 for testing, with the main goal 
of determining whether the area was cancerous or 
noncancerous (25). A value was created to determine 
diagnosability, which was composed of the F1 measure by 
finding the harmonic mean of both sensitivity and PPR. 
A total of 54 images from the 3 compared modalities were 
randomly sorted and given to endoscopists who were 
tasked with diagnosing gastric cancer and then were a ratio 
from each type was created to compare with. Mahalanobis 
distances and F1 measures from the 3 modalities were: 
(I) WL – MD 1.52 and F1 0.636, (II) indigo – MD 1.32 
and F1 0.618, and (III) AIM – MD 2.53 and F1 0.687. 
AIM was determined as having the highest diagnosability 
based on enhanced color difference. AIM images were 
also determined to be the best source for subjective 
interpretation from endoscopists, as mean rates for 
diagnosing gastric cancer correctly for AIM were 83.3%, 
when compared to WL at 50.0% and indigo at 52.2% (25).

The benefits of early cancer detection, especially gastric 
cancer, cannot be overlooked. Since H. pylori remains 
the most common cause, it is important to focus on early 
detection of H. pylori with the endoscope. Zheng et al. used 
CNN modeling accuracy in the setting of detecting H. pylori 
via endoscope (26). Initial sampling of patients excluded 
those who had previous cancer, submucosal tumors, peptic 
or endoscopic ulcers, masses or strictures, in addition 
to those who had been given PPIs within 2 weeks or 
antibiotics within a month. Those included needed to have 
immunohistochemistry staining on all samples for H. pylori 
and if no evidence was found on the stains, then a positive 
H. pylori breath test was needed within 1 month, before or 
after the sample was collected. Image collection was done 
by standard endoscope, with images screened by experts for 
quality assurance and augmented to help improve accuracy 
for model training. The foundation for the algorithm comes 
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from ResNet-50, a CAD support system made up of up to 
50 layers, and was trained using PyTorch, DL framework 
and further incorporated ImageNet to assist in overfitting 
issues (26).With the model constructed, a validation 
cohort was used for determining the precision of the 
CNN and endpoints were defined as sensitivity, specificity, 
and accuracy of the trained CNN, with even more detail 
supplemented by the addition of subgroups added based on 
anatomical location and mode of biopsy.

A total of 1,959 patients were found to be fitting of 
requirements and included in the study. The most common 
characteristics in the patient population were male, 48.5 
years old, outpatient, and H. pylori documented on breath 
test or biopsy. In the end, 15,484 images were used, and 
comparisons made for CNN using a single gastric image or 
multiple gastric images. For single gastric image, AUC was 
0.93 (95% CI: 0.92 to 0.94), while sensitivity was 81.4% 
(95% CI: 79.8% to 82.9%), specificity was 90.1% (95% 
CI: 88.4% to 91.7%), and accuracy was 84.5% (95% CI: 
83.3% to 85.7%) at an optimal cutoff value of 0.28 (23). 
For multiple images, an average of 8.3 images were used 
and AUC for ROC was calculated at 0.97 (95% CI: 0.96 
to 0.99), furthermore, using an optimal cutoff value of 0.4, 
sensitivity was 91.6% (95% CI: 88.0% to 94.4%), specificity 
was 98.6% (95% CI: 95% to 99.8%) and accuracy was 
93.8% (95% CI: 91.2% to 95.8%) (26). This reinforces the 
idea that multiple images are more helpful when evaluating 
with CNNs. Subgrouping for anatomical location showed 
that in multiple images from antrum biopsies alone (398 
patients) showed sensitivity at 91.7% (95% CI: 87.9% to 
94.6%), specificity at 98.2% (95% CI: 93.5% to 99.8%), 
and accuracy at 93.5% (95% CI: 90.6% to 95.7%), while 
antrum and body biopsies (54 patients) showed sensitivity 
at 90.5% (95% CI: 69.6% to 98.8%), specificity at 100% 
(95% CI: 89.4% to 100%), and accuracy at 96.3% (95% CI: 
87.3% to 99.5%) (26). There proved to be no difference in 
the 3 parameters when comparing antrum alone to antrum 
and body biopsies. Zheng et al. postulate that CNNs may 
eventually be used to evaluate for H. pylori infections 
without the use of biopsies through its image recognition 
ability, with the caveat of having to use multiple gastric 
images to do so.

AI in the MRI/CT imaging

While a plethora of research has been undertaken to 
enhance the endoscope, the same can’t be said about MRI 
or CT imaging. Though it is understandable that the focus 

should be squarely on improving our current gold standard, 
there have been examples of how MRI/CT imaging can 
prove to be helpful in other aspects of gastric cancer 
detection. Yu et al. show that enhanced CT may have a place 
in predicting T stage for patients with gastric cancer (27).  
By using a group of 40 patients, all with confirmed gastric 
cancer, enhanced CT imaging was undertaken that included 
enhanced CT scanning, ingestion of anisodamine (to 
slow peristalsis), and a gas-generating agent was given to 
help inflate stomach. Images yielded were independently 
observed and a double-blind diagnosis was made by 2 senior 
associate professors to determine T staging. Subsequently, 
surgery was undertaken to remove the neoplasms from 
participating individuals and the samples collected were 
handled by using the pathology standard of cutting 
them into sections and applying H&E staining so that a 
pathologist can observer microscopically, and classify them 
by appropriate TNM staging criteria (27). Of the 40 cases, 5 
were T1, 9 were T2, 20 were T3, and 6 were T4, according 
to pathology. CT staging alone was found to be 75.00% 
accurate (85.00% when combined with doppler ultrasound 
with echo-type contrast agents). Yu, et al. conclude that 
there can be a space for CT imaging use when applying to 
preoperative T staging. This begs the question of why so 
little research is currently being done to try to incorporate 
other imaging modalities in the general process.

In other branches of oncology, CT and MRI imaging 
remain essential components.  The use of mpMRI 
(multiparametric magnetic resonance imaging) helps with 
diagnosing prostate cancer. Early incursions into applying 
AI to MRI modalities concentrate on detecting suspicious 
zones or classifying findings. By using T2-weighted imaging, 
diffusion weighted imaging, and dynamic contrast enhanced 
imaging of the prostate and nearby sectors, urologists 
have been aided in their biopsy techniques allowing for 
better disease sampling and in the surgical setting for 
aiding in radical organ removal (28). Breast cancer also 
has attempted to incorporate mpMRI for detection by 
trying to combine DL machines into the formula. The 
previously mentioned T2-weighted imaging and dynamic 
contrast have been powered by CNNs and integrated into 
the CAD process, allowing for improvement in the ways 
benign and malignant growths are distinguished (29).  
Models for incorporating low-dose CT scans for detecting 
pulmonary nodules for lung cancer have also proved 
insightful. Taking specific features from image sets, a 
model was made to help predict malignancy in pulmonary 
nodules (30). The same underlying idea has been applied 
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to reduced-dose PET for lung cancer (general), which 
showed a potential to drastically reduce radiation doses 
given to patients (31). Of the top 5 most common cancer 
types world-wide, both gastrointestinal cancers (gastric and 
colorectal) seem far removed from the current zeitgeist and 
still leave a lot to be desired with regards to their lack of 
incorporation of CT or MRI imaging.

AI in the pathological diagnosis

The understanding of gastric cancer at a pathological level 
has seen many advances through the incorporations of 
genetic and histopathological components. These promising 
areas of pathological diagnosis would be some of the most 
benefited if the appropriate strategies for DL integration 
was undertaken. The current feeling is optimistic as to 
how diagnoses will be impacted. This includes a shift from 
simple microscopic imaging to digitized microscopy, the 
reproducibility of certain biomarkers for consistency, digital 
image analysis, new insight on causes of disease, and even 
how certain nuclear characteristics can predict survival 
outcomes (32).

Thought it is impossible to replicate human thinking and 
problem solving, attempts are being made into trying to 
replicate a pathologist’s ability to perceive information and 
to draw worthwhile conclusions even from small datasets. 
Using CNNs, Qu et al. suggest that a big contributor for 
classification failures in cancer can be due to histological 
shape extraction, or parameters for generalized texture 
images, while computer vision, though initially burdensome 
to train and calibrate, can relieve the time and financial 
burden and essentially imitate pathologist thinking and 
even find new pathology-relevant information (33). CNN 
foundation is derived from neocognitron, which simulates 
the visual primary cortex allowing for pattern recognition in 
the living brain (34). Standard fine-tuning procedures were 
done to train for discovering image features, though the task 
of finding the appropriately attunement for distributional 
difference between standard pre-training data sets and 
actual targets proves difficult. This, coupled with the idea 
of pathologist’s intuition, shows the large effort needed when 
trying to bring both ML and human thought processes 
together.

The stepwise process involved the important first step of 
understanding basic tissue structures before differentiating 
b e t w e e n  b e n i g n  a n d  m a l i g n a n t .  T h i s  i n c l u d e d 
understanding spreading status, density of cells, degree of 
nucleus distortion, nucleus size and nuclear to cytoplasm 

ratio (33). This basic understanding allowed for the CNN 
to acquire pathological information rather than being given 
it as preset that moved it from large-scale pretraining set 
interpretation to higher, or “middle-level”, datasets with 
more specificity and information. 2 fine-tuning steps are 
needed to advance from “low-level” to “middle-level” to 
“high-level”. Stroma and Epithelium-based datasets are 
thought to be the most cost-effective yet useful, as it is 
seen in every organ and can be easily categorized in cancer 
scenarios (33). Acquiring “middle-level” status was done 
by indexing morphological features of the nucleus. Color 
deconvolution was done to separate H&E stain into their 
own vectors H Stain and E Stain since most nuclei appear 
on the H stain. Other algorithms are added to enable 
the separation of the channels, separating conjoined or 
overlapped nuclei, and contour detection. A total of 48,000 
images were separated into the channels of background, 
stroma and epithelium, while cell data about the nuclei 
was made up of 7,672 and 6,457 patches that were selected 
due to consistency. Using tissue data, AUC value in small 
data set groups rose by 0.035, 0.016, and 0.039 when rival 
architectures VGG-16, AlexNet and InceptionV3 were 
added, while in large date set groups AUC rose by 0.027, 
0.053, and 0.053. Using nuclei data, AUC value in small 
data sets rose 0.023, 0.024, and 0.034, still using VGG-16, 
AlexNet and InceptionV3 and rose again in large data set 
groups to 0.029, 0.048, and 0.052 (30). This showed that 
the stepwise method for both tissue and cell-based data sets 
were able to enhance the pretrained neural networks for 
classification purposes.

While replacing pathologists for CNN-based systems 
is not currently plausible, what is plausible is pathologists 
using their experience to try and understand metastasis at 
a deeper level. The most common sites for metastasis in 
gastric cancer are liver, peritoneum, lung and bone (35). 
Gastric metastases rates have increased vastly in certain 
countries, with a median survival of 16 months, and give 
a further unclear picture due to the practice of M stage 
being a binary function (yes or no) with no detail into 
origin (35). An incursion into detecting metastatic lymph 
node cancer using neural networks was undertaken by 
Gao and associates. Gao et al. began with 750 patients 
who were diagnosed with gastric cancer, underwent CT 
imaging and after 2 DL sessions were able to extract 20,151 
images from 313 patients in the 1st session and 12,344 
images from 189 patients in the 2nd session (36). Three 
experienced radiologists labeled 1,371 images of metastatic 
lymph nodes, then another radiologist labeled node shape 
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(round, irregular or spiculated), sizes (greater than 10 
mm), and enhancement density difference. Labeling was 
further evaluated by 3 radiologists and 1 surgeon and then 
submitted for use in DL for establishing a database and 
algorithm training. A total of 1,004 images were later added 
to improve accuracy in identification.

Characteristics of the patients were 72.4% male with 
the highest incidence being poorly differentiated gastric 
adenocarcinoma of lower gastric stomach. Precision and 
recall rates were generated for both training and validation 
set. AUC was found to be 0.5019 (AP =0.5019). In addition, 
to show regression and classification true and false positives 
were counted under different probability thresholds and 
plotted (ROC curves). Results showed an AUC of 0.8995. 
Training set and validation set precision and recall rate was 
also plotted. AUC of 0.7801 indicated that CNN training 
had advanced. True and false positives were again looked at 
in the test set and calculated and plotted. AUC was 0.9541 
(compared to first AUC of 0.8995) (36). Researchers believe 
that this application of CNNs is more accurate and specific, 
will aid heavily pre-operative neoadjuvant chemotherapy, 
and improve methods and strategies of lymph node 
dissections.

Genetic pathology is a discipline that potentially has 
the most to gain from information that can potentially be 
yielded when DL data interpretation is applied. While 
known determinants involved in gastric cancer like H. 
pylori, natural environment, and diet play a large role in 
carcinogenesis, the role of IL-1𝛽, IL-10, TFF2, and CDH1 
cannot be ignored (37). The impact of genes, biomarkers 
and their interpretation hold the key to understanding 
and treating gastric cancer. Jiang et al. used a method of 
tabulating gene data from patients with gastric cancer and 
normal patient to try and identify certain genes or roles 
they play by analyzing multiple transcription datasets. 
Datasets came from research done on the topic and uniform 
datasets were ranked and analyzed using RankProd and 
INMEX. Gene Expression Omnibus database was used to 
find gene expression data then research, literature analysis, 
and bioinformatics data was searched to find promising 
and related information. Geno Ontology and pathway 
analysis were added to deepen the function. After rounds of 
exclusion, 3 microarray datasets were refined to find 1,153 
differentially expressed genes (787 for downregulation and 
366 for upregulation). Genes were then ranked by most 
upregulated or most downregulated yielding Progastricsin 
(PGC) and collagen type VI alpha 3 chain (COL6A3), 
respectively. PGC and COL6A3 can potentially serve as a 

biomarker for gastric cancer going forward, along with a 
slew of others that that deal with translational elongation, 
respond to chemical or external stimuli,  generate 
energy, form part of extracellular matrix or cytoplasm, 
protein binding, cell-cell adhesion, and many more (37). 
Applications like this are essential for time saving and to 
provide researchers with potential starting points or genes 
of interest.

Predictive models can help inform or define pathology 
and can be especial ly useful  when understanding 
pathogenesis or oncogenesis. Screening methods and data 
collection can play an important role to elucidate EGC 
pathology. This varies from simple ideas like age, gender, 
diet to more complex like symptoms, history, or genetics. 
Incorporating datamining techniques, Liu et al. recruited 
618 patients and devised a questionnaire that included 
demographic characteristics, eating habits, symptoms and 
family history and additionally serological examination 
and gastroscopy (38). Keywords and topics of interest were 
eventually whittled down to make a list of 34 standout 
factors that could be used to make predictive models. 
Random sampling allowed for the creation of training and 
data sets that could be used to create and evaluate models 
so future models would yield relevant information. Since 
there was heavy skew in favor of low risk EGC, synthetic 
minority oversampling technique was employed which can 
help with SVMs, decision trees and network types. Results 
of data collection yielded useful information on high 
risk EGC including main symptoms of belching, reflux, 
and postprandial discomfort, increased family history of 
hyperlipidemia, while also yielding potentially less useful 
information for pathology purposes such as speed of eat or 
spoken language of individuals (38). The standard issues of 
information sorting that always plague datamining of any 
type are painfully apparent.

While limiting the amount of radiation exposure 
to patients or having the ability to run thousands of 
calculations at once are major benefits of the technology, 
there are various ways AI can provide an advantage to 
medical experts and patients (21,31). Vollmer et al. pose 20 
questions ranging from implementation, statistical methods, 
and reproducibility, amongst others, to try and more clearly 
find the benefits for patients (39). The belief is that if there 
is a workable framework with a common technical language 
and a reliance on empirical evidence, then there will be 
benefits to patients and health systems. Additionally, we can 
see that, if properly constructed, computer-based systems 
can help reduce error rates, work more efficiently, do not 
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overexert human resources, and have the ability to improve 
itself by altering the algorithm. Ahuja believes an area that 
might see the most growth is personalization of patient care 
and treatment, which is more tailored to individual patients 
to allow for individual care plans that feature improved 
efficiency and accuracy, due to the amounts of data that 
can be drawn or calculated by ML (39). One potential 
“advantage” that we overlook, especially in computer-aided 
diagnoses, is the ability of AI to only observe facts and 
remove the human or emotional element from important 
decision making.

The role of AI from endoscopic diagnosis to 
treatment

A practical guidance of adapting ML into clinical endoscopy 
for an accurate diagnosis of gastrointestinal disease has been 
proposed by van der Sommen et al. (40). To fully appreciate 
the weight of ML upon the challenge of gastrointestinal 
diagnosis by endoscopy, solid technique basis is required, 
particularly for each clinician (40). Anatomically, the 
stomach is distinct from other gastrointestinal organs, such 
as colon and esophagus (41). It is characterized by wider 
bent lumen with potential blind spots that require extra 
laborious observations. Clinicians therefore require multiple 
distant sights to avoid possible omitting (41). Additionally, 
helicobacter pylori infection may also hide some early 
appearance of EGC (41). These difficulties lead to variation 
of endoscopic diagnosis as reported (42,43). Moreover, 
this also reminds us that simply translating the AI of colon 
cancer into gastric cancer may not be the right scenario.

In fact, endoscopy also serves as a therapeutic option for 
gastric cancer, such as endoscopic mucosal resection (EMR) 
of EGC (44). Marked by minimally invasiveness, EMR is a 
standard treatment in gastric cancer with low risk of lymph 
node metastasis in Japan and has been increasingly popular 
in the West world (44-46). Notably, with local lesions >15 
mm, EMR may lead to difficulty in the assessment of tumor 
depth and an increase of local recurrence (44). Meanwhile, 
another endoscopic dissection technique, endoscopic 
submucosal dissection (ESD), has been introduced for 
en bloc resection of larger lesions (44). To some degree, 
ESD has been a strong competitor to conventional open/
laparoscopic surgery for EGC (44).

To further translate AI into the clinical practice of 
endoscopic resection, Zhu et al. constructed a convolutional 
neural network computer-aided detection (CNN-CAD) 
system with high accuracy and specificity (47). But, the 

specific role of AI in the endoscopic resection process 
remains sparse. Although AI-based detection system can 
reduce unnecessary gastrectomy with precisely prediction 
of the depth of tumor invasion, it may not navigate the 
endoscopic resection procedures, or set up alarms in high 
risks of complications. Indeed, ESD-related complications, 
including perforation, peritonitis and bleeding, remain a 
major challenge in gastric cancer with 3.5% rate (48).

Of note, Odagiri and Yasunaga also indicated a linear 
association between a lower frequency of ESD-related 
complications and a higher hospital volume (48). As 
both ESD and EMR require a comparably high level of 
operational skills, it is reasonable and reliable that both 
design and training of AI-based techniques should be 
assigned to hospitals with high volume in the first place, 
especially the techniques containing ML or DL that require 
sufficient data training.

In an endoscopic clinical guide of AI, Namikawa et al. 
summarized the usage of AI in the field of stomach, including 
clinical detection, classification, and blind spot monitoring (49). 
They also predicted in perspective that future AI could be fully 
trained to distinguish from gastric neoplastic and non-plastic 
lesions and make more significant contribution (49).

However, the use of AI in the treatment of gastric cancer 
remains sparse. Unlike the endoscopic diagnosis of gastric 
cancer that heavily relies on the interpretation of pictures, 
the implication of AI in chemoradiotherapy may require 
multidimensional data interpretation, including genomic 
characterization, immunohistochemistry results, mutation 
analysis or insensitivity prediction. Drug responsiveness, 
another  topic  featured by c l inical  heterogeneity 
and discrepancies ,  i s  now open to  AI .  Joo e t  a l .  
constructed a 1-dimensional convolution neural network 
model, DeepIC50, to deliver a reliable prediction of drug 
responsiveness in gastric cancer (50). They validated the 
tool both in cell lines and a real gastric cancer patients’ 
dataset and achieved a comparable result (50).

The role of AI in surgery

The implication of AI in surgery may rely on additional 
clinical and physical data for surgical training and 
improvement of performance. A review by Jin et al. 
indicated that the future application of AI in surgery will 
likely be focused on surgical training, skill assessment and 
guidance (51). In robotic surgery, Andras et al. indicated 
that ML approaches enhanced the improvements of surgical 
skills, quality of surgical process and guidance with favored 
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postoperative outcomes (52). Also, surgical experience and 
movements can be optimized with tension-sensitive robotic 
arms and the integration of augmented reality methods 
(52). To further automatically classify surgeons’ expertise, 
Fard et al. built a ML-based classification framework with 
movement trajectory to demonstrate whether a surgeon is 
novice or expert (53). Meanwhile, AI also has the power 
to revolutionize how surgery will be taught in future (54). 
Interestingly, O’Sullivan et al. envisioned that a routine 
surgery can be performed independently by a robot 
supervised by a human surgeon (55).

The role of AI models in the prognostic 
prediction

Next,  AI has also been applied to the prognostic 
prediction of gastric cancer aiming for individualized 
administration. Conventionally, cox proportional hazard 
(CPH) model is used for the prediction of risk scores. 
A nomogram model is established based on CPH to 
further set up individualized prediction. Nonetheless, 
all these algorithms are merely based on linear equation. 
When taking non-linear and biological complexity into 
consideration, it is both reproducible and applicable 

to introduce AI into the establishment of non-linear 
statistical models. Up to now, artificial neural network 
(ANN) is one of the most used models for prognostic 
prediction. In fact, a series of ANN-based models have 
been published with distinct clinical values (56-62) (Table 1).  
Several studies have demonstrated the values of AI models 
in the prediction of gastric cancer prognosis, such as 
ANN and Bayesian neural networks (BNN) (56,57,62). 
Amiri et al. reported that no significant difference in the 
ratios of standard errors between ANN versus CPH, 
or ANN versus Kaplan-Meier (KM) method (58).  
Specifically, ANN with predefined nodes (3,5,7 nodes) 
in the hidden layer showed no s ignif icant better 
prognostic prediction than conventional methods 
like KM (58). However, authors also repeated that 
sample-size could negatively impact the accuracy 
of prediction (58). Moreover, Nilsaz-Dezfouli et al. 
highlighted a distinct predictive value of ANN model 
for the outcome of gastric cancer after 1–5 years,  
however, without comparison to other conventional 
methods (59). Similarly, Oh et al. reported a more powerful 
tool for prognostic prediction using a survival recurrent 
network (SRN) (60). Interestingly, Que et al. established a 
preoperative ANN (preope-ANN) model to preoperatively 

Table 1 Studies of artificial neural network (ANN)-based models for the prognostic prediction of GC patients

Studies Objectives/nation Methods Major findings

Korhani Kangi and 
Bahrampour, 2018 (56) 

339 GC [2001–
2015]/Iran

ANN versus 
BNN

Sensitivity and specificity of ANN: 0.882, 0.903; sensitivity and specificity 
of BNN: 0.954, 0.909; prediction accuracy and AUC of ANN: 0.891, 0.944; 
prediction accuracy and AUC of BNN: 0.935, 0.961

Biglarian et al., 2011 (57) 436 GC [2002–
2007]/Iran

ANN versus 
CPH

True prediction of ANN: 83.1%; true prediction of CPH: 75%

Amiri et al., 2013 (58) 330 GC/Iran ANN versus 
CPH/KM

No significant difference of the ratios of SE between ANN and CPH; no 
significant difference of the ratios of SE between ANN and KM

Nilsaz-Dezfouli et al., 2017 
(59)

452 GC/Iran ANN 1-year prediction of sensitivity, specificity, accuracy of ANN: 0.707, 0.962, 
0.903; 2-year prediction of sensitivity, specificity, accuracy of ANN: 0.844, 
0.932, 0.889; 3-year prediction of sensitivity, specificity, accuracy of ANN: 
0.896, 0.890, 0.894

Oh et al., 2018 (60) 1,243 GC [2007–
2010]/Korea

ANN (SRN) AUC of SRN (5th year): 0.81

Que et al., 2019 (61) 1,608 GC [2011–
2015]/China

Preope-ANN C-index, likelihood ratio chi-square and AUC of the preope-ANN were 
all superior to clinical TNM. Prediction efficiency of the preope-ANN was 
similar to pathological TNM

Yazdani Charati et al., 2018 
(62)

430 GC [2006–
2013]/Iran

ANN AUC of selected ANN: 0.94; prediction of selected ANN: 0.92

GC, gastric cancer; ANN, artificial neural network; BNN, Bayesian neural network; AUC, area under the curve; KM, Kaplan-Meier; SE, 
standard errors; SRN, survival recurrent network.
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predict the prognosis of gastric cancer (61). It provided a 
reliable prediction for long term survival of gastric cancer 
prior to surgery with distinct statistical superiority to both 
clinical and pathological TNM (cTNM, pTNM) (61). 
Without a doubt, much more data is required for further 
upgrading of ANN models.

Another particularly important thing we should not 
overlook are the potential risks involved with incorporating 
AI models into the prognostication process. Though 
obviously there are massive benefits to eventually perfecting 
this new technology, it is not without its shortcomings 
and many questions still need to be addressed regarding 
its true implementation. Challen et al. point to 3 potential 
timeframes in which issues can arise: short term issues, 
medium term issues and long term issues (63). Macrae 
summarizes all timeframes and states that short term issues 
come from “reliability and interpretability of predictions” 
and how the systems used for training may not necessarily 
reflect actual real-world scenarios (64). In the medium term, 
the problems are thought to be an overreliance on ML and 
the further need of to have massive amounts of information 
to feed algorithms. Finally, in the long term the issue of 
autonomy with systems finding ways to independently get 
to a certain desired conclusion but in an alternative way 
leading to potential adverse effects. Hamid also points 
towards the veracity of issues arising short and medium 
term and adds that accuracy and security are big questions 
we need answered while this technology is still in the infant 
stage (65).

Naturally, we must be vigilant and try to heed the 
advice of AI ethicists, though these positions of authority 
are hardly fleshed out now. For short term issues, we can 
plausibly continue to improve testing and hold off full 
implementation until real life scenarios can be achieved. 
The more tests and simulation, the more information we 
can retrieve and the better the algorithms will be. Stepwise 
is most wise. Real issues arise in addressing the challenges of 
the medium term, as it is only natural for human behavior to 
completely replace old methods with new ones, especially, 
when dealing with convenience and time saving. Trends of 
this behavior have been apparent for centuries, for example, 
abacus to calculator or telegraph to video calls. Prevention 
of overindulging and becoming overly dependent on AI lays 
squarely with our behavior and choices. As for long term 
issues, we can only aim to include safeguards in algorithms 
to prevent any independent activity or creating a system to 
oversee any changes the ML modality may be implementing 
(63,65).

Clinicians are the key roles to oversight the improvement 
of performance of AI in both diagnosis and treatment area. 
The rapid development of AI is a reciprocal benefit for both 
patients and clinicians. Initial training of AI is mainly based 
on the data fed by each clinician, which may be overburden, 
but the long-term benefits far exceed the initial cost. AI 
provides a standardized and united health care system 
for diagnosis and treatment and offers an improvement 
opportunity for all the rest clinicians with comparable weak 
experiences (66).

Future

For this technology to be truly commonplace, much growth 
is still needed. Incorporation of this magnitude requires 
time to calibrate and make systems that are not only 
accurate, but also user-friendly and accessible (67). The 
biggest challenge for AI and other forms of DL is that they 
require information to learn and improve as it essentially 
nourishes itself from the quantities of data it is given (68). 
Issues arrive due to lack of availability of datasets, which in 
turn, potentially limit its growth (68). Tools like data mining 
can help fill the void to draw meaningful conclusions from 
available datasets but also suffer some drawbacks since more 
datasets yield more specific and meaningful data (69).

The underlying importance of accessibility cannot be 
overstated, especially in geographic regions where resources 
are more limited. Currently in the United States alone, the 
number of CT scanners increased from 25.9 scanners per 
million to roughly 45 scanners per million in 2019 (70). 
This is in stark contrast to Nigeria, Africa’s most populous 
country, which boasted a population of 195.9 million in 
2018, and in the same year had a total of 183 machines for 
the whole country, or slightly less than 1 per million (71). 
Naturally, the question arises of how AI strategies can be 
implemented to help. Data mining strategies seem like 
a natural fit to yield useful information. The simplicity 
of being able to draw conclusions from any information 
fed to the algorithm such as age, local diet, gender, tribe/
ethnic group or seemingly unrelated variables like height 
or economic status will always yield patterns, highlight 
abnormalities and show trends that seemingly go unnoticed. 
This serves as a perfect starting point to gauge the health 
status of a geographic group. Since the population is vast 
(almost 200 million), there is a massive benefit of having a 
lot of raw data to draw from, with the real drawback being 
limited ways of getting that information (183 machines). 
Using strategies like this, local physicians can be better 



Yu and Helwig. AI in gastric cancer

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(3):269 | http://dx.doi.org/10.21037/atm-20-6337

Page 12 of 15

informed about their population and make more specific 
and informed decisions to benefit their local communities. 
A real push for access and education is needed from 
developed countries to ensure that people in other regions 
can have access and the tools they need.

Special considerations also must be taken into the quality 
of data that is being given. As image quality is essential for 
training recognition, CNN architectures are still being 
upgraded. Improvements are being seen with textures to 
allow for increased accuracy and segmentation technology 
that help clearly differentiate objects (72,73). DL machines 
must also be taught and standardized by diagnostic 
professionals, which means there is an added effort and 
strain of having to train and provide appropriate calibrations 
for the machines by experts (74). This also does not take 
into consideration money needed by healthcare providers 
and researchers to build and maintain these systems to 
eventually yield relevant findings (75).

In summary, the present studies of AI in gastric cancer 
are mainly focused on the diagnosis. The excellence of 
AI, at this period, is more attractive than widely clinically 
applicable. Perhaps a scarce amount of AI researchers 
was originated as clinicians if any at all. Perhaps the 
developmental trajectory of minimally invasive laparoscopic 
surgery in clinical practice could be translated into AI and 
all computer-aided techniques. It is perceivable that, in 
near future, almost all clinical challenges may be able to be 
completely transformed as AI-based questions. This may 
suggest that, although imbalanced global medical resources 
affect the widespread of AI, advanced regions with adequate 
AI and clinical resources may have considerably accelerated 
the development of AI. Clinicians with AI background 
may serve as the key player across all AI progression. They 
can largely discount the negative impact of accident cases 
in their professional lives by AI-based regurgitating and 
digesting and deliver standardized clinical administration.

Conclusions

Despite growing efforts, adapting AI to improving diagnoses 
for gastric cancer is a worthwhile venture. The information 
yield can revolutionize how we approach gastric cancer 
problems. Though integration might be slow and labored, 
it can be given the ability to enhance diagnosing through 
visual modalities and augment treatment strategies. It can 
grow to become an invaluable tool for physicians, but this is 
entirely dependent on people to adapt and teach it.
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