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Background: By the time they are clinically diagnosed, patients with hepatocellular carcinoma (HCC) 
are often at the advanced stage. DNA methylation has become a useful predictor of prognosis for cancer 
patients. Research on DNA methylation as a biomarker for assessing the risk of occurrence in HCC patients 
is limited. The purpose of this study was to develop an efficient methylation site model for predicting 
survival in patients with HCC. 
Methods: DNA methylation and gene expression profile data were extracted from The Cancer Genome 
Atlas (TCGA) database. Markers of DNA-methylated site in two subsets (the training subset and the test 
subset) were identified using a random survival forest algorithm and Cox proportional hazards regression. 
Then, Gene Ontology annotations were applied to investigate the functions of DNA methylation signatures.
Results: A total of 37 hub genes containing 713 methylated sites were identified among the differentially 
methylated genes (DMGs) and differentially expressed genes (DEGs). Finally, seven methylation sites 
(cg12824782, cg24871714, cg18683774, cg22796509, cg19450025, cg10474350, and cg06511917) were 
identified. In the training group and the test group, the area under the curve predicting the survival of patients 
with HCC was 0.750 and 0.742, respectively. The seven methylation sites signature could be used to divide 
the patients in the training group into high- and low-risk subgroups [overall survival (OS): 2.81 vs. 2.11 years; 
log-rank test, P<0.05]. Then, the prediction ability of the model was validated in the test dataset through 
risk stratification (OS: 2.04 vs. 2.88 years; log-rank test, P<0.05). Functional analysis demonstrated that these 
signature genes were related to the activity of DNA-binding transcription activator, RNA polymerase II distal 
enhancer sequence-specific DNA binding, and enhancer sequence-specific DNA binding.
Conclusions: The results of this study showed that the signature is useful for predicting the survival of 
HCC patients and thus, can facilitate treatment-related decision-making.
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Introduction

Hepatocellular carcinoma (HCC), which is one of the 

main types of liver cancer, is the fourth deadliest cancer 

worldwide. According to global cancer statistics, in recent 
years, HCC incidence has risen by approximately 3% 
annually (1). Because HCC patients are often diagnosed 
at an advanced stage, the disease has extremely poor 
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survival rates and prognosis. Many factors contribute to 
the progression of HCC, including nonalcoholic fatty liver 
disease, alcohol addiction, and hepatitis C virus (2,3). The 
initial tumorigenesis and progression of HCC are complex 
and involve many factors. However, the exact molecular 
mechanism responsible for the poor prognosis of HCC 
patients is still unknown. So far, advances in liver cancer 
treatments, such as liver transplantation, surgical resection, 
and radiofrequency ablation, have failed to improve the 
dismal 5-year survival rate of patients, which stands at 
less than 20% (4,5). The poor prognosis of HCC mostly 
results from the limited understanding of the molecular 
factors associated with the disease and the lack of effective 
interventions (6,7). Like vascular endothelial growth factor 
(VEGF) inhibitors and mammalian target of rapamycin 
(mTOR) inhibitors have been investigated according to the 
knowledge about some molecular domain (8). Although 
these molecular sites have been investigated as potential 
therapeutic targets in HCC, few have shown promise 
(9,10). Therefore, there is an urgent need to identify new 
biomarkers for prognostic prediction and treatment in 
patients with HCC.

According to previous research, the occurrence and 
progression of cancer is mainly related to the expression 
or structural alteration of tumor-associated genes. Recent 
studies have demonstrated that DNA methylation of tumor-
related genes also plays a crucial role in tumor development 
(11,12). Scientists believe that DNA methylation is often 
involved in the mechanism of gene silencing and plays an 
important role in a number of biological processes, including 
development of embryo, transcription of DNA, imprint 
of genome, and inactivation of X-chromosome (13-15).  
Signatures derived from the methylation of DNA have 
already been studied in some cancers. Methylation of the 
CDH1 promoter, for instance, can indicate poor prognosis 
in patients with breast cancer (16), while in patients 
with stage I non-small-cell lung cancer, methylation of 
RUSSF1A, P16, CDH13, and APC is predictive of a higher 
rate of recurrence (17,18). In the study of HCC, several 
methylation biomarkers have also been used to predict 
prognosis (19). For example, CELSR3 (20), SEPT9 (21), 
TNFRSF12A (22), TP73 (23), RUNX3, and RASSF1A are 
single methylation biomarkers for predicting prognosis (24). 
However, many genes are involved in tumorigenesis, which 
makes some of them unsuitable as biomarkers (25). Although 
the mechanisms underlying the occurrence and development 
of HCC are extremely complex, it would be meaningful to 

establish a molecular biomarker model with good ability to 
discriminate the prognosis of patients with HCC.

In epigenetic research, methylation may be a symbolic 
event during carcinogenesis. Several methylations, such as 
promoter methylation and CpG-island methylation, are closely 
associated with HCC. Therefore, different from previous 
studies, we aimed to identify survival-related DNA methylation 
signatures in HCC to provide potential therapeutic targets 
by using bioinformatic methods. We present the following 
article in accordance with the MDAR reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-7804).

Methods

Profiling DNA methylation and gene expression datasets 
of HCC patients

We extracted a gene expression dataset (Illumina HiSeq 
RNA Seq V2) from the The Cancer Genome Atlas (TCGA) 
database. The DNA methylation profiles (Illumina Human 
Methylation 450K Bead Chip Array) of samples from 
392 HCC patients and 49 healthy volunteers were also 
extracted. Clinical information of patients in the gene 
expression and methylation datasets, including survival 
time, health status, sex, age and clinical tumor stage, are 
shown in Table 1. To improve the accuracy of the data, we 
preprocessed the datasets, which included removing the 
sites for which 70% methylated level was not available 
and removing genes if their expression was not detected in 
>30% of patients. Genes with an RPKM expression of 0 in 
all samples were also excluded (26). A flowchart of this study 
is shown in Figure 1. This study was a bioinformatic analysis 
based on data from an open database, which involved no 
ethic problem. 

Identification of DMGs and DEGs associated with HCC

In order to find the differentially expressed methylated 
genes, the Benjamini-Hochberg false-discovery rate (FDR) 
method was adopted to adjust the P value. DMGs were 
named as those with a fold change >2 with a P value <0.05, 
an FDR <0.05, and a beta value >0.1. DEGs met the criteria 
of a fold change >2 with a P value <0.05, an FDR <0.05, and 
an FPKM >1. 

With the identification of DMGs and DEGs, we 
investigated 37 hub genes that were differentially expressed 
and enriched in different methylated genes between the 
DMGs and DEGs.
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Construction of DNA methylation signature model

A predictive model was established using methods previously 
described (27,28). Methylation often occurs at specific loci 
of target genes and often involves many methylation sites. 
To enhance the accuracy of the detection results in this 
study, we only searched methylation sites of hub genes, and 
then identified which site was related to survival in patients 
with HCC. The HCC methylation samples were randomly 
divided into two groups at a ratio of 1:2: the test group 
(n=131) and the training group (n=261). Univariate Cox 
analysis was carried out to examine the relationship between 
survival time and health status and each methylation site 
in the training dataset (29). It was generally assumed that a 
model was more practical if its render had a smaller number 
of DNA methylation sites. Therefore, we used a random 
survival forests-variable hunting (RSFVH) algorithm to 
screen the gene sites. To determine the most powerful 
and accurate DNA methylation sites for predicting the 
prognosis of HCC in our study, multivariate Cox analysis 
was applied to create the prognostic model according to the 
following formula: 

( )
1

Risk Score RS
N

i i
i

Meth Coef
=

= ∗∑  [1]

In which N means the number of methylation sites, 
Methi represents the value of methylation sites, and Coefi 
represents a univariate Cox regression coefficient. When 
the coefficient of the Coi was <0, we defined the site as a 
useful prognostic site, sites with a Coi coefficient of >0 were 
considered not to be used as prognostic sites. Risk score (RS) 
was the multi-node weighted sum of the risk scores.

Function of the selected DNA methylation signature genes

We performed Gene Ontology (GO) analysis (http://www.
geneontology.org) to study the function of the selected 
DNA methylation signature genes.

Statistical analysis

A risk model was constructed incorporating the selected 
methylation sites. With this model, HCC patients were 
divided into high- and low-risk groups, with the median 
risk score used as a cutoff value in the training dataset. 
Kaplan-Meier survival curve analysis and receive operating 
characteristic (ROC) curve analysis were conducted to 
test the predictive value of the methylation gene site 

signatures. We further tested the predictive value of the 
DNA methylation signature in the test dataset. Then, 
multivariable Cox analysis was used to identify whether 
the DNA methylation signature was an independent risk 
factor for survival in HCC. P<0.05 was considered to show 
a statistically significant difference. Fisher’s exact test and 
χ2 tests were used to select significant GO and KEGG 
pathway categories, with the threshold for significance set 
at P<0.05. All analysis was conducted with the R statistical 
software (version 3.5.1, Mathsoft Inc., NY, USA). 

Results

DMGs and DEGs associated with HCC

In the methylation dataset, we identified 203 DMGs 
(P<0.05; Δβ >0.1), with 23 hypomethylated genes and 180 
hypermethylated genes. There were 4,880 DEGs identified, 
including 3,818 upregulated genes and 1,062 downregulated 
genes. Finally, a total of 37 hub genes were identified (Figure 2).

DNA methylation signature sites in the training group

A total of 713 methylation sites were identified for the 
37 hub genes. The univariate Cox proportional hazards 

Table 1 Patient baseline characteristics

Characteristic Training (n=261) Test (n=131)

Sex, n (%)

Female 165(63.2) 76 (58.0)

Male 96 (26.8) 55 (42.0)

Age (years), n (%)

<60 121 (46.4) 48 (36.6)

≥60 140 (53.6) 83 (63.4)

Stage, n (%)

I 121 (46.4) 60 (45.8)

II 57 (21.8) 28 (21.4)

III 60 (23.0) 18 (13.7)

IV 4 (1.5) 0 (0.0)

Unknown 19 (7.3) 25 (0.191)

Vital status, n (%)

Living 160 (61.3) 76 (53.9)

Deceased 101 (38.7) 55 (46.1)
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regression analysis revealed that 36 methylated sites 
were associated with survival of HCC patients (P<0.05,  
Figure 3A). Then, an RSFVH was employed to determine 
which of the sites were DNA methylation signature sites. 
Ten sites related to the patient survival were selected 
by the RSFVH algorithm according to the permutation 
importance score (PFI). To select the signature with the 
greatest predictive power, a multivariable Cox regression 
analysis was conducted, and a model was built with seven 
methylated gene sites set (cg12824782, cg24871714, 
cg18683774, cg22796509, cg19450025, cg10474350, and 

cg06511917, Figure 3B) to assess the survival risk of the 
HCC patients. Risk scores were determined as follows 
(higher RS predicts higher risk of death): 

( ) ( )
( ) ( )
( ) ( )
( )

cg12824782 cg24871714

cg18683774 cg22796509

cg19450025 cg10474350

cg06511917

RS 10.40 1.46

1.38 1.81

1.86 1.54

1.45

meth meth

meth meth

meth meth

meth

= − × + − ×

+ × + ×

+ − × + ×

+ − ×

 [2]

Notes: RS = risk score; meth = methylation value.

Significant different 
methylation gene

Different expression and 
methylation gene

Significant methylation-expression genes 
associated with OS

The remained genes to construct  
predictive model

The risk score of 2n-1 signatures

Signature remained with the largest AUC

Validation in other data

KM analysis ROC analysis

Significant different 
expression gene

DNA methylation data Gene expression data

Correlation analysis

Univariate Cox regression

Random survival forests-variable hunting algorithm

Combination

ROC regression

Figure 1 Flowchart of this study.



Annals of Translational Medicine, Vol 8, No 24 December 2020 Page 5 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(24):1667 | http://dx.doi.org/10.21037/atm-20-7804

Power of the DNA methylation signature to predict 

survival in patients with HCC

Each patient was assigned a risk score from the model 

derived from the selected methylated sites, and the median 
value of risk score was used as the cut-off point to divide the 
patients in the training group into group of low-risk (LRG, 
n=131) or group of high-risk (HRG, n=130). The KM 

Figure 2 Identification of DMGs and DEGs associated with HCC. (A) The heatmap of DMGs associated with HCC; (B) the heatmap of 
DEGs associated with HCC; (C) the 37 hub genes identified from the DMGs and DEGs. DMGs, differentially methylated genes; DEGs, 
differentially expressed genes; HCC, hepatocellular carcinoma. DMGs, differentially methylated genes; HCC, hepatocellular carcinoma; 
DEGs, differentially expressed genes. 
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Figure 3 Methylation gene sites screening. (A) Cox univariate analysis of correlation between methylation levels of different methylation 
sites and overall survival; 36 methylation sites with P<0.05 were selected; (B) seven methylation gene sites identified by Cox multivariate 
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survival analysis demonstrated that compared with HRG, 
the overall survival (OS) in LRG was significantly higher 
(OS: 2.81 vs. 2.11 years; log-rank test, P<0.05; Figure 4A). 
The predictive power of the model was validated in the test 
group, and a significant difference was again found between 
the HRG and LRG. In the test group, the OS of the high-
risk patients was significantly lower than that of the low-
risk patients (OS: 2.04 vs. 2.88 years; log-rank test, P<0.05; 
Figure 4B).

Further, the ROC analysis revealed the seven methylation 
signature sites to have a high predictive ability in the training 
group (AUC Signature =0.750, Figure 4C), which demonstrated 
a good performance of our model in predicting the survival 
of patients with HCC (AUC Signature =0.742, Figure 4D). 
Multivariable Cox regression analysis from the training 
dataset showed that after adjustment for clinical features 
including sex, age, and pTNM, the signature risk score was 
an independent prognostic factor of HCC (Figure 5A).

Figure 4 Patients were stratified into the high- and low-risk groups based on the median of risk score according to five shifted methylation 
sites. Kaplan-Meier survival analysis was used to compare the difference of survival probabilities of the two groups. (A) Kaplan-Meier 
survival analysis of OS for TCGA training set patients (n=261); (B) Kaplan-Meier survival analysis of OS for TCGA test set patients 
(n=131); (C) ROC analysis of the seven methylation signature sites in the training group (n=261); (D) ROC analysis of the seven methylation 
signature sites in the test group (n=261). OS, overall survival; ROC, receive operating characteristic.
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Functional annotation of DNA methylated genes signature 

GO functional annotation analysis showed that the DNA 
methylation genes were significantly enriched in DNA-
binding transcription activator activity, RNA polymerase 
II distal enhancer sequence-specific DNA binding, and 
enhancer sequence-specific DNA binding (P<0.05). 
Therefore, the seven gene sites may participate in the 
tumorigenesis through regulating cellular metabolic 
processes (Figure 5B).

Discussion

For doctors and investigators, HCC remains a clinical 
challenge for multiple reasons, including delayed diagnosis 
(with many HCC patients diagnosed at stage 4, leaving 
them with no effective treatment options), histologic 
heterogeneity, poor management results, and limited 
treatment choices (30). However, the mechanism of HCC 
carcinogenesis is extremely complicated and has yet to be 
fully illuminated. Gene mutation, immune escape, protein 

Figure 5 Independent analysis and functional annotation of the DNA methylated gene signature. (A) In the training datasets, multivariable 
Cox regression analysis showed that the signature risk score was an independent prognostic factor for HCC; (B) GO functional annotation 
for the signature. HCC, hepatocellular carcinoma; GO, Gene Ontology.
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expression disorders, and blood vessel malformation are 
all involved in cancers. As gene mutation is the main and 
original mechanism of cancer occurrence, the majority of 
previous studies have focused on genes that are already 
recognized as being associated with HCC. Traditionally, 
HCC prognosis has been determined based on the TNM 
staging system and other baseline characteristics, including 
blood test results, history of disease, and age. However, 
clinical outcomes differ greatly, even among patients at the 
same stage. Therefore, due to the unpredictable clinical 
outcomes among patients, the TNM staging system is 
insufficient for guiding personalized treatment (31). In the 
management of cancer patients, precise medicine has made 
significant progress. Molecular targeted drugs can achieve 
a good prognosis in many malignancies, including breast, 
stomach, colon, and liver cancer. However, despite this 
progress, some patients survive for only a short time after 
diagnosis. 

In recent years, several powerful predictive biomarkers 
have been reported to improve the clinical management of 
cancer. DNA methylation is a well-known epigenetic change 
which can alter the expression of vital tumorigenesis-
associated genes without changing the genetic sequence (32). 
These changes have been shown to be closely associated 
with the occurrence and development of cancer, and many 
related biomarkers have been reported (33). Tumor-specific 
methylation sites are critical for the inchoate diagnosis of 
cancer (34). Since aberrant DNA methylation has been 
proven to be associated with the tumorigenesis of HCC, 
it may serve as a predictive biomarker for the prognosis of 
HCC patients (35,36). However, epigenetic biomarkers 
for HCC have rarely been investigated, with most research 
on prognostic biomarkers of HCC focused on messenger 
RNAs (mRNAs), long non-coding RNAs, and microRNAs 
(miRNAs). For instance, Ma et al. reported that LINC02499 
performed well in the diagnosis of HCC, with a sensitivity 
and specificity of 83.8%. Moreover, the up-regulation 
and down-regulation of LINC02499 was observed to 
significantly affect the proliferation, migration, and invasion 
of HCC cells in vitro. Therefore, LINC02499 may be a 
useful predictive biomarker in the diagnosis and prognosis 
of HCC (37). Wang et al. found that up-regulation of miR-
3174 inhibited cell apoptosis and promote cell proliferation 
in HCC by down-regulating the expression of FOXO1, 
suggesting that miR-3174 may be a new therapeutic 
candidate for HCC patients (38). However, although some 
prognostic biomarkers of HCC have been identified, 

the results of studies so far have been inconsistent; 
moreover, an analysis at multiple omics levels has yet 
to be performed. Therefore, a reliable molecular model 
to predict the survival of HCC patients more precisely 
needs to be developed and validated. In the present study, 
we obtained 713 methylated gene sites from 37 hub 
genes. Using various statistical methods, we identified 
7 methylation signature sites from the methylated sites. 
The signature that we established was able to differentiate 
HCC patients into high-risk and low-risk groups with 
significantly different survival duration, both in the 
training and test datasets, indicating that it has a satisfying 
predictive power. The DNA methylation site signature 
was also found to be independent of other clinical 
characteristics. Moreover, we found that the methylation 
gene site signature was better than other clinical 
risk factors, such as stage and age, in predicting OS. 
Therefore, our findings contribute to the understanding 
of the development of HCC as well as the development of 
targeted therapies that may ultimately improve the survival 
of HCC patients. Experimental studies demonstrated 
that when the methylation level is reduced, it can cause 
gene activation and tumor occurrence. Accordingly, 
investigators assumed that DNA methylation has a strong 
relationship with tumor development and prognosis. 

Additionally, we conducted a functional analysis of the 
selected DNA methylation genes. The seven methylation 
sites were located in ZNF382, ZNF529, IRX5, PTF1A, 
ZIC1, SLX1A, and HOXA7, respectively. GO function 
annotation analysis showed that the genes were significantly 
enriched in DNA-binding transcription activator activity, 
RNA polymerase II distal enhancer sequence-specific 
DNA binding, and enhancer sequence-specific DNA 
binding. Zinc-finger protein 382 (ZNF382), which 
encodes a putative 64 kDa zinc finger protein, is located 
on chromosome 19q13.13 (39). It has been reported that 
ZNF382 may play a significant tumor-suppressive role and 
methylate in multiple cancers, including colon, esophageal, 
breast, nasopharyngeal, and gastric cancer (40,41). Dang 
et al. reported that ZNF382 inhibited HCC tumorigenesis 
by impairing the activity of AP-1 and the activation of the 
p53 pathway (42). Iroquois homeobox (IRX) genes also 
play a key role in the development of malignancies. IRX5 
is a transcription factor that has a variety of functions in 
different cancers (43). As a key transcription factor, IRX5 
regulates the key regulatory genes to regulate invasion, 
cell growth, apoptosis, and migration, thus promoting the 
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occurrence and development of many tumors. Recent data 
indicate that IRX5 significantly promotes tumor growth 
in tongue squamous cell carcinoma by targeting the OPN 
promoter and activating the NF-κB pathway (44). In HCC, 
IRX5 overexpression can promote cell proliferation and 
tumorigenesis (45), while knockdown of IRX5 can affect cell 
apoptosis via the p53 pathway (46). ZIC1 is a transcriptional 
cofactor (47,48), and there is growing evidence that it 
has an antitumor effect in a variety of epithelial cancers, 
including colon, endometrial, breast, and thyroid cancers 
(49-52). Ge et al. showed that ZIC1 inhibits GC transfer by 
attenuating the EMT process and Wnt/β-catenin pathway 
(53,54). HOXA7, meanwhile, plays important roles in cell 
differentiation and cell morphological development. In a 
recent study, for instance, it was shown to play a key role 
in normal cell proliferation and differentiation, and its 
overexpression can lead to the development of malignant 
tumors (55). Significantly increased HOXA7 expression has 
also been found in ovarian (56), breast (57), lung (58), and 
gastric cancer (59). However, ZNF529, PTF1A, and SLX1A 
are less well known, having been the focus of few articles 
(60,61). The results of the current study provide a novel 
direction for further research of the potential prognostic 
role of these genes in HCC.

Unfortunately, this study has some limitations that 
need to be highlighted. Firstly, this is a retrospective study, 
and it is likely that inherent biases influenced the final 
results to some degree. Hence, we may have missed some 
signatures that are potentially correlated with survival in 
patients with HCC. Secondly, we did not further investigate 
the mechanism of the DNA methylation genes in the 
occurrence and development of HCC. Finally, further 
studies with larger sample sizes and longer duration of 
follow-up are needed to validate our findings.
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