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Abstract: Immunotherapy has broadened the therapeutic scope and response for many cancer patients 
with drugs that are generally of higher efficacy and less toxicity than prior therapies. Multiple classes 
of immunotherapies such as targeted antibodies and immune checkpoint inhibitors (ICI), cell-based 
immunotherapies, immunomodulators, vaccines, and oncolytic viruses have been developed to help the 
immune system target and destroy malignant tumors. ICI targeting programmed cell death protein-1 (PD-1) 
or its ligand (PD-L1) are among the most effective immunotherapy agents and are a major focus of current 
investigations. They have received approval for at least 16 different tumor types as well as for unresectable 
or metastatic tumors with microsatellite instability-high (MSI-H) or mismatch repair deficiency or with high 
tumor mutational burden (defined as ≥10 mutations/megabase). However, it is important to recognize that 
immunotherapy may be associated with significant adverse events. To summarize these events, we conducted 
a PubMed and Google Scholar database search through April 2020 for manuscripts evaluating treatment-
related adverse events and knowledge gaps associated with the use of immunotherapy. Reviewed topics 
include immune-related adverse events (irAEs), toxicities on combining immunotherapy with other agents, 
disease reactivation such as tuberculosis (TB) and sarcoid-like granulomatosis, tumor hyperprogression 
(HPD), financial toxicity, challenges in special patient populations such as solid organ transplant recipients 
and those with auto-immune diseases. We also reviewed reports of worse or even lethal outcomes compared 
to other oncologic therapies in certain scenarios and summarized biomarkers predicting adverse events. 
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Introduction

Immunotherapy represents a breakthrough in oncology 
that has radically changed the therapeutic management 
of numerous cancer types. Multiple classes of agents have 
been developed to enhance the ability of the immune 

system to target and destroy malignant tumors but may 
also be associated with immune-related adverse events 
(irAEs) (1). These include immune checkpoint inhibitors 
(ICI), cell transfer therapies, vaccines, and immune system 
modulators. These agents, their mechanisms of action, and 
common irAEs are summarized in Table 1. 

1041

	
^ ORCID: 0000-0003-3518-0411.

Review Article on Cancer Immunotherapy: Recent Advances and Challenges

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-4750


Okwundu et al. Dark side of immunotherapy

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(12):1041 | http://dx.doi.org/10.21037/atm-20-4750

Page 2 of 15

Table 1 Selected approved cancer immunotherapies, mechanisms of action, and adverse effects

Therapy type Mechanism of action Examples
Selected adverse effects 

of interest
References

Immune checkpoint 
inhibitors (ICI)

Blocks checkpoint proteins, 
e.g., CTLA-4, PD-1 or PD-L1 
from binding with their partner 
proteins thereby allowing the 
T-cells to kill cancer cells

CTLA-4—ipilimumab (Yervoy
®
) IrAES: can affect any organ 

system, e.g., diarrhea, 
myasthenia graves, colitis 
hypophysitis, pruritus, 
polyarthritis

(2,3)

PD-1—pembrolizumab 
(Keytruda

®
), nivolumab 

(Opdivo
®
), cemiplimab 

(Libtayo
®
)

PD-L1—atezolizumab 
(Tecentriq

®
), durvalumab 

(Imfinzi
®
), avelumab (Bavencio

®
)

T cell targeted 
immunotherapy

Extracted patient’s T cells are 
multiplied ex vivo, enhanced 
and administered

CAR T-cell therapies: 
tisagenlecleucel (Kymriah™)

CRS, neurotoxicity 
(e.g., convulsions, 
encephalopathy, or 
ischemia)

(4)

These T-cells’ are better able to 
attack and kill cancer cells

Axicabtagene ciloleucel 
(Yescarta™)

There are two main types of 
T-cell targeted therapy: tumor-
infiltrating lymphocytes (TIL) 
therapy and CAR T-cell therapy

Other monoclonal 
antibodies

Ex vivo generated monoclonal 
antibodies or immune system 
target-specific proteins are 
administered

CD25-specific antibody 
(daclizumab)

Hepatotoxicity, diarrhea (5,6)

These antibodies help the 
immune system better 
recognize cancer cells for 
destruction along with other 
drug specific mechanisms

CD20-specific antibody 
(rituximab)

CRS, immunodeficiency

HER2-specific antibody 
(trastuzumab)

Cardiotoxicity

CD19/CD3 specific antibodies 
(blinatumomab)

CRS, neurotoxicity (e.g., 
convulsions), liver toxicity 
(transaminitis)

Anti-tumor vaccines 
and oncolytic virus 
therapy

Tumor-associated antigens 
(found mainly in cancer cells, 
but are absent or at lower 
levels in normal cells) are 
administered

Sipuleucel-T (Provenge
®
) Flu-like symptoms, 

potential for autoimmunity
(7-9)

The immune system recognizes 
and reacts to these antigens 
and destroy cancer cells that 
contain them as well as boosts 
T-cell or innate immune-cell 
responses

Oncolytic virus therapy: 
talimogene laherparepvec 
(T-VEC, or Imlygic

®
)

In oncolytic virus therapy a 
genetically modified virus 
infects and kills the cancer 
cells but does no or minimal 
harm to normal cells

Table 1 (continued)

https://www.cancer.gov/about-cancer/treatment/drugs/axicabtageneciloleucel
https://www.cancer.gov/about-cancer/treatment/drugs/axicabtageneciloleucel
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Immunotherapies have improved overall survival (OS) 
in a broad range of early-stage and advanced cancer types, 
and these treatments have gained wide acceptance and 
considerable excitement in clinical practice. Antibodies 
targeting programmed cell death protein-1 (PD-1) or 
its ligand (PD-L1) are the most effective of the ICIs. As 
per a recent report, at least nine PD-1/PD-L1-directed 
agents have reached the clinics globally for the treatment 
of 16 different cancer types, and microsatellite instability-
high (MSI-H) or mismatch repair deficient (dMMR) solid 
tumors (13).

However, these novel agents are not without their unique 
downsides which include high cost, immune toxicities, 
hyperprogression (HPD), reactivation of certain diseases, 
limitations in certain populations, and unexpected worse 
outcomes in certain malignancies. This review summarizes 

these negative health impacts and problems associated with 
the use of immunotherapy (Figure 1).

irAEs

Although immunotherapy has proven to be more effective 
and less toxic compared to chemotherapy in multiple 
cancer types, unexpected adverse events have been observed 
that are likely related to their mechanism of action (14). 
These therapies generally work by relieving inhibition of 
activated T-lymphocytes in lymph nodes and peripheral 
tissues, resulting in enhanced lymphocyte activation and 
propagation of T-cell mediated destruction of normal cells 
expressing self-antigens and induce inflammatory and auto-
immune responses leading to irAEs (6). Clinically, irAEs 
may manifest as distinct symptoms with respect to organ 

Table 1 (continued)

Therapy type Mechanism of action Examples
Selected adverse effects 

of interest
References

Immunomodulators Immune-modulating agents 
such as cytokines and BCG are 
administered

Thalidomide (Thalomid
®
) Teratogenic, 

myelosuppression
(9-11)

They enhance the body’s 
immune response against 
cancer or reduce side effect of 
chemotherapy

Lenalidomide (Revlimid
®
) Neutropenia, diarrhea, 

anemia, TLS

Pomalidomide (Pomalyst
®
) Thromboembolism, 

neurotoxicity, TLS

Imiquimod (Aldara
®
, Zyclara

®
) Dermatitis, cold sores, 

headache, flu-like 
symptoms

BCG vaccine Hepatitis and/or 
pneumonitis; renal or 
disseminated BCG 
infection

Cellular 
immunotherapy

Autologous or allogeneic stem 
cells are infused 

Peripheral blood stem cells 
(PBSCs)

Autoimmunity due to off-
target responses, including 
uveitis (in melanoma) and 
GVHD (in haematopoietic 
malignancies) 

(9,12)

Treat hematopoietic 
malignancies or aid 
recovery in cancer patients 
immunoablated with very 
high doses of radiation therapy, 
chemotherapy,  
or both

BCG, Mycobacterium bovis bacillus Calmette-Guérin; CTLA4, cytotoxic T-lymphocyte antigen 4; PD-1, programmed cell death protein 1; 
PD-L1, programmed death ligand 1; CAR T-cell, chimeric antigen receptor T-cell; HER2, human epidermal growth-factor receptor 2; irAEs, 
immune-related adverse events; TLS, tumor lysis syndrome; CRS, cytokine release syndrome; GVHD, graft versus host disease.

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044664&version=Patient&language=English
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involvement, pattern of onset, and level of severity which 
may lead to severe and even life-threatening complications 
in patients that may necessitate early termination of an 
otherwise beneficial treatment. Up to 95% of patients 
receiving immunotherapy may experience irAEs (15-19) 
mainly due to immune dysregulation targeting normal 
tissue antigens (20-22). In initial reports, the organs most 
frequently involved were the skin (pruritus and cutaneous 
rash), joints, thyroid, and gastrointestinal tract (colitis and 
diarrhea). Subsequently, irAEs were identified in the liver 
(autoimmune hepatitis), non-thyroid endocrine glands 
(hypophysitis and adrenal insufficiency), lungs and nervous 
system (myasthenia gravis and encephalitis). Finally, 
myositis/myocarditis, nephritis, and even hematological 
irAEs were reported (23–25). Interestingly, irAEs may 
be idiosyncratic as different drugs and doses used for 
different cancers may result in different adverse events of 
unpredictable severity (23,26,27). 

The irAEs induced by ICI therapy are associated with a 
fatality rate of around 5%. In an analysis of co-morbidities 
in 21 patients on ICI with irAEs related death, 12 had 
hypertension and 6 had other cardiac conditions; 2 patients 
had a preexisting autoimmune disease (AD) (Graves’ 
disease). In addition, patients with fatal toxic effects had 
similar sex distribution but were older than those without 
fatal toxic effects (median, 70 vs. 62 years; absolute 
difference, 8; P=0.009) (28). The most common cause of 
death from ICI-related irAEs is (ICI)-related pneumonitis 
(ICI-P). The incidence of ICI-P in phase III trials was 

between <0.5% and 10% for all grades and has been found 
to be higher in lung cancer (1–6%) than in other cancers 
(0.1–4%) (29–37). In a meta-analysis including all cancer 
types and ICI, ICI-P of all grades was observed in 2.6% of 
patients and emerged as the fourth leading cause of ICI-
induced irAEs after skin eruptions (13.9%), hepatitis (6.5%), 
thyroid disorders (5.1%), and colitis (2.3%) (38). In another 
meta-analysis, the most common irAEs due to PD-1 and 
PD-L1 inhibitors were fatigue (18.3%), pruritus (10.6%), 
and diarrhea (9.5%). Though the incidence of all grade 
ICI-P was 2.79% it was responsible for 28% of treatment-
related deaths (39).

Immune-mediated myocarditis is the most common type 
of cardiotoxicity occurring with immunotherapy. Although 
the incidence is low partly due to under-recognition, the 
cardiovascular-specific mortality rate is relatively high and 
varies with different therapies. In patients who developed 
cardiotoxicity, the cardiovascular-specific mortality was 
12% in patients receiving nivolumab monotherapy, 19% 
in pembrolizumab monotherapy cohorts, and 65% in 
combined CTLA-4 and PD-1 blockade (ipilimumab and 
nivolumab combination) (40). 

Endocrine adverse events though rare could be life-
threatening and hence are noteworthy irAEs. Blocking 
inhibitory molecules on activated T cells by ICI not only 
increases the killing of tumor cells it could also lead to 
infringement of self-tolerance, enabling T cells to act 
against self-antigens (41). The most frequent autoimmune 
endocrinopathies involve the pituitary and thyroid  

Figure 1 Summary of current challenges with cancer immunotherapy.
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glands (42). Thyroid abnormalities such as hypothyroidism, 
thyrotoxicosis, painless thyroiditis, or even thyroid storm (43) 
are present in 1–6% of patients administered with ICI 
(43,44). Patients with endocrine irAE can be critically ill at 
presentation. For instance, primary adrenal insufficiency 
during immunotherapy is a medical emergency requiring 
hydrocortisone replacement. Suggestive acute symptoms 
include hypotension, hyponatremia, nausea, vomiting, 
diarrhea, asthenia, weight loss, dehydration, fever, 
abdominal pain, cramp and muscle pain. Current data 
suggest that treatment needs to be life-long, even after 
termination of immunotherapy (45). 

Furthermore, patients could develop autoimmune type 
1 diabetes and also often present emergently with severe 
hyperglycemia or diabetic ketoacidosis (DKA) with elevated 
HbA1c. Time from drug administration to diabetes onset 
may span 1 week to 5 months (41). In a systematic review 
of 90 patient cases treated with anti-PD-1 or anti-PD-L1 
as monotherapy (79%) or in combination with CTLA-4 
blockade (15%), diabetes mellitus was diagnosed after 4.5 
cycles (range, 1–17); while earlier with combination ICI at 
2.7 cycles (range, 1–5) on average. Islet autoantibodies were 
positive in 53% (47/88) of patients with a predominance of 
glutamic acid decarboxylase antibodies. Susceptible HLA 
genotypes were present in 65% (mostly DR4) (46). Hence, 
the use of anti-GAD serology in aiding the diagnosis 
is not recommended as only half of the patients were 
positive although this can potentially be used to confirm 
the diagnosis if positive (47). Incidence is estimated to 
be at 0.4–0.6% in clinical trials (44,48,49), while a recent 
study reported a prevalence of 0.9% among 2,960 patients 
treated by immunotherapy (50). Immune-related endocrine 
toxicities such as thyroid dysfunctions, hypophysitis, adrenal 
insufficiency, and type 1 diabetes mellitus are irreversible in 
approximately 50% of patients (51).

Most of the irAEs symptoms are generally well-
controlled by discontinuing the drug and/or adding 
systemic glucocorticoids or steroid-sparing regimens 
(e.g., anti-tumor necrosis factor-alpha (TNF-α) agents 
or mycophenolate mofetil). Systemic steroids are usually 
administered for months and sometimes multiple courses 
are needed due to repeat flares of these irAEs after taper. 
This makes the patients immunocompromised for a 
prolonged period, putting them at risk of infections. In 
addition, corticosteroid-associated adverse events such 
as myopathy, gastritis, diabetes mellitus, hypertension, 
Cushing’s syndrome and osteoporosis remain a cause of 
concern (52).

Biomarkers for irAEs

Certain biomarkers have been found in studies to be 
independently predictive of irAEs such as female sex 
and low baseline cytokine levels. Low IL-6 levels were 
associated with increased OS in a study of 140 patients 
with melanoma treated with anti-CTLA-4 (53). In 
patients with locally advanced or metastatic melanoma 
an association between ipilimumab-induced colitis and 
reduced baseline levels of circulating IL-6, IL-8, soluble 
IL-2 receptor (sCD25), and increased IL-17 has been 
demonstrated (54,55). Intriguingly, there is a likelihood 
that the net increase in these proinflammatory cytokines 
from ICI therapy actually determines immune toxicity. 
On therapy increases in IL-6 (56) or in soluble cluster 
of differentiation 163 (sCD163) (57) in two studies of 
melanoma cohorts treated with nivolumab monotherapy 
were predictive of psoriasiform dermatitis and a variety of 
irAEs, respectively.

In addition, the existence of autoantibodies may predict 
the development of endocrine-specific irAEs following 
checkpoint inhibition. Increased pretreatment levels of 
serum antithyroglobulin antibodies was significantly 
associated with subsequent autoimmune thyroid dysfunction 
(odds ratio, 26.5; 95% CI, 8.18–85.8) in a multivariate 
analysis of patients with advanced solid tumors treated with 
nivolumab (58). Another study found that the existence 
of one or more diabetes autoantibodies (against glutamic 
acid decarboxylase 65, insulin, islet cells, zinc transporter 
8, or islet antigen 2) prior to ICI therapy precipitated the 
development of clinical diabetes in a cohort of patients 
diagnosed with a variety of solid tumors (50). Moreover, 
proteome array identified baseline serum antibody reactivity 
in a study of 78 patients treated with ICIs. Machine 
learning has also identified baseline antibody signatures 
associated with irAEs with greater than 90% sensitivity and  
specificity (59).

Furthermore, the constitution of the gut microbiota 
may be associated with ICI-induced colitis. For instance, in 
a prospective study of 34 patients with melanoma treated 
with anti-CTLA-4, baseline representation of species from 
the Bacteroidetes phylum was associated with decreased 
risk of ICI-induced colitis (60). Consequently, some studies 
have reported a positive association between the on-therapy 
incidence of irAEs and OS or response for patients treated 
with anti-CTLA4 (61) or anti-programmed cell death 1 
(PD1) (62-64), while others found no association with  
OS (65,66).
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Reactivation of diseases

Immunotherapeutic agents may also unmask chronic 
underlying diseases or opportunistic infections. These 
include latent tuberculosis (TB), sarcoid granulomatosis, 
varicella-zoster virus infection, cytomegalovirus-associated 
enterocolitis, and their potentially serious complications 
which compromise treatment outcome and patient survival 
(67,68). In an analysis of 14 cancer patients with active 
TB infection following PD-1/PD-L1 blockade, only 2 of 
14 (14%) patients who developed active TB infection had 
received steroids or infliximab for irAEs. Thus, cancer and/
or the immunotherapeutic drugs could be considered the 
probable etiology of their susceptibility to the TB infection 
warranting caution (69-77). Hence, in addition to high-
dose corticosteroids, which when used to manage irAEs 
can unmask chronic underlying diseases or opportunistic 
infections, immunotherapeutic drugs could directly 
reactivate diseases as well.

This direct complication of immunotherapy correlates 
with the findings in a study which investigated the 
expression patterns of PD-1 and PD-L-1 within TB-
infected human lung tissue using a human 3D cell culture 
model of TB. It was found that PD-1 regulates the immune 
response in TB (78), and that inhibition of PD-1 accelerates 
TB bacteria growth through excessive TNF-α secretion (79). 
Neutralizing TNF-α reversed the augmented growth caused 
by PD-1-inhbitor therapy (79). This is also the basis for 
treatment of irAEs associated with ICIs with anti-TNF-α 
inhibitors (1), suggesting TNF-α may be responsible for 
both autoimmunity and TB pathology after PD-1 therapy.

Some cancer types and immunotherapeutic drugs 
have been associated with certain disease reactivation 
susceptibility. For instance, reactivation of sarcoid-
like granulomatosis is associated with ICI treatment 
for melanoma. Of 19 isolated cases of immunotherapy-
re l a t ed  s a rco id- l i ke  g ranu lomatos i s  ( ICI-SLG) 
reported after initiation of cancer treatment, (80-95), 
13 (73%) were melanoma patients. Similarly, ICI-
SLG occurred in 7 out of 509 (1.4%) stage 3 melanoma 
patients treated with pembrolizumab, while no ICI-
SLG occurred in the placebo group (96). It was also 
found that melanoma was the most common cancer 
type associated with sarcoidosis in a meta-analysis 
investigating the association between sarcoidosis and 
cancer, and cytotoxic T-lymphocyte antigen 4 (CTLA-4)  
inhibitors also had a higher association with ICI-SLG than 

PD-1 inhibitors (97). Sarcoid presents a particular problem 
as it is often mistaken for cancer on scans as a sarcoid flare 
can be hard to distinguish from progressive disease. 

Patients with transplant and auto immune 
diseases

Safety and efficacy data are lacking for the use of 
immunotherapy in patients who have undergone solid organ 
transplantation (SOT). As a result, these patients have been 
excluded from clinical trials (20,98,99). There is a concern 
for the risk of allograft rejection in SOT patients (98). In 
addition, the immunosuppressive drugs used to manage 
SOT patients may decrease the immune enhancement and 
efficacy of immunotherapy (99). In a systematic review 
of SOT patients treated with ICI, allograft rejection 
occurred in 37% and 14% died as a result of graft rejection. 
Nivolumab was associated with rejection in about half of 
patients, while pembrolizumab and ipilimumab were each 
associated with rejection in about one quarter of patients. 
Highest rates of graft rejection were seen with kidney 
(40%), followed by liver (35%), and heart (20%) (100). 
Graft rejection can be reversed in some patients with the 
use of high-dose corticosteroids, and occasionally other 
aggressive immunosuppressive therapies, along with dialysis 
and ICI discontinuation (101). Furthermore, SOT patients 
are at increased risk of developing de novo cancers (102-106) 
which are the second leading cause of death in this patient 
population (106). The inability to safely use immunotherapy 
without risk of allograft rejection in these patients poses a 
significant therapeutic challenge.

In addition, disease exacerbation as well as more 
severe irAEs may occur in patients with active AD treated 
with immunotherapy (98). Immune enhancement by 
immunotherapy may also exacerbate preexisting AD in 
remission. In a systematic review which assessed the use 
of immunotherapy in the treatment of 123 cancer patients 
with preexisting AD, 75% reported adverse events and 
41% experienced exacerbation of the preexisting AD 
with recurrence manifestation or worsening of prior 
symptoms (101). Flares were more common in patients 
with active symptoms (9/15, 60%) as compared to those 
with subclinical disease (11/37, 30%). Overall, 50% had 
disease exacerbation, and 34% had de novo irAEs. Colitis 
(14%) and hypophysitis (5%) were the most commonly 
reported de novo irAEs. Therefore, patients with active 
AD were usually excluded from clinical trials. Now 
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multiple clinical trials (107,108) are evaluating ICI in 
patients with AD.

Potential strategies beyond clinical guidelines have 
been proposed to lower the risk of irAEs for these 
specific scenarios. These include use of specific selective 
systemic immunosuppressant instead of nonselective 
immunosuppressant drugs (98), discontinuation of the 
immunotherapeutic drug followed by a rechallenge with 
the same drug (109) or rechallenge with PD-L1 inhibitors 
after intolerable irAEs with anti PD-1 agents (110). In a 
comprehensive retrospective study of patients treated with 
ICI, 28.8% of 24,079 irAE cases represented recurrence 
of the same irAE after discontinuation and rechallenge 
with the same ICI. Colitis, hepatitis, and pneumonitis were 
associated with a higher recurrence rate, while adrenal 
events were associated with a lower recurrence rate (109). 
However, none of these strategies have been rigorously 
tested in patients with SOT and AD.

Enhanced toxicities when combined with other 
agents 

Combination of immunotherapy with other agents may 
enhance efficacy but toxicity is also increased (111). 
Immunotherapy can be combined effectively with other 
immunotherapeutic drugs, chemotherapy, targeted therapy, 
and radiotherapy (25). The use of immunotherapy as a 
single agent may be constrained by the several factors 
existing in the tumor microenvironment, such as insufficient 
T cells from the naive repertoire, inadequate available 
neoantigen, or immunosuppressive networks which protects 
the immunogenic tissue from immune attacks. Combining 
cancer therapies could strengthen the immune response 
by inducing immunogenicity, alleviating tumor-induced 
immunosuppression associated with chemotherapy, or 
rendering tumors more susceptible to cytotoxic T cell 
attack (111). In patients with melanoma, five-year OS with 
combination of ipilimumab with nivolumab was 52% as 
compared to 44% with single agent nivolumab. However, 
combination treatment also resulted in a higher grade 3/4 
treatment related adverse events (59% vs. 23%) (112). It 
is also unknown whether treatment with a PD-1 inhibitor 
first, followed by treating patients at progression with 
nivolumab/ipilimumab, can achieve the same OS with less 
toxicities. 

While several combinations of BRAF and MEK 
inhibitors (BRAF/MEKi) and immunotherapy (mainly 

anti CTLA-4 and anti PD-1 therapies) increased OS 
in melanoma patients (113), phase I trials of BRAF/
MEKi with ipilimumab were halted due to unacceptable 
toxicities. A trial investigating the combination of BRAF 
inhibitor, vemurafenib plus ipilimumab was halted due 
to hepatotoxicity (114). The combination of dabrafenib, 
trametinib, and ipilimumab led to colon perforation in 
two of the seven patients treated in the phase I trial, while 
excluding trametinib resulted in no such toxicity (115). In 
a case report of a melanoma patient treated with sequential 
BRAF/MEKi (dabrafenib plus trametinib) followed by the 
ipilimumab, the patient had a complete resolution of the 
tumor, but died due to fatal gastrointestinal toxicity (113). 
Contemporary data sets of triplet therapy now show better 
safety of PD-1 inhibitor combined with BRAF/MEKi (116).

The efficacy and toxicity of immunotherapy combined 
with other therapies depends on the drug, and relative 
timing of the combination (117). The critical challenges 
associated with combining cancer therapy are incorporating 
immunotherapy into adjuvant and neoadjuvant treatments, 
determining the accurate dose, duration of treatment, 
selecting appropriate biomarkers,  and designing new 
surrogate endpoints that accurately define OS benefit at 
treatment initiation (25). Finally, early identification and 
treatment of myelosuppression and irAEs associated with 
disease management with chemo-immunotherapy are 
necessary, as early treatment enhances survival (111).

HPD

Despite the success  of  cancer immunotherapy in 
demonstrating efficacy across multiple cancer types, it has 
also been implicated in accelerating disease progression, a 
concept known as HPD. Notably, this is not as common 
with other cancer therapeutics (118,119). In a multicenter, 
retrospective study comparing the incidence of HPD 
in lung cancer patients receiving ICI therapy versus 
chemotherapy, HPD occurred in 14% of patients treated 
with immunotherapy (N=406), compared to 5% of patients 
receiving chemotherapy (N=59) (120). The rate of ICI-
associated HPD was as high as 10–30% in retrospective 
studies (120-122). Variation in the incidence of HPD may 
result from lack of a unified definition for HPD including 
or not accounting for non-target lesions like malignant 
effusions, bone metastases, or new disease sites. Many of 
the studies were tumor type-specific, and lack of baseline 
imaging excluded many patients from analysis (118,123). In 
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addition, some patients did not meet radiological criteria for 
HPD because they experienced rapid clinical deterioration 
with immunotherapy and could not be evaluated by CT 
scan (120,121).

Understanding and assessing HPD is further complicated 
by a phenomenon called pseudoprogression, which refers 
to transient radiographic worsening (enlarging and/or 
new tumor lesions) prior to a regression or successful 
treatment response. This is thought to stem from an early 
influx of tumor-infiltrating lymphocytes propagating 
an early but temporary increase in tumor dimensions  
(124-126). The crucial challenge for oncologists is to 
distinguish pseudoprogression (affecting less than 10% of 
patients (126-128) from standard progression and HPD as 
this frequently leads to unnecessary discontinuation of a 
beneficial treatment.

Clinical studies aimed at making this distinction have 
found HPD to be associated with increased age (121), 
mutations in a variety of oncogenes (129), higher lactate 
dehydrogenase (LDH) concentration in the serum (122), 
female sex (130), prior irradiation of the tumor area (131), 
presence of liver metastasis or more than two metastatic 
sites (132), MDM2/MDM4 and EGFR genetic alterations 
(133,134). However, most study results were not replicated 
by other studies (135). There is an urgent need for a 
consensus on a unified definition of HPD so that studies 
across tumor types can be compared or pooled to achieve a 
higher statistical power (118).

Lethal or worse outcomes 

Although generally rare with PD-1 inhibitors, some 
immunotherapeutics resulted in worse and even fatal 
outcomes in some clinical trials for hematologic malignancies. 
One example is the chimeric antigen receptor (CAR) T-cell 
therapy, which is Food and Drug Association (FDA)-
approved for refractory or relapse (R/R) B cell precursor 
acute lymphoblastic leukemia (ALL) in pediatric patients 
and young adults and for R/R large B cell lymphoma in 
adults. Despite a 92% response rate in ALL (136,137), in 
2016, 5 adult ALL patients died while receiving JCAR015 
CAR T-cell therapy. In 2017, a death also resulted in a 
patient who received UCART123 CAR T-cell therapy 
during a phase I trial for leukemia. These deaths were 
associated with the development of neurotoxicity/cerebral 
edema and cytokine release syndrome (CRS) (138). 
CRS is an extreme systemic inflammatory response that 
can progress to sepsis and multiple organ failure (139). 

Furthermore, in 2017, the FDA halted two KEYNOTE 
phase III trials involving pembrolizumab in patients with 
multiple myeloma due to disproportionately higher deaths 
in the treatment group compared to controls (138).

T h e  K E Y N O T E - 1 8 3  p h a s e  I I I  t r i a l  s t u d i e d 
pembrolizumab in combination with pomalidomide and 
low-dose dexamethasone in 249 patients with relapsed/
refractory multiple myeloma. Twenty-nine (23%) deaths 
(16 from progressive disease and 13 from adverse events) 
occurred in the triple therapy group, compared with 21 
(17%) deaths (18 from progressive disease and 3 from 
adverse events) in the pomalidomide with dexamethasone 
control group (138,140). The KEYNOTE-185 phase III 
studied pembrolizumab in combination with lenalidomide 
and low-dose dexamethasone for newly diagnosed treatment 
naive multiple myeloma. Nineteen (13%) (6 because of 
disease progression and 13 because of adverse events) 
deaths occurred with triple therapy, compared with 9 (6%) 
deaths (one because of disease progression and 8 because 
of adverse events) in the group receiving only lenalidomide 
and dexamethasone (138,141). 

Treatment-related deaths during these trials were 
attributed to serious adverse effects such as cardiac arrest 
and failure, large intestine perforation, sepsis, multiple 
organ failure, Stevens-Johnson syndrome, pulmonary 
embolism, and respiratory tract infections (138,140). It is 
not clear if the deaths resulted from the interaction of PD-1 
inhibitor with pomalidomide or lenalidomide, or with other 
concurrent medications. 

Variation in response pattern among patients

Nivolumab has demonstrated activity and favorable safety 
profile in pediatric patients with glioblastoma in a Phase 
III clinical trial (CheckMate-143) (142). All adverse events 
in the 10 nivolumab-treated patients were grade 1 or 2, 
with fatigue and nausea as the most common adverse  
events (143). Despite these safety data, a pediatric patient 
with glioblastoma treated with nivolumab died from 
progressive cerebral edema after third treatment (142). By 
contrast, two pediatric patients with glioblastoma treated 
with nivolumab experienced transient cerebral edema that 
subsided with repeated doses and addition of dexamethasone 
(142,144). Another example of variable patient response 
includes nivolumab for adult T-cell leukemia-lymphoma 
(ATLL) in which some patients experienced rapid 
progression while most did not (145,146). Different disease 
variants may have accounted for the disparate responses. 
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Analysis of three patients who experienced rapid ATLL 
expansion after PD-1 blockade demonstrated association 
with tumor-resident regulatory T cells (Tregs), independent 
of the unique subtype of the atypical cell present in 
each patient (147). More studies are clearly needed to 
understand the variation in patients’ adverse responses to 
immunotherapy.

Financial toxicity

The cost of immunotherapy is approximately $100,000 per 
patient annually (148). This amount exceeds the median 
U.S. household income and recently FDA-approved 
immunotherapeutic drugs are often triple the cost of drugs 
approved in previous years (149). For instance, the CAR 
T cell therapy Tisagenlecleucel which was FDA-approved 
for treatment of R/R B-cell ALL in patients ≤25 years old, 
is associated with improved OS but costs $475,000 per 
treatment course, not including cost of hospital stay and 
toxicities. Its manufacturer, Novartis, is offering a money 
back guarantee for patients who do not achieve remission 
within one month of receiving treatment (150). 

Studies suggest that some immunotherapeutic drugs 
were not more cost-effective than chemotherapy based on 
the quality-adjusted life years (QALYs) gained for some 
indicators. Cost-effectiveness analysis (CEA) expresses 
the potential value of new drugs (compared to previous 
treatment) per health benefits gained in terms of units of 
currency. The outcome considers OS and is presented as 
an incremental cost per QALY (151). In a systematic review 
of the cost and cost-effectiveness studies of ICI, nivolumab 
was not cost-effective over chemotherapy for recurrent/
metastatic head/neck cancers (HNCs) and NSCLC. 
Nivolumab and pembrolizumab were not cost-effective for 
genitourinary cancers, while ipilimumab monotherapy is 
less cost-effective than nivolumab, nivolumab/ipilimumab, 
and pembrolizumab for melanoma (152). 

Even though many of the immunotherapeutic drugs 
were found in analytic studies to be cost-effective, this does 
not necessarily translate into affordability. This has led to 
rejection of ICI by British National Institute of Clinical 
Excellence (NICE) and Australian Pharmaceutical Benefits 
Advisory Committee (PBAC) for some indications (153). 
Consequently, it is also important for CEA to be performed 
before FDA approval of these drugs. We also need a lasting 
solution to curb the current cancer cost trajectory which is 
untenable for most healthcare systems in the long run, and 
to save the numerous patients who are going into bankruptcy  

due to the financial burden of their cancer care (149).

Conclusions

Despite dramatic therapeutic successes, immunotherapeutic 
drugs can be associated with numerous and unpredictable 
toxicities. Furthermore, there is a knowledge gap relating 
to how these drugs work in different patient populations 
with various disease conditions. Further clinical studies are 
needed to maximize the benefits and minimize the risks of 
immunotherapy. There is also a need to address the rising 
costs of cancer care to relieve the negative financial burden 
on patients. Nonetheless, immunotherapy has undoubtedly 
changed the treatment landscape of oncology care giving 
patients a greater potential to attain long term survival, 
improved quality of life, and less toxic treatment options. 
However, prospective evidence-based studies are necessary 
to more accurately understand the variation in patient 
responses and treatment related adverse events, to obtain 
the full benefit of these promising new drugs.
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