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Background: Single photon emission computed tomography (SPECT) is an important functional tool 
for clinical diagnosis and scientific research of brain disorders, but suffers from limited spatial resolution 
and high noise due to hardware design and imaging physics. The present study is to develop a deep learning 
technique for SPECT image reconstruction that directly converts raw projection data to image with 
high resolution and low noise, while an efficient training method specifically applicable to medical image 
reconstruction is presented.
Methods: A custom software was developed to generate 20,000 2-D brain phantoms, of which 16,000 were 
used to train the neural network, 2,000 for validation, and the final 2,000 for testing. To reduce development 
difficulty, a two-step training strategy for network design was adopted. We first compressed full-size activity 
image (128×128 pixels) to a one-D vector consisting of 256×1 pixels, accomplished by an autoencoder (AE) 
consisting of an encoder and a decoder. The vector is a good representation of the full-size image in a lower-
dimensional space and was used as a compact label to develop the second network that maps between the 
projection-data domain and the vector domain. Since the label had 256 pixels only, the second network 
was compact and easy to converge. The second network, when successfully developed, was connected to 
the decoder (a portion of AE) to decompress the vector to a regular 128×128 image. Therefore, a complex 
network was essentially divided into two compact neural networks trained separately in sequence but 
eventually connectable.
Results: A total of 2,000 test examples, a synthetic brain phantom, and de-identified patient data were used 
to validate SPECTnet. Results obtained from SPECTnet were compared with those obtained from our clinic 
OS-EM method. Images with lower noise and more accurate information in the uptake areas were obtained 
by SPECTnet. 
Conclusions: The challenge of developing a complex deep neural network is reduced by training two 
separate compact connectable networks. The combination of the two networks forms the full version of 
SPECTnet. Results show that the developed neural network can produce more accurate SPECT images.
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Introduction

Single-photon emission computed tomography (SPECT) 
is a functional nuclear medicine imaging technique that 
is commonly used in clinic. It is used for diagnosis and 
monitoring of many diseases and organ functions, such 
as cardiac vascular diseases (1), tumor (2), and brain  
functions (3). It is also useful for dosimetry of radionuclide 
targeted therapies (4). However, SPECT images are known 
to suffer from limited spatial resolution (1–2 cm full-
width half maximum) and high noise. These limitations 
are inherent to the current clinical SPECT systems due to 
the hardware design, mainly the collimator. The resulting 
projection data is thus blurred and contains high noise, 
creating a very ill-posed inverse problem with large null 
space for image reconstruction.  

There have been many reconstruction algorithms 
developed for SPECT trying to tackle those issues. The 
most successful ones are statistical iterative reconstruction 
algorithms such as maximization likelihood expectation 
maximization (ML-EM) (5-7), ordered subset expectation 
maximization (OS-EM) (8,9), and maximum a posteriori 
(MAP) (10-12). Models of physics can also be incorporated 
into these algorithms to compensate for the attenuation, 
resolution, and scatter. However, the improvement in 
resolution is far from ideal due to unrecoverable losses of 
information to the null space. In addition, even though 
resolution improves with increasing numbers of iteration, 
noise in the image also increases. The reconstruction also 
introduces correlation to the noise that is usually difficulty 
to quantify, and sometimes may result in false detection.  
There have also been efforts to develop new generation 
of SPECT systems that can provide high sensitivity and 
better spatial resolution. However, those systems are usually 
expensive or organ specific, such as dedicated cardiac 
SPECT or brain SPECT systems (13). Their adoption in 
clinic is slow and limited. Therefore, it is highly desirable 
to develop a reconstruction method for current SPECT 
systems that can provide high spatial resolution but low 
noise.

Inspired by recent achievements of deep learning-based 
reconstruction in magnetic resonance imaging (MRI)  
(14-17) and X-ray computed tomography (CT) imaging 
(18-21), researchers have attempted applying deep 
learning to positron emission tomography (PET) imaging  
(22-24), but the application to SPECT is not reported 
yet. To approximate the nonlinearity in reconstructions 
in medical imaging, these deep neural networks (DNN) 

often comprise of many layers. In 2018, Wang et al.  
compared the performance of neural networks applied to 
CT imaging using 90–150 convolutional layers (a three-
layer convolutional core is repeated by 30–50 times) (25). 
As expected, more layers provide better results because 
of better approaching the ideal (analytic) solution. But 
complex network architecture increases the training 
difficulty, especially training learnable parameters in the 
deep layers. When the output of the network is a large 
image with many voxels, training is more stressful due to 
the large-dimension space, resulting in slow convergence or 
even no convergence at all.

 In this paper, an image-reconstruction neural network, 
termed SPECTnet that learns to directly map between the 
SPECT projection-data domain and the activity-image 
domain, is presented. The input of the neural network 
consists of two channels: projection data, and attenuation 
map obtained from a CT transmission scan. The output of 
the network system is the reconstructed activity image with 
high-resolution and low noise. Instead of designing a neural 
network mapping between the scanned-signal domain and 
reconstruction image domain directly, we propose a training 
strategy consisting of two separate procedures, which can 
efficiently train DNNs for medical imaging, including 
but not limited to SPECT image reconstruction. The two 
stages are: first, a neural network developed to translate the 
projection data to small (compressed) images—in fact, a 1-D 
vector; then the second network responsible to up-sample 
(decompress) the small image to full (128 by 128) image. 
As far as the training process is concerned, the sequence 
is reversed: we need to find the compressed version  
(256×1 pixels) of the full-size activity image at first, which 
is accomplished by developing a sparse autoencoder (AE), 
composed of an encoder and a decoder. The compressed 
vector can be thought of as a compact representation of 
the full-size image in a lower dimensional space. Then, we 
develop a neural network mapping between the projection-
data domain and the compressed-vector domain. Since there 
are fewer outputs (256×1 pixels) for the network to solve 
now, this neural network can be compact and converges 
easily. The neural network is followed by the decoder (a 
portion of the AE) that is developed in the first step, to 
decompress the 1-D vector to a full-size image. We believe 
the proposed network-training approach is applicable to 
all DNN-based image-reconstruction modalities, such as 
CT, MRI, PET, and SPECT imaging, to ease the stress of 
design.

The size of SPECTnet is compact, with only seven 
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convolutional layers and two fully-connected layers in 
total. As a comparison, most of the existing medical 
image reconstruction neural networks consist of tens or 
hundreds of layers (14-25). SPECTnet was trained by 
simplified phantom with simulated SPECT data, and 
validated by a synthetic brain phantom with simulated 
SPECT data and patient data. Results were compared 
with images reconstructed by an OS-EM algorithm. 
Although 2-D image reconstruction is discussed in this 
paper only, the present method will be helpful and heuristic 
to design complex neural networks for 3-D medical 
image reconstruction. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at http://dx.doi.org/10.21037/atm-20-3345). 

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the Johns Hopkins Institutional Review Boards 
(IRB protocol number: IRB00100575). No information 
consent was required since de-identified pre-existing patient 
data were used.

Phantoms and data acquisition

Designing a neural network for medical imaging requires 
ground-truth data (precise images) to support the training, 
but which is unknown/unavailable in practice. Existing 
deep-learning approaches often use reconstructed images 
from conventional methods as the label (target) to train 
the neural network (22,23). Therefore, the image quality 
is impossible to surpass the conventional approach. On the 
other hand, usually only a few tens of patient data were 
employed to train the neural network for medical imaging. 
Such a small data pool would highly likely make the neural 
network overfit the training data. To avoid overfitting, we 
developed software that can randomly generate simplified 
2-D digital phantoms. With this software, we produced 
20,000 2-D phantoms. Each phantom contains a pair of 
images: an activity image and the corresponding attenuation 
map. Each phantom is unique in the database. Example 
phantom images generated by the software are presented in 
Figure 1A. All images are 128 by 128 pixels with a 2 mm by 
2 mm pixel size. The activity images consist of an elliptical 
low-uptake background area, and a few high-uptake regions 
with random shapes and locations inside the background. 
The activity values ranged from 3 to 9 for the high-uptake 

region and were kept at 1 for the background. Activities 
outside the background were set to zero. Phantoms with 
high-uptake area values assigned to 6 are the most cases in 
our database, and the number of phantoms reduces when 
the assigned value becomes larger or smaller (complies with 
a Gaussian distribution), as summarized in Figure 1B. These 
activity images were used as ground truth in the subsequent 
neural network training. Corresponding attenuation map 
for each phantom was generated with attenuation coefficient 
of water assigned inside the elliptical background. A ring 
of 2–4 mm thick bone structure was also added outside 
the background to mimic attenuation of a skull in brain 
imaging. Despite the simplicity of these phantoms, we 
believe they are sufficient for network development 
specifically for the SPECT brain functional imaging, which 
were validated as will be described in the Results section of 
this paper.

These phantoms were used to generate projection data 
through an analytical simulation with models of attenuation 
and limited spatial resolution (26). The spatial resolution 
was modelled using spatially varying Gaussian functions that 
were calculated based on LEHR collimators (27). A total 
of 120 projection views over 360° were simulated with 128 
bins, resulting in a 120×128 sinogram array. Considering 
the first few rows and the last few rows in the sinogram 
are from physically neighboured angles of view, we padded 
sinogram to a 128×128 matrix by replicating the first 8 rows 
of data behind the last row of the sinogram. This allows the 
2-D filter of the convolutional layer to have the opportunity 
to consider the neighbouring angles that are contiguous 
in space but were otherwise disconnected in the original 
sinogram. The 20,000 phantoms and their corresponding 
projection data were split into three groups: 16,000 were 
randomly selected out for training the neural network, 
another 2,000 were selected for validation, and the final 
2,000 for testing. In addition, de-identified patient data, 
including the synthetic patient phantom and de-identified 
clinic data were used to test the developed neural network. 

Algorithm design

Developing a neural network architecture that directly 
maps the projection-data domain to the image domain 
is challenging. The essential reason lies in the complex 
nonlinearity between the two domains, which requires 
a powerful network having many layers to approximate. 
However, DNNs are difficult to train, especially in the 
deep layers, where the learnable parameters suffer from 

http://dx.doi.org/10.21037/atm-20-3345
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Figure 1 Training data and statistics. (A) Generated random 2-D head phantoms by custom software. The first row shows the activity 
images. The high-uptake area is assigned to 3–9 and the rest area in the head is assigned to one. The background is zero. The second row 
shows the attenuation map image corresponding to the first row. (B) The number of phantoms meets standard normal distribution according 
to the assigned values of the high-uptake area in the activity image. Assigned value equal to 6 is the most cases in the database.
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an extremely slow learning speed. The desire to output 
a large image from the network makes the convergence 
even slower. Hence, we developed the neural network 
only reconstructing compressed image from measurement 
data. The up-sampling to a full-size (128×128) image is 
accomplished by another neural network. Thus, the flow 
chart is: projection data domain → compressed vector 
domain → full-size image domain.

The compressed image domain (each compressed image 
consisting of 256×1 pixels) is like a bridge to connect the 
projection-data domain and the full-size image domain, 
which is for the purpose of easing the neural network 
training. From the training point of view, the compressed 
images work as the label to design the first neural network. 
As a result, mapping between the projection-data domain 
and the compressed-image domain only requires a compact 
neural network, because of fewer unknowns to be solved 

(256 pixels). Its training is less challenging benefiting from 
the compact architecture.

Nevertheless, the critical issue is to find a compressed-
vector representation that uniquely maps to a regular size 
image in the decompressed image domain. In our method, 
this is accomplished by an AE. The AE is composed of an 
encoder that learns a compressed representation of the 
input image, and a decoder that uses the learned compressed 
representation to reconstruct the input at its output. The 
output of the encoder (which is the input of the decoder) 
usually has smaller size than its input. A typical form of the 
AE is illustrated in Figure 2. Assuming the input is an image 
XM having M pixels, the wide-in-narrow-out structure of 
the encoder allows it to compress the input to fewer pixels 
YN,

N MY = ψ(X ) 	 [1]
and the narrow-in-wide-out structure of the decoder 
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recovers the M pixels from the compressed image:

M NX = ψ (Y )′ ′ 	 [2]
where M>N. The AE tries to recover the input at its 

output, i.e., M MX X′ → . Therefore, the AE is an unsupervised 

learning approach as it uses the same image as the input (to 
the encoder) and output (of the decoder). No additional 
labels are required during the training.

Once such an AE was successfully developed, we had the 
brain activity images (full-size images) pass the encoder. 
The output of the encoder, having fewer pixels, can be 
viewed as a compact representation of the regular image in 
a lower-dimensional space. These compact representations 
were employed as the label to design the neural network 
translating the SPECT signals to compact representations 
(1-D vectors).

The full view of our design scheme is illustrated in  
Figure 3A is a prototype of the AE, whose input and 
output are both 128×128 images, with the middle layer 
producing the compressed vector in form of 256×1 pixels. 
The compressed 1-D vectors were then used as the label 
to train the neural network in Figure 3B, whose task was to 
convert the measurement data into the compressed vectors. 
The neural network has two input channels accepting the 
projection data and the attenuation map, respectively. The 
neural network was followed by the decoder (developed 
in the AE training session) to decompress the compressed 
vector to a regular image.

Figure 2 Typical architecture of an AE. Each input and output 
stands for a pixel in the image. The intermediate N elements 
are the output of the encoder, also are the input of the decoder. 
Usually, M>N.

M inputs	 M outputs

N neurons

Figure 3 The overall scheme of SPECTnet. (A) An AE aims to recover the input image at its output; (B) complete SPECTnet whose 
decoder is carried from the AE.
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Network architecture

Motivated by the capability of 2-D convolution in 
extracting features from 2-D images, we developed an AE 
which compresses and decompresses 2-D images, with its 
architecture shown in Figure 4A. The encoder is composed 
of five convolutional layers, which accepts a 128×128 image 
and converts it to a compressed vector in 256×1 pixels. Each 
convolutional layer is followed by a rectified linear unit 
(ReLU) convert function and a batch-normalization layer. 
The stride is 2 in the first four convolutional layers and 1 
in the fifth layer. No padding was used. We used stride =2 
instead of using a max pooling for down-sampling because 
we believe the latter would lose information. The filter 
size is 6×6 in the first two layers and 5×5 in the next three 
layers. The number of filters and the size of the output 
image in each layer have been illustrated in Figure 4A. Note 
that the fifth layer employs 256 filters, so it converts the 
input 5×5 images into 256 1×1 images, i.e., a 256×1 output. 
The decoder starts with two fully-connected layers, with 
2,048 neurons in the first layer and 16,384 in the second, 
respectively, and each is followed by a sigmoid function. 
Then a reshaping layer is applied to reshape the 16,384 
pixels to 128×128. In our design, instead of transposed 
convolution, we employed two fully-connected layers 
for up-sampling trading-off efficiency. The transposed 
convolution would have five layers if symmetric to the 
down-sampling. Next, two convolutional layers are added 
to optimize the reshaped image, and a deconvolution was 
finally applied to present a 128×128 image.

 The neural network converting measurement data to 
compressed vector adopts the similar architecture to the 
encoder (Figure 4B). If using other architectures, one must 
assure that the output dimension matches the input of the 
decoder. Also notably, the input layer of the data-to-vector 
neural network has two channels to accept the projection 
data and the attenuation map, respectively, which is different 
than the encoder’s input layer (one input channel only).

Network training

As mentioned earlier, the AE has to be trained first in 
order to find the compressed representation. We randomly 
selected 16,000 activity images from the phantom database 
to train the AE, and another 2,000 images to perform 
validation after each epoch during the training.

The cost function employed in training was a common 
mean-squared-error function, and the training algorithm 

was Adam (28). The minibatch size was set to 160, thus 
each epoch contained 100 iterations to fully use the 16,000 
training data. The initial learning rate was set to 1×10−4 and 
the optimal L2 regularization parameter was found to be 
0.08 after a few trials. Fifty epochs were applied to achieve 
an acceptable performance within 47 minutes on an Intel 
workstation equipped with two NVidia Quadro P6000 
GPUs and 128 GB memory.

The filters in each layer were investigated when the 
training was complete. Figure 5 presents the 64 filters in 
the first convolutional layer. As can be seen, each filter had 
learned a specific transferring rule after the training. One 
might need to increase the number of filters if each filter 
contains intensive pixel variation, and must reduce the 
number of filters if there are filters found to not contain 
valuable information (for example, parameters are all zero). 
Usually, insufficient number of filters does not present 
the best performance, but too many filters cause extra 
unnecessary burden of computation. By inspecting the 
filters in each layer, one may find the appropriate number of 
filters for each layer. 

Figure 6 presents an original image, and the recovered 
image by the AE. It can be found that the recovered image 
was not strictly identical to the original one, due to loss 
during compression. For the 2,000 validation images, the 
mean square error (MSE) between the original image and 
the recovered image is by average 0.076, with standard 
deviation 0.025. As far as SPECT imaging is concerned, 
such quality degradation is acceptable because SPECT 
reconstruction images are usually far worse in practice (i.e., 
in regards to the image error relative to the ground truth).

The encoder was extracted from the AE when it had 
been fully trained, and then the 16,000 activity images 
selected to train the AE were given to the encoder to 
generate corresponding compressed vectors. The same was 
done for the 2,000 images to be used for validation. These 
compressed 1-D vectors were used as labels for developing 
the next neural network, whose inputs were corresponding 
projection data and attenuation-map images.

The algorithm for training the neural network was still 
Adam. As shown in Figure 7, the training converged very 
quickly, terminated at 20 epochs, which required only  
6 minutes on the same workstation. The root MSE (RMSE) 
for the 2,000 validation cases was tracked during the 
training and illustrated in Figure 7.

Next, we combined the neural network and the 
decoder to form the complete version of SPECTnet to 
reconstruct SPECT images given projection data and 
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Figure 4 Details about the artificial neural networks. (A) Architecture of the AE. The number of filters in each convolutional layer is dis-
played in the blocks. The filter size is 6×6 for the first two layers, and 5×5 for the last three layers in the encoder; and 3×3 in the decoder. 
Stride in the first four layers of the encoder is 2, and 1 elsewhere. (B) Architecture of the neural network accepting SPECT projection data 
and attenuation map, both in form of 128×128 matrix. The output of the network is the compressed image having 256×1 pixels.
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Figure 5 The 64 filters employed in the first layer of AE. Each 
filter is a 6 by 6 matrix.

Figure 6 The original image is compressed to 256 pixels and then 
recovered by the decoder. The recovered image is a lossy image 
with respect to the original image.

Figure 7 The progress when training the neural network 
converting projection data and attenuation map to compressed 
image. The RMSE reduced very quickly and saturated when the 
training reached around 20 epochs. Data shown in this plot are the 
2,000 cases for the validation purpose.
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an attenuation map. The total size of SPECTnet is only 
127 Megabytes. To further optimize SPECTnet, we have 
used the projection data and attenuation map as the input, 
and the 128×128 activity image as the output to fine-tune 
the network, still with the 16,000 training datasets. After 
running 19 epochs that spent 18 minutes on the same 
workstation, the performance tended to saturate. The MSE 
was further reduced by 7 percent on average for the 2,000 
validation cases in comparison to SPECTnet without fine-
tuning.

Statistical analysis 

The 2,000 test data isolated from the 16,000 training 
data and the 2,000 validation data were employed to 
evaluate SPECTnet. Example reconstructed images by 
the developed network using the test data are presented in 
Figure 8. The first column shows the ground-truth image, 
with different assigned values for the high-uptake area. The 
second column shows the images reconstructed using an 
OS-EM algorithm with compensations for attenuation and 
resolution blurring. Reconstructions were performed on 
a Linux cluster, and appropriate number of iterations was 
individually applied to each case when the lowest MSE was 
achieved (12 subsets, 5–15 iterations took approximately 
5–16 seconds). The third column presents the reconstructed 
images by SPECTnet. Each image was obtained in less 
than one second. The images generated by SPECTnet 
have sharp edges and better spatial resolution and contrast 
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Figure 8 Five cases and their reconstructed images with different value in the high-uptake area (low to high from row 1–5). The first 
column shows the ground truth. The second column is the OS-EM reconstruction. The third column is the SPECTnet reconstruction.

240

200

160

120

80

40

240

200

160

120

80

40

240

200

160

120

80

40

40	 80	 120	 160	 200	 240
X (mm)

40	 80	 120	 160	 200	 240
X (mm)

40	 80	 120	 160	 200	 240
X (mm)

Y
 (m

m
)

Y
 (m

m
)

Y
 (m

m
)

0	 3	 6	 9

than those from the OS-EM reconstruction. There were 
also no ringing artifacts in SPECTnet generated images as 
compared with OS-EM results.

To quantitatively compare the images reconstructed by 
SPECTnet and OS-EM, we calculated the average activity 
concentration in the high-uptake area and low-uptake 
background area, respectively, as well as the SD, for images 
presented in Figure 8. The calculated values are presented 
in Table 1. Cases 1–5 correspond to the images shown in 
Rows 1–5 in Figure 8. The high-uptake-area-to-background 
activity concentration ratio increased from 4 to 9 from 
Case 1 to 5. The average activity concentration values in 
the SPECTnet images are closer to the exact values than 
those in the OS-EM images for both high-uptake and low-
uptake region, in all five cases. In addition, we also used the 
following equation to calculate the mean error between the 
reconstructed image and the ground-truth image for the 
2,000 test examples.

true recErr = mean(| I  (r) I  (r) |)  r uptake area− ∈   	  [3]
Note that only the uptake area was considered for this 

calculation. For the high-uptake area, the mean error 
in the SPECTnet images was by average 0.68, which is 
significantly smaller than that in the OS-EM images with 
a value of 1.72; for the low-uptake area, the mean error 
in the SPECTnet images was 0.04, on average, also very 
comparable to the counterpart (0.10) in the OS-EM images.

Results and comparisons

We tested the SPECTnet performance using simulated 
data from the Zubal brain phantom (29) with a striatum 
to background activity concentration ratio of 6:1. The 
SPECT data were generated using the same analytical 
projection method described earlier. Figure 9 shows the 
phantom activity image, and the reconstructed image by 
SPECTnet as the SPECT data and attenuation map were 
fed to the input channel, and OS-EM (50 iterations were 
used to achieve the best result for the Zubal phantom, other 
parameters are the same as earlier). As expected, SPECTnet 
accurately reconstructed the shape and activities of the 

Table 1 Numerical comparison between SPECTnet and OS-EM for Figure 8 in the uptake regions by activity mean value and SD

Case
High-uptake region mean activity (SD) Low-uptake background mean activity (SD)

True SPECTnet OS-EM SPECTnet OS-EM

1 4 3.52 (0.83) 3.27 (0.87) 1.01 (0.19) 1.01 (0.27)

2 5 4.43 (0.98) 3.93 (1.22) 1.01 (0.30) 1.03 (0.32)

3 6 5.32 (0.99) 4.16 (1.53) 1.00 (0.29) 1.03 (0.32)

4 7 6.23 (1.16) 5.69 (1.72) 0.99 (0.30) 1.03 (0.39)

5 9 8.19 (1.34) 7.32 (2.37) 1.04 (0.31) 1.05 (0.44)
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Figure 9 Zubal phantom and the reconstruction by SPECTnet. (A) is the ground truth, (B) shows reconstruction by SPECTnet, and (C) is 
the reconstruction by OS-EM.

240

200

160

120

80

40

240

200

160

120

80

40

240

200

160

120

80

40

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0
40	 80	 120	 160	 200	 240

X (mm)
40	 80	 120	 160	 200	 240

X (mm)
40	 80	 120	 160	 200	 240

X (mm)

Y
 (m

m
)

Y
 (m

m
)

Y
 (m

m
)

B CA

striatum and background, and the result was very close to 
the truth. On the other hand, the OS-EM result was blurred 
and had ringing artifacts. Some concave characteristics 
on the edge of the brain were not well reconstructed by 
SPECTnet. The reason was that the background activities 
in the training data of SPECTnet were all convex shaped. 
We expect performance will be improved when more 
realistic phantoms are used in our future training database.

Figure 10 presents the reconstruction results when the 
projection data contains noise that matched the levels seen 
in clinic. The results from two methods are shown in the 

first row of Figure 10, where the sinogram with noise is also 
displayed. As expected, image quality is degraded from the 
noise-free case. The noise in OS-EM image was high and 
correlated. The image achieved by SPECTnet contains 
much less noise and continues to present accurate shape 
and uptake within the striatum. Their image error to the 
ground truth, executed by a direct subtraction, is presented 
in the second row of Figure 10. Relevant statistical values 
for Figures 9 and 10 are provided in Table 2. The average 
activity concentration values provided by SPECTnet are 
found to be more accurate than those by OS-EM, and the 

Figure 10 Up-left is the Sinogram with noise; up-central is the reconstruction by SPECTnet; up-right is the reconstructed image by OS-
EM. The bottom row shows the error image by SPECTnet (left) and OS-EM (right) respectively to the ground truth.
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errors are also smaller than OS-EM.
Finally, de-identified data from a patient collected by a 

Symbia T16 SPECT/CT system (Siemens Healthineers, 
Erlangen, Germany) was used to test the performance of 
SPECTnet. The patient data had pixel size of 3.895 mm 
which was linearly interpolated to 2 mm to match the 
input-data size of SPECTnet. The sinogram as shown in 
Figure 11A is very noisy and contains significant scatter. 
The attenuation map obtained from the CT scan is shown 
in Figure 11B. The patient sinogram and attenuation map 
were used to reconstruct an image by OS-EM with post-
reconstruction filtering and compensation for attenuation 
and resolution, and the result is shown in Figure 11C. The 

patient data were also reconstructed by SPECTnet and 
the result is shown in Figure 11D. The image obtained by 
SPECTnet demonstrated less noise and had more uniform 
background uptake than that created by OS-EM with 
filtering. Since the ground truth is unknown, we were not 
able to quantitatively compare the results from the two 
methods.

Discussion

The developed SPECTnet can accept projection data to 
produce activity images directly. Compared to published 
work using conventional approaches to produce a raw 

Table 2 Numerical comparison between SPECTnet and OS-EM for Zubal brain phantom imaging in the uptake regions

Case
High-uptake region mean activity (SD) Low-uptake background mean activity (SD)

True SPECTnet OS-EM SPECTnet OS-EM

Noise-free 6 5.35 (0.89) 3.71 (1.14) 1.00 (0.16) 0.99 (0.34)

Noise 6 4.04 (0.93) 3.18 (1.03) 0.98 (0.12) 0.98 (0.50)

Figure 11 Reconstruction using patient data. (A) Patient sinogram; (B) attenuation map; (C) reconstructed image by OS-EM with post-
reconstruction filtering; (D) reconstruction by SPECTnet.
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image and then using a neural network to optimize (30),  
SPECTnet is more convenient and more efficient 
(produces an image in less than a second), especially 
when compared to those involving iterative algorithms 
and a large number of training data required to be pre-
reconstructed. However, since the network was trained by 
simple phantom geometry (all elliptical), all reconstructed 
brains have an ellipse shape (Figure 9B and Figure 11D) 
which means detailed characteristics of the profile were 
lost. Therefore, more practical head profiles will be taken 
in our future study.

Since SPECT data usually contain more considerable 
noise and scatter, the neural network development for 
SPECT image reconstruction might be more challenging 
than those developed for PET reconstruction (22-24). 
To reduce the training difficulty, we present the two-step 
training strategy in this paper. But to shed a light on the 
challenge of training, we used the same network architecture 
as SPECTnet and the same data to retrain the network, but 
with an end-to-end (one step) direct training strategy, such 
that we can compare the convergence efficiency with what 
presented in Section 2. Again, we used 16,000 data pairs 
for training and 2,000 data pairs to validate. The minibatch 
size was set to 160 still. The training progress is presented 
in Figure 12, in which both RMSE and the loss reduction 
are illustrated. As can be seen, the convergence speed was 
very slow. Even when 300 epochs elapsed (30,000 iterations) 
which took 5 hours on the GPU, the network still could not 
produce meaningful images. When the organs to be imaged 
are more complex, the direct end-to-end training strategy 
might be unable to converge at all. Even if a solution could 
eventually be found, the entire development would be very 
challenging.

Conclusions

We have developed a DNN that successfully reconstructs 
2-D images from SPECT projection data and an 
attenuation map. To reduce the difficulty in training such 
a neural network, we first developed an AE whose task 
was to find the compressed image of large activity images. 
These compressed images were used to design a compact 
neural network mapping between the signal domain and 
the (compressed) image domain. After the compact neural 
network was successfully trained, it was then connected with 
the decoder to decompress the small image into a regular 
activity image. Our results show that the present method 
can efficiently design DNNs for image reconstruction. By 
following the present method, the developed SPECTnet 
can provide more accurate 2-D images than a conventional 
OS-EM algorithm. Although the full architecture of 
SPECTnet for 2-D imaging is not complex, the proposed 
method will be very helpful to design a much deeper 
network for 3-D reconstruction, which is the next step of 
our research. 

Many existing neural networks developed for nuclear 
image reconstruction were trained by only a few tens of 
patient data, resulting in the high likelihood of overfitting 
to the data used in training. Hence, we developed software 
to produce virtual 2-D digital brain phantoms to enrich the 
dataset pool, with high-uptake areas randomly appearing 
in the brain. Therefore, sufficient number of phantoms 
and data are available to train the neural network, so the 
likelihood of overfitting is reduced. In the future, we will 
develop more realistic phantoms based on patient data. The 
neural network SPECTnet developed by using the new data 
will be expected to produce more accurate SPECT images 
for clinic use (once such updating is accomplished, the new 
SPECTnet will be placed on web for public test). 

Acknowledgments

Funding: This work is supported by NIH under grant 
R01NS094227 and U01CA140204.

Footnote

Provenance and Peer Review: This article was commissioned 
by the Guest Editor (Dr. Steven P. Rowe) for the series 
“Artificial Intelligence in Molecular Imaging” published 
in Annals of Translational Medicine. The article was sent for 
external peer review organized by the Guest Editor and the 

Figure 12 The training progress represented by RMSE and loss 
when the end-to-end direct training method was applied.

0	 60	 120	 180	 240	 300
Epoch

RMSE

Loss

18

16

14

12

10

8

6



Shao et al. Deep learning SPECT image reconstruction

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):819 | http://dx.doi.org/10.21037/atm-20-3345

Page 14 of 15

editorial office.

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at http://dx.doi.
org/10.21037/atm-20-3345

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/atm-20-3345

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at http://
dx.doi.org/10.21037/atm-20-3345). The series “Artificial 
Intelligence in Molecular Imaging” was commissioned by 
the editorial office without any funding or sponsorship. SPR 
served as the unpaid Guest Editor of the series. The authors 
have no conflicts of interest to declare. 

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the 
Johns Hopkins Institutional Review Boards (IRB protocol 
number: IRB00100575). No information consent was 
required since de-identified pre-existing patient data were 
used.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Chen J, Garcia EV, Folks RD, et al. Onset of left 
ventricular mechanical contraction as determined by phase 
analysis of ECG-gated myocardial perfusion SPECT 
imaging: development of a diagnostic tool for assessment 
of cardiac mechanical dyssynchrony. J Nucl Cardiol 
2005;12:687-95. 

2.	 Perri M, Erba P, Volterrani D, et al. Octreo-SPECT/
CT imaging for accurate detection and localization of 

suspected neuroendocrine tumors. Q J Nucl Med Mol 
Imaging 2008;52:323-33. 

3.	 Du Y, Tsui BMW, Frey EC. Model-based compensation 
for quantitative I-123 brain SPECT imaging. Phys Med 
Biol 2006;51:1269-82. 

4.	 Li T, Ao E, Lambert B, et al. Quantitative imaging for 
targeted radionuclide therapy dosimetry- technical review. 
Theranostics 2017;7:4551-65. 

5.	 Shepp LA, Vardi Y. Maximum likelihood reconstruction 
for emission tomography. IEEE Trans Med Imaging 
1982;1:113-22. 

6.	 Tsui B.M.W., Gullberg G, Edgerton E, et al. Correction 
of nonuniform attenuation in cardiac SPECT imaging. J 
Nucl Med 1989;30:497-507.

7.	 Hudson HM, Hutton BF, Larkin R, et al. Investigation of 
multiple energy reconstructions in SPECT using MLEM. 
J Nucl Med 1996;37:746.

8.	 Hudson HM, Larkin RS. Accelerated image reconstruction 
using ordered subsets of projection data. IEEE Trans Med 
Imaging 1994;13:601-9. 

9.	 Hudson HM, Hutton BF, Larkin R. Accelerated EM 
reconstruction using ordered subsets. J Nucl Med 
1992;33:960.

10.	 Fessler JA. Penalized weighted least squares image 
reconstruction for positron emission tomography. IEEE 
Trans Med Imaging 1994;13:290-300. 

11.	 Lalush DS, Tsui BMW. A generalized Gibbs prior for 
maximum a posteriori reconstruction in SPECT. Phys 
Med Biol 1993;38:729-41. 

12.	 Green PJ. Bayesian reconstructions from emission 
tomography data using a modified EM algorithm. IEEE 
Trans Med Imaging 1990;9:84-93. 

13.	 Chan C, Dey J, Grobshtein Y, et al. The impact of system 
matrix dimension on small FOV SPECT reconstruction 
with truncated projections. Med Phys 2016;43:213-24. 

14.	 Zhu B, Liu JZ, Cauley SF, et al. Image reconstruction 
by domain-transform manifold learning. Nature 
2018;555:487-95. 

15.	 Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing 
generative adversarial networks for fast compressed 
sensing MRI reconstruction. IEEE Trans Med Imaging 
2018;37:1310-21. 

16.	 Gozcu B, Mahabadi RK, Li Y, et al. Learning-
based compressive MRI. IEEE Trans Med Imaging 
2018;37:1394-406. 

17.	 Quan TM, Nguyen-Duc T, Jeong W. Compressed 
sensing MRI reconstruction using a generative adversarial 
network with a cylic loss. IEEE Trans Med Imaging 

http://dx.doi.org/10.21037/atm-20-3345
http://dx.doi.org/10.21037/atm-20-3345
http://dx.doi.org/10.21037/atm-20-3345
http://dx.doi.org/10.21037/atm-20-3345
http://dx.doi.org/10.21037/atm-20-3345
http://dx.doi.org/10.21037/atm-20-3345
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Translational Medicine, Vol 9, No 9 May 2021 Page 15 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):819 | http://dx.doi.org/10.21037/atm-20-3345

2018;37:1488-97. 
18.	 Zhang Z, Liang X, Dong X, et al. A sparse-view CT 

reconstruction method based on combination of 
denseNet and deconvolution. IEEE Trans Med Imaging 
2018;37:1407-17. 

19.	 Han Y, Ye JC. Framing U-net via deep convolutional 
framelets: application to sparse-view CT. IEEE Trans Med 
Imaging 2018;37:1418-29. 

20.	 Shen C, Gonzalez Y, Chen L, et al. Intelligent parameter 
tuning in optimization-based iterative CT reconstruction 
via deep reinforcement learning. IEEE Trans Med 
Imaging 2018;37:1430-9. 

21.	 Gupta H, Jin KH, Nguyen HQ, et al. CNN-based projected 
gradient descent for consistent CT image reconstruction. 
IEEE Trans Med Imaging 2018;37:1440-53. 

22.	 Hwang D, Kim KY, Kang SK, et al. Improving the 
accuracy of simultaneously reconstructed activity and 
attenuation maps using deep learning. J Nucl Med 
2018;59:1624-9. 

23.	 Hwang D, Kang SK, Kim KY, et al. Generation of PET 
attenuation map for whole-body time-of-flight 18F-FDG 
PET/MRI using deep neural network trained with 
simultaneously reconstructed activity and attenuation 
maps. J Nucl Med 2019;60:1183-9. 

24.	 Kim K, Wu D, Gong K, et al. Penalized PET 

reconstruction using deep learning prior and local linear 
fitting. IEEE Trans Med Imaging 2018;37:1478-87. 

25.	 Chen H, Zhang Y, Chen Y, et al. LEARN: learned experts’ 
assessment-based reconstruction network for sparse-data 
CT. IEEE Trans Med Imaging 2018;37:1333-47. 

26.	 Tsui BMW, Zhao XD, Frey EC, et al. Characteristics of 
reconstructed point response in three-dimensional spatially 
variant detector response compensation in SPECT. Three-
dimensional image reconstruction in radiology and nuclear 
medicine. Springer Dordrecht (1996) 149-161.

27.	 Zeng GL, Gullberg GT, Tsui B.M.W, et al. Three-
dimensional iterative reconstruction algorithms with 
attenuation and geometric point response correction. 
IEEE Trans Nucl Sci 1991;38:693-702.

28.	 Kingma DP, Ba JL. Adam: A method for stochastic 
optimization. Proceedings of 3rd international conference 
on learning representations; 2014: 1-15.

29.	 Zubal IG, Harrell CR, Smith EO, et al. Computerized 
three-dimentional segmented human anatomy. Med Phys 
1994;21:299-302. 

30.	 Dietze MMA, Branderhorst W, Kunnen B, et al. 
Accelerated SPECT image reconstruction with FBP and 
an image enhancement convolutional neural network. 
EJNMMI Phys 2019;6:14. 

Cite this article as: Shao W, Rowe SP, Du Y. SPECTnet: a 
deep learning neural network for SPECT image reconstruction. 
Ann Transl Med 2021;9(9):819. doi: 10.21037/atm-20-3345


