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Introduction

The past few decades have witnessed a steady decline 
in breast cancer mortality in the United States despite 
largely stable rates of diagnoses, a feat that is largely due 
to improved screening and treatment strategies in this 
disease (1). However, the benefits of this overall trend 
towards improved breast cancer-specific mortality is not 
equitably distributed across populations groups within the 
United States. Indeed, despite convergence of overall breast 
cancer incidence rates between European American (EA) 
and African American (AA) women, disparities in mortality 
still persist (2). While mortality hazard rates among AA 
women vary by breast cancer subtypes, AA women in 
general exhibit about 20% to 150% higher mortality relative 
to EA women (3). AA women are more likely to present at 
an earlier age, with higher-grade tumors and higher rates 
of triple-negative breast cancer (TNBC) (4). Accounting 
for age, AA women are at least 2-times more likely than 

their EA counterparts to be diagnosed with TNBC (3,5,6), 
a subtype known to be heterogeneous, aggressive and 
difficult to treat (7). Several studies have suggested that 
the racial disparities observed in mortality are due to this 
higher rate of TNBC in AA women (4,8,9). However, the 
mere increased incidence of the aggressive TNBC subtype 
in AA women fails to fully explain the observed disparities 
in outcomes, since AA women face poorer overall survival 
even after accounting for age and stage at diagnosis within 
other breast cancer subtypes as well (10,11). These results 
pose differing but important questions regarding the 
potential determinants of observed breast cancer incidence 
and outcome disparities across population groups.

In this review, we explore the multi-factorial nature 
of cancer health disparities (Figure 1). Over the course 
of a patient’s disease from the time of diagnosis, therapy 
selection to survivorship, a variety of factors potentially 
contribute to overall outcomes, including socioeconomic 
circumstance, access to care, behavioral factors, and 
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tumor biology. While incidence rates of breast cancer are 
similar between AA and EA population groups (5,6), we 
nevertheless observe disparities between AA and EA breast 
cancers at the time of clinical presentation and prognosis 
(Figure 1) where AA women generally present with higher 
grade, basal-like tumors (5,6). This gap expands during the 
course of treatment, with AA women exhibiting higher rates 
of mortality that are not fully explained by medical care 
disparities or what is known about tumor biology. Here, 
we summarize current data regarding how the interplay 
between non-modifiable and behavioral risk factors, access 
to quality care, equal treatment and tumor biology may 
contribute to differences in breast cancer mortality rates 
across population groups.

Modifiable factors that influence breast cancer 
risk

One of the early hypotheses proposed to explain the 
differential risk of TNBC in AA versus EA women involved 
breastfeeding practices [Figure 1, (4)]. This was motivated 
by the general understanding that breastfeeding, or lack 
thereof, was associated with increased risk of developing 
TNBC (12-16). Indeed, the Nurses’ Health Study found 

that among women with invasive breast cancer, higher 
parity and the absence or short duration of breastfeeding were 
independently associated with TNBC (17). Epidemiologic 
studies have noted differences in breastfeeding rates 
between EA and AA women, with 62% and 45%, 
respectively, breastfeeding at 6 months (18), thus raising 
the question as to whether these differences may contribute 
to higher incidence rates of TNBC among AA women. 
Indeed, the American Breast Cancer Epidemiology and 
Risk Consortium (AMBER) explored this association in AA 
women, identifying an increased risk of estrogen receptor 
(ER)-negative breast cancer with each additional childbirth 
in AA women who had not breastfed (19). Further 
investigating the likely biologic mechanism underlying 
these epidemiologic observations, Basree et al. (20)  
showed in mouse models and human breast tissue that 
abrupt involution of mammary glands following pregnancy 
and limited breast feeding (<6 months) results in expansion 
of the luminal progenitor cell compartment associated 
with development of basal-like tumors. Taken together, 
these studies suggest that the lower rates of breastfeeding 
by AA women may potentially contribute to higher 
TNBC disease burden among this group, a supposition 
whose validity awaits the performance of large well-

Figure 1 The multi-factorial nature of cancer health disparities. This model depicts the various factors that impact cancer incidence, 
presentation, prognosis, and survivorship as well as the codependence and influence of these factors on each other. AA, African American; 
EA, European American; SES, socioeconomic status; BMI, body mass index.
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controlled epidemiologic and in-depth mechanistic studies 
to determine the relative importance of breastfeeding 
as a determinant of TNBC incidence disparities across 
population groups.

The ability of adipocytes in obese states to secrete 
proinflammatory cytokines and exhibit poorer metabolic 
control (21) led to the hypothesis that obesity may be a 
major driver of aggressive TNBC biology (7) (Figure 1).  
Indeed, the Carolina Breast Cancer study found that 
women with a higher waist-to-hip ratio (WHR) had 
increased risk for developing TNBC (14). Likewise, a 
meta-analysis of eleven original articles found a significant 
association between obesity and TNBC in both case-
case and case-control analyses (22). However, it is worth 
noting that this association, even across racial groups, is not 
definitive. The Women’s Circle of Health Study observed 
a significant inverse relationship between high body mass 
index (BMI) and hormone receptor negative breast cancer 
among postmenopausal women (23). Moreover, these 
findings were also substantiated by The Premenopausal 
Breast Cancer Collaborative Group who found an inverse 
association between BMI and cancer risk in young (18 
to 24 years) women and no association across ages with 
TNBC (24). Regardless, the combination of a possible 
association between obesity and TNBC, together with a 
higher prevalence of obesity in AA women compared to EA 
women, led several groups to investigate whether increased 
body mass could contribute to higher rates of TNBC 
among AA women. The AMBER consortium showed varied 
trends associating obesity with breast cancer in AA women 
depending on the metric used, but none of which specifically 
linked body mass in AA women to TNBC. In fact, higher 
BMI correlated with increased risk for ER-positive breast 
cancer and decreased risk for TNBC in postmenopausal 
women. Additionally, high WHR in postmenopausal 
women was associated with increased risk of all breast 
cancer subtypes whereas in premenopausal women, high 
WHR was associated with an increased probability of ER+ 
tumors but not others (25). Interestingly, a study by Capers 
et al. (26) explored the importance of body shape in EA and 
AA women to predict disease associations, and found that 
obese AA and EA women exhibit differences in distribution 
of adipose tissue, insulin resistance, and lipoprotein 
subclasses. These results suggest that obesity in AA women 
might influence disease progression differently than in EA 
women, potentially contributing to disparities in mortality, 
but not to differences in TNBC incidence rates.

Smoking and alcohol consumption are mild risk factors 

for breast cancer incidence (27,28). However, considering 
that the rates of heavy smoking (29) or drinking (30) are not 
particularly high in the AA population compared to the EA 
population, and that both exposures are associated with ER-
positive BC and not TNBC (31,32), it is unlikely that these 
behavioral risk factors have much influence on breast cancer 
disparities.

Biologic factors related to breast cancer 
incidence

One of the major areas of research in breast cancer risk is in 
the heritability of the disease. The first germline mutations 
found to be associated with increased risk of TNBC were 
BRCA1/BRCA2 (33). BRCA1 is a tumor suppressor gene 
that plays a key role in homology-directed repair of DNA 
double-stranded breaks (34-36). The majority of breast 
cancers in women with BRCA1 mutations are TNBC (37),  
but despite the higher incidence rate of TNBC in AA 
women, several studies show the frequency of germline 
BRCA1 mutations is relatively low compared to the 
observed mutation rate in EA women (38,39). A study 
of 155 high-risk families evaluated at the University of 
Chicago found germline BRCA1 mutations in 50% of EA 
women with TNBC and fewer than 20% of AA women 
with TNBC (40), suggesting that other mechanisms may 
promote TNBC in AA women. For example, SNP rs8170 
on the BABAM1 gene was found to be linked to TNBC in 
a mixed population of patients (41,42), and was associated 
with increased risk of TNBC in an AA population (43). 
This higher prevalence of a pathogenic SNP in women of 
African ancestry may contribute to the higher incidence 
rate of TNBC in AA women (Figure 2). Because these 
genes are insufficient to explain all inherited breast cancer 
risk, researchers have hypothesized that variations in 
combinations of several genes, known as polygenic risk 
models, may more accurately predict breast cancer risk (44). 
However, it is important to develop population-specific 
polygenic risk models in order to better understand the 
extent to which population-specific genetic factors influence 
racial disparities in cancer incidence (45).

Impact of access and quality of care on breast 
cancer outcomes

It is conceivable that in a society still recovering from 
hundreds of years of institutionalized discrimination, access 
to quality health care could be a major contributor of 
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outcome disparities. Supporting this notion, a meta-analysis 
of 23 studies that examined racial patterns of care for breast 
cancer concluded that AA women less frequently receive 
radiation therapy after breast-conserving surgery, thereby 
suggesting that disparities in access and quality of treatment 
may be an underlying factor (46). Further supporting this, 
Pacheco et al. (9) found that race was not significantly 
associated with outcomes of TNBC in a single center study 
where patients received similar therapy and follow-up, 
suggesting that the observed disparities in cancer mortality 
may be the result of inequalities of disease management. 
In contrast, studies conducted in presumably equal-access 
health care systems such as the military health system in 
the United States (47) or the National Health Service in 
the UK (48) observed significant disparities in breast cancer 
outcomes between women of African versus European 
ancestry. Furthermore, several studies in controlled 
care settings have still reported differences in outcomes 
between racial groups. Woodward et al. (49) report that 
race is independently associated with overall survival in 
locally advanced, nonmetastatic breast cancer treated 
with mastectomy and doxorubicin-based chemotherapy, 
with AA women exhibiting poorer survival than their EA 
counterparts. Likewise, an analysis of 35 randomized phase 
III clinical trials conducted by the Southwest Oncology 
Group (SWOG) found that AA patients had worse survival 
than EA patients, despite enrollment with uniform stage, 
treatment and follow-up (50). Therefore, while reducing 
barriers to care is fundamentally important and has, in 
some settings, resulted in at least a 20% reduction in racial 
disparities in breast cancer outcomes (51), it remains unclear 
whether equalizing access to care alone would suffice to 
eradicate outcome disparities.

There is significant debate on the role of socioeconomic 
status (SES) in the context of cancer outcomes (52), as 
outlined in Table 1. Indeed, while some studies show 
that biological/clinical factors do not fully explain racial 
disparities (10,11,61-63), controlling for SES and other 
factors related to healthcare access do not always explain 
all of the racial disparities in breast cancer (53-60) (Table 1).  
For example, Curtis et al. (56) found that adjusting for 
mammography screening, tumor characteristics, biologic 
markers, treatment, comorbidity and SES demographics 
derived from the Surveillance, Epidemiology, and End 
Results (SEER)-Medicare data reduced the mortality 
difference between AA and EA women in all stages of breast 
cancer [HR: 1.08 (0.97–1.20)]. However, controlling for 
these variables did not eliminate these morality differences 

in women with stage II/III disease [HR: 1.30 (1.10–1.54)]. 
Indeed, this study used median income by zip code and 
“type of community”, defined as rural, less rural, urban, 
metropolitan, and big metropolitan, as markers of SES. A 
similar analysis of the SEER data by Chu et al. (64) found 
a significant association between race and stage-specific 
survival rates in younger breast cancer patients (<50 years 
old), a disparity that was no longer significant for patients 
65 years or older due in part to access to Medicare in the 
older population. This suggested that uniform access to 
medical insurance may help to alleviate racial disparities 
in access to care (64). While this study did not consider 
SES directly, these findings still point toward discrepancies 
in external factors as likely being partially responsible for 
disparities in cancer mortality.

Given that racial disparities in breast cancer are not fully 
explained by access to care, lifestyle and socioeconomic 
factors alone, there has been a growing interest in exploring 
potential molecular differences in breast cancers across 
population groups to gain insights into likely biologic 
factors underpinning outcome disparities.

Impact of tumor biology on breast cancer 
disparities

While the external factors contributing to higher rates of 
TNBC in AA women remain uncertain, deciphering the 
molecular and biological drivers at the tumor level is a 
key step to developing treatments for aggressive disease. 
Multiple studies have reported relatively modest differences 
in somatic mutations, associated copy-number profiles, gene 
expression levels, tumor mutation burden and intratumor 
heterogeneity between breast tumor lesions from AA and 
EA women (Figure 2).

In an analysis of 930 patients with breast cancer, 
Huo et al. (42) found that tumors from women with 
African ancestry had a higher proportion of TP53 
mutations, MYC amplifications and a lower proportion 
of PIK3CA mutations as compared to tumors from 
women of European descent; however, these molecular 
d i f f e rence s  were  a ccounted  fo r  a f t e r  ad ju s t ing 
for intrinsic subtype (Figure 2). Keenan et al.  (65)  
similarly studied samples from The Cancer Genome 
Atlas (TCGA) and found higher rates of TP53 mutations, 
lower rates of PIK3CA mutations and higher prevalence 
of the basal-like PAM50 subtype in breast cancers in AA 
women as compared to their EA counterparts. They also 
observed higher levels of intratumor heterogeneity in 
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breast cancers in AA versus EA women, but this difference 
did not significantly contribute to the racial disparity in 
tumor recurrence (Figure 2). However, upon adjusting for 
TP53 mutation status, PIK3CA mutation status, as well as 
expression-based subtypes (PAM50) of breast cancer, almost 
no differences were observed in tumor recurrence hazard 
between AA and EA (65), thus suggesting that differences in 
the molecular makeup of breast cancer across populations 
may contribute to disparities in outcomes.

In a study focused on TNBC, comparing a total of 128 
tumor samples from EA women (54%) and AA women 
(39%), Lindner et al. (66) found the transcriptional profiles 
of tumors from AA women to exhibit gene expression 
signatures consistent with the Basal 1 (BL1) TNBC 
subtype, decreased BRCA1 expression, increased activation 
of insulin-like growth factor 1 receptor (IGF1R) and 
increased expression of vascular endothelial growth factor 
(VEGF) activated genes (Figure 2). However, given that 
differential expression of IGF1R could also be associated 
with differences in the rates of obesity and metabolic 
syndrome between the AA and EA patients in this cohort, 
additional studies are warranted to determine whether 

differences in tumor molecular profiles in AA and EA 
patients are intrinsic to tumor biology, or merely reflective 
of patient comorbidities.

Another intriguing proposition entails the existence 
of novel subtypes of breast cancers that are unique to 
specific population groups considering that canonical 
breast cancer subtyping was derived from majority EA 
cohorts. Exploring this possibility, a study of 147 Ghanaian 
women found a counter-intuitive correlation of androgen 
receptor and aldehyde dehydrogenase (ALDH1) expression 
among TNBCs from AA women, suggesting that novel 
TNBC subtypes may exist among populations with African 
ancestry. The discovery of these novel subtypes will require 
large-scale profiling of AA TNBCs followed by molecular 
subtyping similar to the TNBC subtypes (67).

Role of the tumor microenvironment (TME) in 
cancer health disparities

The past decade has resulted in dramatic new advances in 
our understanding of the role of the TME in carcinogenesis 
and tumor progression. Therefore, when exploring factors 

Figure 2 Molecular and biological differences in tumors from AA vs. EA women. Variations on several biological levels differentiate tumors 
from AA women from EA counterparts. These groups exhibit different frequencies of germline mutations associated with TNBC; while 
BRCA1 mutations are more common in EA women, recent studies have shown that SNP rs8170 on the BABAM1 gene was linked to TNBC 
in an AA population. TMEs in AA women were found to have elevated levels of proinflammatory cytokines (orange stars), higher blood 
vessel density (red curves), and increased macrophage recruitment (yellow boxes). Intratumor genetic heterogeneity is generally higher in 
tumors from AA women and these cancers have a higher proportion of TP53 mutations, MYC amplifications and a lower proportion of 
PIK3CA mutations, consistent with higher rates of TNBC. A few studies have defined gene expression signatures that differ between tumors 
from AA women and tumors for EA women, including an increased expression of IGFR1, VEGF activated genes, CRYBB2 and decreased 
BRCA1 expression. AA, African American; EA, European American; TNBC, triple-negative breast cancer; TME, tumor microenvironment.
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contributing to aggressive cancer phenotypes in AA women 
and poorer outcomes, it is essential to characterize not only 
tumor intrinsic molecular profiles but also the TME to get 
a fuller picture of the disease.

Broadly, TME, which provides a favorable niche for 
the growth of tumor cells, is comprised of several types of 
stromal cells (e.g., fibroblasts, endothelial, and immune 
cells) and the various proteins secreted as a consequence of 
bi-directional tumor-stromal cross-talk. Emerging evidence 
suggests inherent biological differences in the TME of 
breast cancer patients from different racial backgrounds. 
Indeed, elevated levels of cytokines, including Resistin 
and IL-6 (68), higher vessel density (69) and increased 
macrophage recruitment (70) characterize the TME of 
breast cancers in AA women (Figure 2). These TME 
components render patients more susceptible to the 
development of aggressive tumors, faster progression of 
disease, and poorer patient survival (71).

It is possible that molecular drivers for higher rates of 
TNBC observed in AA women are differences in immune 
signaling. In a study of the AMBER consortium data, Hong 
et al. (72) chronicled genetic variations and differential 
activation of key immune response pathways among AA 
women with breast cancer. SNPs in genes involved in 
regulation of immune system processes, immune activation, 
and inflammation were associated with higher risk of breast 
cancer. Specifically, SNPs in the NF-κB pathway were found 
to associate with innate immunity and activation of the 
inflammatory response, leading to an increased risk of ER-
positive breast cancers. Likewise, pathways associated with 
MAP3K1 activation were also linked to an increased risk 
of ER-negative cancers (72). In addition to contributing to 
breast cancer risk, certain variations in immune components 
may regulate tumor response to treatment. For example, 
Jenkins et al. (73) found that infiltrating carcinomas in 
AA women have a higher proportion of tumors that are 
negative for the atypical chemokine receptor 1 (DARC/
ACKR1) as compared to EA women, a difference likely 
driven by sub-Saharan African-specific alleles in this gene. 
DARC/ACKR1 expression not only plays a significant role 
in immune regulation, but also promotes significantly 
enhanced survival in individuals with DARC/ACKR1-high 
tumors across all molecular tumor subtypes (73).

Collectively, these data suggest that genetic variations 
in key immune regulatory genes may underlie racial 
disparities in breast cancer susceptibility, as well as 
mortality. Nonetheless, the extent to which cancer health 
disparities are influenced by ancestry-related differences in 

the innate and adaptive immune systems remains unclear. 
Indeed, while germline variations could modulate immune 
responses across population groups, there is a growing 
recognition of the potential immunomodulatory role of 
allostatic load and/or chronic stress (74-78). As such, well-
controlled longitudinal studies are warranted to explore the 
relative influence of germline factors or external stressors 
on individual patient immune responses, which in turn may 
contribute to outcome disparities (Figure 3).

Future directions in population scale exploration 
of cancer health disparities

Despite the rapid drop in cost of sequencing over the past 
few years, large-scale molecular profiling of tumors is still 
an expensive proposition, thus limiting our ability to assess 
for differences in tumor biology at the population scale. 
However, recent developments in computational imaging 
approaches applied to routinely collected radiologic 
images and pathology slides have revealed previously 
underappreciated insights into tumor biology. Indeed, we 
and others have shown that tumor profiles at the radiomic 
and pathomic scales are associated with molecular subtypes 
and clinical outcomes across cancers (36,79,80). As these 
radiogenomic and pathomic approaches continue to be 
developed and validated, they will enable population-level 
assessments of variations in tumor biology, thus allowing 
the exploration of mechanisms underlying cancer health 
disparities at scale.

Yet another challenge in population-scale explorations 
of social determinants of cancer health disparities involves 
the assessment of SES of individual patients. Epidemiologic 
studies in cancer health disparities often incorporate 
SES status measured by education, occupation, wealth or 
income, but the availability and reliability of many of these 
measures remains a key challenge in the field (81). However, 
recent advancements in social science methodologies 
that incorporate geospatial analytics to assess economic 
disadvantage have enabled large-scale studies in cancer 
health disparities. For example, after analyzing data on 
Louisiana TNBC patients diagnosed in 2010–2012 with a 
robust measure of physical and social environment called 
neighborhood concentrated disadvantage index (CDI), 
Hossain et al. (82) found that CDI was associated with more 
advanced stages of TNBC at diagnosis and poor stage-
specific survival. Similarly, by combining data from the 
US Centers for Disease Control and Prevention and the 
Home Mortgage Disclosure Act database, Beyer et al. (83) 
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determined that mortgage discrimination was associated 
with larger racial cancer mortality disparities. In a study 
of 13,066 female patients, neighborhood SES (education, 
occupation, employment, household income, poverty, 
rent, and house value by census tract) and individual SES 
(insurance and marital status) stably explained one-half 
of the racial disparities in survival outcomes (84). These 
studies suggest that novel geospatial indices of disadvantage 
in combination with traditional demographic measures can 
provide a more comprehensive assessment of socioeconomic 
factors likely contributing to cancer health disparities.

Discussion

Our understanding of breast cancer disparities over 
the past decade has been driven by research conducted 
by epidemiologists, social scientists, and biologists, 

working largely independent of each other. However, 
these substantial efforts have reinforced the notion that 
cancer health disparities are driven by a complex interplay 
of factors spanning the molecular to sociologic scales. 
Studying differences in medical outcomes between 
racial groups, a socially-constructed concept, without 
accounting for the historical and current social environment 
of those groups can result in missed opportunities to 
improve health equity in addition to confounding our 
understanding of the biological factors driving disease 
aggressiveness. Accordingly, the next phase in breast cancer 
disparities research will be driven by multi-disciplinary 
teams of scientists who curate large-scale datasets with 
comprehensive tumor measurements and sociodemographic 
data. Indeed, advances in geospatial data collection at 
the sociodemographic scale coupled with innovations in 
radiologic/pathologic imaging and molecular profiling 

Figure 3 Multi-scale influences on tumor biology and aggressiveness. Intrinsic factors to the patient, such as germline mutations and 
comorbidities, affect tumor biology. Likewise, patient extrinsic factors including SES and access to care contribute to tumor aggressiveness. 
Additionally, tumor biology is itself defined on multiple scales such as mutation burden and gene expression. Information on each of 
these levels is needed to truly decipher the underlying causes of breast cancer disparities. SES, socioeconomic status; TME, tumor 
microenvironment.
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at the biologic scales are poised to enable such large-
scale dataset curation. Additionally, recent advances in 
machine learning and systems biology have begun to 
provide the necessary methodologic frameworks to analyze 
such multi-scale datasets. Such a convergence of large-
scale dataset curation and big data analytics is expected to 
better elucidate the sociologic and biologic determinants of 
patient outcomes, and thus enable the development of more 
effective interventional strategies to reduce breast cancer 
disparities.
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