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Opicinumab: is it a potential treatment for multiple sclerosis?
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Cadavid et al. (1) reported the results of the SYNERGY 
trial using opicinumab, which is a fully humanised anti-
LINGO-1 antibody in multiple sclerosis (MS) patients. 
The study evaluated the clinical safety, efficacy, and 
pharmacokinetics of four different doses of opicinumab 
versus placebo added on to intramuscular interferon-β1a 
over 72 weeks in patients with relapsing MS. However, the 
findings of the clinical trial did not show a significant dose-
linear improvement in disability compared with placebo in 
patients with relapsing MS. 

MS is characterised by chronic central nervous system 
(CNS) inflammation, demyelination, gliosis and axonal 
loss resulting in CNS dysfunction and disability (2). 
Current therapeutic approaches using anti-inflammatory or 
immunomodulatory agents to reduce inflammatory disease 
activity (clinical relapses and MRI changes) do not typically 
impact on pre-existing disability resulting from prior 
demyelination or axonal loss and are not considered neuro-
restorative (3). The production of effective therapeutic 
agents to restore CNS structure and function remains a 
significant unmet clinical need and multiple treatment 
targets are under investigation.

LINGO-1 is a transmembrane cell surface glycoprotein, 
with roles in oligodendrocyte precursor cell and neuronal 
biology (4,5). LINGO-1 expression is upregulated in 
MS lesions and blockade using antagonistic antibodies or 
genetic deletion results in increased axonal myelination 
both in vitro and in animal models, with amelioration of 
disease in experimental autoimmune encephalomyelitis 

(6,7). Based on these promising preclinical studies, several 
clinical studies have now trialled opicinumab (also known 
as BIIB033)—a human aglycosylated monoclonal antibody 
blocking LINGO-1, in both optic neuritis and MS (1,8-12).

In a first-in-human phase 1 study (of 72 healthy 
volunteers  and 47 pat ients  with MS),  serum and 
cerebrospinal fluid pharmacodynamic data suggested that 
infused doses of 10 mg/kg or more were likely to result in 
CNS antibody concentrations similar to those found to 
be effective in animal models (13). The protocol was well 
tolerated with no obvious safety signals. No effects were 
seen on either inflammatory cells or soluble inflammatory 
mediators (12). RENEW, a phase 2 randomised study  
(33 treated, 36 placebo), followed the clinical outcomes in 
patients presenting with acute optic neuritis, examining 
visual outcomes particularly visual evoked potentials 
(VEP) and MRI (11). Patients were treated with high 
dose steroids and six 4-weekly doses of 100 mg/kg 
opicinumab. Outcomes at 24 weeks found no significant 
difference between treatment and placebo groups. Despite 
this disappointing overall outcome, further analyses (8) 
suggested that a subgroup with relatively greater age  
(33 years or above) was associated with significantly 
improved VEP outcomes. Better VEP outcomes were 
also associated with lower retinal ganglion cell layer/inner 
plexiform layer thinning.

The recent SYNERGY study (1) applied many of 
the above methodologies to examine the effects of 
opicinumab in patients with relapsing MS. This was a 
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large (419 enrolled) phase 2 study, with patients treated 
with intramuscular interferon beta-1a in combination 
with either placebo or a variable dose of opicinumab (3, 
10, 30 or 100 mg/kg). Ages varied from 18 to 52 years 
and disability (EDSS) from 2.0 to 6.0. As before, infusions 
were performed every 4 weeks, for a total of 19 doses over  
72 weeks. Clinical outcome data included measures of 
disability [EDSS score, T25FW, dominant and non-
dominant hand nine-hole peg test (9HPT), and the 3 spaced 
auditory serial addition test (PASAT-3)] collected 12 weekly. 
Brain MRI was performed every 4 weeks to week 24, then 
at weeks 48, 72 and 84. The primary study endpoint was 
percentage of participants with confirmed improvement 
in neurophysical or cognitive function over 72 weeks. The 
secondary endpoint examined the converse-confirmed 
worsening of neurophysical or cognitive function. A range 
of exploratory endpoints examined MRI measures (typically 
changes in brain lesion properties). 

With the exception of the 3 mg/kg dose (45 patients), 
patients were evenly spread across placebo and titrated 
dosages (92 to 95). Eighty-percent of participants (n=334) 
completed the study, while the remainder discontinued 
treatment for a variety of reasons. The treatment was well 
tolerated throughout, although an unexplained dose-related 
increase in mean weight was observed in the opicinumab 
group. The overall study was negative, with no evidence 
that opicinumab improved disability outcomes. At two 
doses there was a trend or weak evidence for improvement  
(10 mg/kg P=0.064, 30 mg/kg opicinumab P=0.022). 
Similarly, there was no overall effect on confirmed 
worsening of disability over 72 weeks (P=0.53). Close 
examination of the data suggested that there may be an 
effect of the 10 mg/kg opicinumab dose in younger patients 
with a lower burden of disease (typically a shorter disease 
duration and more favourable MRI parameters). Using a 
tertiary endpoint overall response score (evaluating a time 
integrated mix of disability improvement versus worsening), 
improvements were seen at 24 and 36 weeks, with 10 mg/kg  
the most significant (P=0.0022 at 24 weeks, P=0.0006 at  
32 weeks). The study may suggest that, using this composite 
measure, particularly in younger patients with earlier disease 
and more favourable MRI measures, this dosage may be the 
most therapeutically promising. 

Ultimately, however, the trial should be considered 
negative and the reasons for the apparent failure of this 
approach are of interest. Problems could relate to trial 
design (numbers or characteristic of patients recruited, 
specific clinical outcomes or time frames). Although the 

study was superficially large, with 419 enrolled patients, the 
power of the study was weakened by using four therapeutic 
doses. Experience with trials of patients with relapsing 
disease using primarily clinical outcomes (usually phase 3 
studies) typically enrol between 700 and 1,000 patients (14). 
As a consequence, the study may still be underpowered, 
although other trials of neuroprotective/neurorestorative 
therapies have used similar approaches, with variable success 
but usually reproducible findings (particularly using markers 
of optic nerve structure and visual function) (15). The trial 
failure may relate to our incomplete understanding of the 
mechanisms underlying CNS (both axonal and myelin) 
damage in MS and failure of regeneration and repair. There 
are several obstacles to the use of antagonistic antibody-
based treatments for CNS conditions, particularly poor 
penetration of antibodies across the blood-brain barrier 
due to physical size and active efflux of antibodies from 
the CNS compartment. A wide range of strategies such as 
genetic re-engineering as a transferrin receptor or insulin 
receptor monoclonal antibody fusion proteins or using 
ultrasound to increase blood brain permeability, have been 
used in preclinical trials to increase CNS penetration.

The failure of the SYNERGY trial to show efficacy in 
its primary outcomes marks it as the second trial targeting 
LINGO-1 to report such outcomes. Several contentious 
issues in the literature may be relevant to this situation. 
First, LINGO-1 was initially reported to be present at the 
plasma membrane of cerebellar granule cells, but in a later 
study this was found not to be the case, with LINGO-1 
presenting an intracellular distribution (16). However, this 
has recently been refuted by Hanf et al. (17) who showed 
that LINGO-1 immunostaining was observed on cortical 
neurons without permeabilization of the cells. When cells 
were permeabilised, LINGO-1 immunoreactivity was also 
present in the cytoplasm, likely representing intracellular 
trafficking of the protein. The same study reported that 
the commercially available LINGO-1 antibody used by 
Meabon et al. in 2015 (18) primarily stained intracellular 
LINGO-1 in cortical neurons. The source of the disparity 
between these studies may be due to the relative differences 
in the peptides that were used as the immunogen for the 
two antibodies, which may recognise different functional 
epitopes (potentially masked during protein assembly and/
or glycosylation) or that different neuronal populations 
express LINGO-1 differently. Further work is required 
to address these issues as the specific spatiotemporal 
localisation of LINGO-1 is crucial to its functional 
antagonism by a monoclonal antibody. It is particularly 
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interesting that opicinumab was shown to have unusual 
binding properties—recognising LINGO-1 through both 
standard complementarity-determining regions (CDR) 
and a secondary cryptic light chain framework site which 
is only revealed upon CDR binding. Binding through 
the secondary site appears critical to effects on OPC 
differentiation and myelination in vitro (17), which may 
well not be seen in studies using other anti-LINGO-1 
antibodies.

A further issue involves the histological expression of 
LINGO-1 in MS, with one study reporting its absence in 
demyelinating MS tissues (19), while a later study directly 
opposed these observations (20). Finally, it is also not clear 
how LINGO-1 exhibits its effects on oligodendroglia. One 
possible explanation contends that LINGO-1 acts via the 
NgR1/75NTR receptor complex (21). However, inhibiting 
NgR1 had no effect on process extension and MBP 
production in LINGO-1 expressing MO3.13 cells, a human 
hybrid oligodendroglial cell line (22). 

Despite the overall negative outcome, SYNERGY has 
nonetheless provided useful information on trial design in 
patients with established MS-related disability. The study 
confirmed the feasibility and good tolerability of treatment 
regimens using peripherally infused monoclonal antibody 
therapies for CNS neuroregeneration. This is particularly 
critical in view of the relatively poor CNS bioavailability 
of these agents, requiring high infusion dosages. The study 
hinted at a more effective dose range—between 10 and  
30 mg/kg. Relatively young patients having lower 
established disability and more benign radiological features 
may benefit most from opicinumab treatment, most 
evident at the 10 mg/kg dose. Younger patients may also 
have higher numbers of oligodendrocyte precursor cells, 
whilst older patients may have relatively greater areas of 
established glial scarring and a decline in the function of 
pro-repair macrophages and microglia (23), with older 
patients being less amenable to anti-LINGO-1 antagonism.

With multiple apparent discrepancies in the literature, 
future studies must aim to clarify whether LINGO-1 is 
localised to the extracellular cell surface, determine if it 
is present in human MS tissue, and identify the potential 
partners involved in downstream LINGO-1 signalling. 
Moreover, it is possible that other leucine-rich repeat (LRR) 
molecules may compensate for LINGO-1 blockade in vivo, 
particularly in human disease. For example, AMIGO-3 has 
been shown to be an alternate candidate molecule blocking 
acute CNS axon regeneration, where LINGO-1 does not 
change until 10 days after CNS injury (5,24). With further 

information, the interpretation and planning of future 
clinical trials in neuroregeneration, particularly in MS, 
should be possible with greater confidence of a successful 
outcome.
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