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Pancreatic ductal adenocarcinoma (PDAC) is the deadliest 
solid malignancy and the most common form of pancreatic 
cancer. It is the fourth prominent cause of worldwide 
cancer-related deaths with a 5-year overall survival of 
less than 8% (1). Despite improved knowledge about its 
genetic characterization, PDAC remains insusceptible to 
most of the currently available treatment procedures, while 
complete surgical resection is the only viable option for the 
cure (2). Novel immunotherapies have shown encouraging 
results across multiple solid tumors; unfortunately, 
immunotherapies in PDAC have been disappointing (3). 
This unresponsiveness may, in part, be attributed to PDAC’s 
acquired immunosuppressive tumor microenvironment 
(TME), driven by poor T cell infiltration, a low tumor 
mutational burden (TMB), and dense fibrotic stroma (3,4). 

Better clinical outcomes can be achieved through 
molecular profiling and accurate subtyping upon detection 
and using customized therapeutic strategies. Molecular 
subtyping of cancers can be accomplished by unsupervised 
clustering of molecular data or hypothesis-driven 
classification based on biological and clinicopathological 
parameters. In the past, several PDAC molecular subtyping 
systems were proposed based on genomic variation, 
transcriptomics, epigenomics, stroma status, immunological 
status, and proteomics data (5-11). In recent years, the role 
of TME and its composition have gained much interest in 
PDAC molecular subtyping and therapeutics. 

In Annals of Translational Medicine, Pu et al. analyzed 
179 PDAC patients’ clinical, gene expression, and 

somatic mutation data from The Cancer Genome Atlas  
(TCGA) (12). They estimated both the immune and stromal 
scores of each patient by using the Estimation of STromal 
and Immune cells in MAlignant Tumours using Expression 
data (ESTIMATE) tool (13) based on the immune and 
stromal signature gene expression levels. These scores were 
used to stratify PDAC patients into high- and low-score 
groups. Further, a Tumor Immune Estimation Resource 
(TIMER) tool (14) was used to assess infiltration levels of 
the CD8+ T cells (cytotoxic), CD4+ T cells (helper), B cells, 
Macrophages, Neutrophils, and dendritic cells (DCs). The 
patient cohort with higher immune and stromal scores have 
a higher level of infiltration of all of these immune cells 
except for CD4+ T cells, while the cohort only with higher 
stromal score has lower CD4+ T cell infiltration.

The study suggests that ductal adenocarcinoma group 
patients have higher immune and stromal score compared 
to other types of pancreatic cancers. There is no statistically 
significant difference in the overall survival and recurrence-
free survival between high and low scoring groups of 
patients. Further, they also looked at the stromal and 
immune score of PDAC patients based on mutations in 
four highly mutated genes (KRAS, TP53, SMAD4, and 
CDKN2A). KRAS mutant group has significantly low 
immune and stromal scores compared to wildtype. TP53 
wildtype has significantly low immune score compared 
to wildtype, but there is no significant difference in the 
case of the stromal score. However, there is no significant 
difference in the stromal and immune scores of the 

615

Editorial

https://crossmark.crossref.org/dialog/?doi=10.21037/atm.2020.03.59


Mishra et al. Biomarkers in the TME of PDAC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(10):615 | http://dx.doi.org/10.21037/atm.2020.03.59

Page 2 of 4

mutant groups of SMAD4 and CDK2A compared to their 
corresponding wildtypes. 

To explore the role of altered genes in PDAC, the 
authors analyzed differentially expressed genes (DEGs) 
in the high stromal and immune score groups against 
corresponding low score groups using Bioconductor tool 
limma. They observed an overlap of about 30% of the 
DEGs between the immune and stromal group analyses. 
Gene ontology (GO) and pathway enrichment analyses 
show the enrichment of immune response and cancer-
related biological processes. To explore the role of DEGs 
on patients’ survival, they performed a log-rank test and 
observed that several DEGs are associated with both the 
overall and recurrence-free survival of the PDAC patients. 

Our own study on the PDAC patient data from TCGA 
suggests that several of these genes, e.g., CCL2, CD226, 
CLEC17A, CNR2, CSF3R, CTSG, DPEP2, KLHL6, MAL, 
PLA2G2A, RASGRP2, RELN, and SCARA5 are associated 
with patients’ overall survival (15). Functional enrichment 
analysis showed that these genes are also involved in 
adaptive immune response, chemokine-mediated signaling, 
and inflammatory response, etc. Tumor-promoting and pro-
survival roles of inflammatory chemokine, C-C chemokine 
ligand 2 (CCL2) in pancreatic cancer was established  
earlier (16), but its role in TME has not been explored. In 
this study, Pu et al. report the pro-survival role of CCL2 in 
the PDAC TME. These results are corroborated by recent 
reports on the pro-survival role of CCL2 in the TME of 
breast cancer (17) and lung cancer (18). While our previous 
report suggests that CCL2 is underexpressed in the  
PDAC (15), by taking into consideration of ours and 
Pu et al. studies, we can deduce that tumor tissue cell 
downregulates CCL2 in TME to make it more aggressive. 

In the current study, AMH (anti-müllerian hormone) 
and TNNT1 (troponin T1) genes are associated with a 
better prognosis of PDAC, which is partly in line with our 
observation on the role of TNNT1 in the better prognosis 
of PDAC patients; however, there was no significant 
difference in the expression level of TNNT1 in PDAC 
patients compared to the normal (15). On the other hand, 
we didn’t find any association between AMH and survival 
in PDAC patients in our study (15), even though Pu et al. 
report finds AMH’s expression is associated with survival in 
PDAC patients with high stromal score. A recent report also 
suggests the pro-survival role of the AMH gene expression 
in lung cancer (19). CD226 (Cluster of Differentiation 
226) encodes a co-stimulatory glycoprotein, DNAX 
accessory molecule-1 (DNAM-1) on the surface of T 

cells, natural killer (NK) cells, monocytes, and B cells. 
Overexpression of CD226 is associated with T and NK-
cell mediated cytotoxicity against tumor cells (20), which 
regulates immune response in TME along with the T cell 
co-inhibitory receptor, TIGIT [T cell immunoreceptor 
with immunoglobulin and tyrosine-based inhibitory motif 
(ITIM) domain] (21). In the current analysis, they observed 
that the expression of CD226 has a pro-survival role in 
PDAC TME, which is on expected lines (20). 

Protein-protein interaction network analysis of survival-
associated DEGs (82 in high-immune score group and 58 
in high-stromal score group) with the STRING database 
identified highly interconnected CNR2 and CCL22 genes, 
which overexpressed in T cells, B cells, dendritic cells, NK 
cells, and macrophages (22,23). CCL22 is a well-known 
chemokine that recruits Treg (regulatory T cells) to suppress 
the immune response in the tumor tissue, and many types 
of human tumors are known to express high levels of  
CCL22 (24). In pancreatic cancer, CCL22 is produced by 
dendritic cells in TME, while cancer cells themselves do not 
secrete CCL22 in vitro or in vivo (24). The higher expression 
level of CCL22 is associated with immunosuppression 
in TME; hence, we can expect that it would lead to 
immune escape and poor prognosis. In contrast, the 
current report showed that high CCL22 expression was 
associated with increased overall survival in PDAC; a 
similar trend was also observed in breast cancer (25).  
Overall, it’s convincible that the ratio of stroma and 
immune cell and altered expression of immune and stroma 
associated genes in TME is associated both with the overall 
and recurrence-free survival of the PDAC patients.

In conclusion, Pu et al. analyzed the altered expression 
of genes that are associated with TME composition in 
PDAC. Functional analysis of these DEGs suggests their 
involvement in immune-related pathways and TME. This 
study provides a list of genes with potential prognostic 
value to PDAC patients due to their association with the 
overall and recursion-free survival of PDAC patients. 
The mechanistic role of these marker genes is yet to be 
established fully with further experimental studies. In the 
future, we need to apply data from other publicly available 
large cohorts of patients to establish the role of genes 
associated with higher immune and stromal scores in  
in vivo, in vitro, and PDAC patient samples.
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