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Background: To develop and validate an 18F-fluorodeoxyglucose (FDG) positron emission tomography/
computed tomography (PET/CT) and clinico-biological features-based nomogram for distinguishing solid 
benign pulmonary nodules (BPNs) from malignant pulmonary nodules (MPNs).
Methods: A total of 280 patients with BPN (n=128) or MPN (n=152) were collected retrospectively and 
randomized into the training set (n=196) and validation set (n=84). Pretherapeutic clinicobiological markers, 
PET/CT metabolic features and radiomic features were analyzed and selected to develop prediction models 
by the machine-learning method [Least Absolute Shrinkage and Selection Operator (LASSO) regression]. 
These prediction models were validated using the area under the curve (AUC) of the receiver-operator 
characteristic (ROC) analysis and decision curve analysis (DCA). Then, the factors of the model with the 
optimal predictive efficiency were used to constructed a nomogram to provide a visually quantitative tool for 
distinguishing BPN from MPN patients.
Results: We developed 3 independent models (Clinical Model, Radiomics Model and Combined Model) to 
distinguish patients with BPN from those with MPN in the training set. The Combined Model was validated 
to hold the optimal efficiency and clinical utility with the lowest false positive rate (FPR) in classifying the 
solid pulmonary nodules in two sets (AUCs of 0.91 and 0.94, FPRs of 18.68% and 5.41%, respectively; 
P<0.05). Thus, the quantitative nomogram was developed based on the Combined Model, and a good 
consistency between the predictions and the actual observations was validated by the calibration curves.
Conclusions: This study presents a machine-learning nomogram integrated clinico-biologico-radiological 
features that can improve the efficiency and reduce the FPR in the noninvasive differentiation of BPN from 
MPN.

Keywords: Solid pulmonary nodules; 18F-fluorodeoxyglucose positron emission tomography/computed 

tomography (18F-FDG PET/CT); radiomics; nomogram; machine learning

12

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-22-2647


Ren et al. Solid pulmonary nodules classification with radiomicsPage 2 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(23):1265 | https://dx.doi.org/10.21037/atm-22-2647

Introduction

Lung cancer is the leading cause of cancer-related mortality 
globally, accounting for 1.3 million deaths per year (1). The 
overall mortality has decreased significantly in recent years 
due to the improvements in early detection and treatment 
advances that have extended survival (2). However, with 
an estimated 1.5 million new pulmonary nodules detected 
through screening or incidentally requiring follow-up 
diagnostic procedures annually (3,4), the task of classifying 
benign pulmonary nodules (BPN) from malignant 
pulmonary nodules (MPN) to avoid delayed treatment or 
overdiagnosis presents a great challenge for radiologists and 
clinicians.

Biopsy is considered the “golden standard” for insight 
into possible cancerous, but the application of this invasive 
procedure is limited due to complications after sampling or 
contraindications for patients with severe cardiopulmonary 
insufficiency (5). Noninvasive radiologic approaches 
present alternative options to tissue-based procedures. 
Computed tomography (CT) and 18F-fluorodeoxyglucose 
(18F-FDG) positron emission tomography (PET) are most 
commonly used in clinical practice (6), while PET/CT is 
more advanced than CT in assessing the malignancy risk 
of solid pulmonary nodules with higher sensitivity and 
accuracy values (7,8). However, the high false positive rate 
(FPR) of PET/CT can not to be ignored because 18F-FDG 
is not a tumor-specific tracer (9). In addition, there are no 
completely specific radiologic features or imaging diagnostic 
criteria for MPNs.

Machine learning-based radiomics is particularly suitable 
for the assessment and management of pulmonary nodules 
by providing high-dimensional and valuable data, such as 
intranodular heterogeneity, which can recognize biomarkers 
that reduce false-positive results of diagnostic imaging 
and more accurately distinguish between BPN and MPN  
(10-12). In addition, radiomics features can be combined 
with demographic, histologic or proteomic data, which can 
make a more quantitative risk prediction of lung cancer and 
more defined clinical decision guidelines (13). 

We aimed to construct a machine-learning model 
that integrated the clinical factors, serum tumor marker, 
PET/CT metabolic features and radiomics features 

to distinguish BPN from MPN and provide a visually 
quantitative nomogram in clinical practice. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-2647/rc) (14).

Methods

Patients

We conducted the retrospective analysis of records from 
patients with a solitary solid pulmonary nodule between 
January 2017 and December 2020. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The Ethics Committee of Shanghai Proton 
and Heavy Ion Center (No. 200217EXP-01) approved this 
retrospective study, and waived the demand for informed 
consent. The inclusion criteria were as follows: (I) BPN or 
MPN diagnosed by pathology of curative surgical resection; 
(II) whole-body 18F-FDG PET/CT less than 2 weeks 
before surgery; (III) solitary solid pulmonary nodule larger 
than 1.0 cm in diameter with maximum standardized uptake 
value (SUVmax) >1.0. The exclusion criteria and patient 
recruitment process were presented in Figure 1.

Finally, a total of 280 consecutive patients were enrolled 
in this study, comprising 128 BPNs and 152 MPNs. 
Patients were randomly divided into the training set 
(n=196) and validation set (n=84) according to a 7:3 ratio. 
Baseline data pertaining to the clinical characteristics and 
serum tumor marker levels of each patient were reviewed 
and recorded.

18F-FDG PET/CT examination

All patients were received the 18F-FDG PET/CT on a 
Biograph 64 PET/CT scanner (Siemens Healthcare, 
Erlangen, Germany) with a blood glucose level of  
<8.7 mmol/L fasted for at least 6 h before the scan. After 
intravenous administration of 5.18 MBq/kg of 18F-FDG, 
the whole-body scan was operated about 1 h later. First, CT 
scanning with 3.0 mm slice thickness (120 kVp, 150 mAs, 
0.33 seconds per rotation) was performed and reconstructed 
to a 512×512 matrix (voxel size: 0.98×0.98×3.0 mm3). 
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Patients with pulmonary nodules undergone 18F-FDG

PET/CT between January 2017 and December 2020 (n=625)

1) Multiple pulmonary nodules or distant metastasis (n=131)

2) Subsolid pulmonary nodules (n=96)

1) Previous cancer history or skip surgery (n=44)

2) Anti-tumor or anti-infectious therapy (n=27)

3) Size <1.0 cm or SUVmax <1.0 (n=47)

BPN patients (n=128) & MPN patients (n=152)

Training set (n=196) & validation set (n=84)

Patients with solitary solid pulmonary nodule (n=398)

Eligible patients with primary BPN or MPN confirmed by 

postoperative pathology (n=280)

Figure 1 Flow chart showing the patient recruitment process. FDG, fluorodeoxyglucose; PET/CT, positron emission tomography/
computed tomography; SUV, standardized uptake value; BPN, benign pulmonary nodule; MPN, malignant pulmonary nodule.

PET scanning was subsequently performed with 2 min in 
each bed and reconstructed using the TrueX algorithm (2 
iterations, 24 subsets and 2 mm full width at half maximum, 
matrix size: 200×200, anisotropic voxels: 4.07×4.07× 
3.0 mm3). The PET images were transformed into SUV 
units by standardizing the activity concentration into the 
injected 18F-FDG’ dosage and patients’ weight.

Pulmonary nodule segmentation and PET/CT image 
evaluation

Pulmonary nodules were visualized and segmented on 
the 18F-FDG PET/CT images using Inveon Research 
Workplace software (Siemens Healthcare, Erlangen, 
Germany). The boundaries of nodules were drawn in the 
axial, coronal, and sagittal PET scans to delineate the 
volume of interest (VOI) using a threshold of 40% of 
SUVmax by two experienced nuclear medicine physicians 
blinded to the pathology and with consensus decision (15). 
The joint reading of the PET and CT scan was performed 
in parallel to avoid incorporating the areas of physiological 
18F-FDG uptake into VOI and ensure that the accurate 
anatomical tumor borders were fully reflected.

Six metabolic parameters of 18F-FDG uptake [minimum 

SUV (SUVmin), SUVmax, SUVmean, SUV standard 
deviation (SD), metabolic tumor volume (MTV) and total 
lesion glycolysis (TLG)] that are generally used for the 
measurement of intratumoral heterogeneity were recorded 
for each VOI. The SUVmax threshold value of the 
pulmonary nodule was set at 2.5 to differentiate BPN from 
MPN according to previous studies (16,17). An SUVmax of 
≥2.5 was considered MPN, while an SUVmax of <2.5 was 
considered BPN.

Quantitative radiomics feature extraction

A total of 157 quantitative radiomics features (100 PET 
radiomics features and 57 CT radiomics features) were 
automatically calculated and extracted from the VOI using 
the Chang Gung Image Texture Analysis (CGITA) (18).  
The extraction and definit ion of these radiomics 
features were consistent with the Imaging Biomarker 
Standardization Initiative (19), and the details of these 
features were described in Table S1 of supplementary data.

Feature selection and model development

The optimum features for predicting the histologic 

https://cdn.amegroups.cn/static/public/ATM-22-2647-supplementary.pdf
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subtypes were selected using a machine-learning method 
[least absolute shrinkage and selection operator (LASSO) 
regression with 10-fold cross-validation] in the training  
set (20). The prediction models for distinguishing BPN and 
MPN patients were constructed by the linear fusion of the 
selected non-zero features weighted by their coefficients, 
and the prediction scores (Pre-scores) of each model were 
calculated for each patient.

Model performance and clinical utility evaluation

The receiver-operator characteristic curve (ROC) analysis 
and DeLong test were applied to evaluate and compare the 
performance of these prediction models in the training and 
validation sets. The area under the curve (AUC) with 95% 
confidence interval (CI), sensitivity, specificity, accuracy, 
positive predictive value (PPV), negative predictive value 
(NPV), FPR and false negative rate (FNR) were calculated 
for each model. The decision curve analysis (DCA) and 
clinical impact curve (CIC) were used to evaluate the 
clinical utility of these models (21).

Nomogram development and validation 

To provide a visually quantitative tool for distinguishing 
BPN from MPN, an individualized nomogram was 
developed using the factors of the model with the highest 
efficiency and clinical utility (22). Calibration curves 
were drawn using 1,000 bootstrap resamples based on the 
internal (training set) and external (validation set) validity to 
reflect the agreement between the actual probability and the 
predicted probability of the nomogram.

Statistical analysis

The statistical analysis was performed on R (version 4.0, 
http://www.r-project.org) software. Comparisons between 
the groups were performed using Mann-Whitney U test or 
independent t-test for continuous variables and χ2 test or 
Fisher’s exact test for categorical variables. A two-sided P 
value of <0.05 indicated statistical significance.

Results

Demographic, clinicopathologic and metabolic characteristics 
of patients

In total, 280 patients comprising 128 BPN and 152 MPN 

patients (146 males and 134 females, mean age: 59.79± 
10.26 years, range: 26–84 years) were eventually enrolled 
in this study. Among the BPN patients, 64 (50.0%) had a 
final diagnosis of inflammation, 40 (31.3%) of granuloma, 
9 (7.0%) of active tuberculosis, 9 (7.0%) of hamartoma and 
6 (4.7%) of sclerosing pulmonary cell tumor. Among the 
MPN patients, the most common histologic subtype was 
adenocarcinoma (n=77, 50.7%), followed by squamous cell 
carcinoma (n=59, 38.8%). Rarer cases of small cell lung 
cancer (n=8, 5.3%), large cell carcinoma (n=6, 3.9%) and 
sarcomatoid carcinoma (n=2, 1.3%) were reported. The 
patients’ demographic, clinico-biological and metabolic 
characteristics were summarized and compared in Table 1.

Feature selection and model development

Originally, 7 clinico-biological markers, 14 PET/CT 
radiomics features and 26 combination features were 
selected by the LASSO method in the training set (Figure 2).  
Subsequently, we developed 3 independent multivariable 
models using the most valuable 4 clinico-biological features, 
7 radiomics features and 12 combination features according 
to the Akaike information criterion (AIC) for distinguishing 
BPN from MPN patients. Generally, MPN patients had 
higher Pre-scores than BPN patients for each model 
calculated by the following formulas (P<0.01) (Figure 3, 
Table 2):

Pre-score (Clinical Model) = −4.637 + 0.064 × age (y) − 
0.002 × ferritin (FERR, ng/mL) + 0.199 × carcinoembryonic 
antigen (CEA, ng/mL) + 0.267 × cytokeratin 19 fragment 
antigen (CYFRA21-1, ng/mL).

Pre-score (Radiomics Model) = 13.614 − 0.371 × PET_
Kurtosis − 28.346 × PET_Texture Feature Coding (TFC)_
Coarseness − 0.023 × PET_TFC_Mean convergence + 
37.651 × PET_Texture Feature Coding Cooccurrence 
Matrix (TFCCM)_Second angular moment + 119.249 × 
PET_TFCCM_Code Similarity − 18.044 × CT_Gray Level 
Size Zone Matrix (GLSZM)_Short zone emphasis + 20.031 
× CT_Texture Spectrum (TS)_Max spectrum.

Pre-score (Combined Model) = 9.374 + 1.922 × SUVmax 
threshold (SUVmax <2.5:0, SUVmax ≥2.5:1) + 0.070 × age 
(y) + 1.447 × smoking (never: 0, ever/always: 1) − 0.004 × 
FERR (ng/mL) + 0.283 × CEA (ng/mL) − 0.924 × PET_
Kurtosis + 1.166 × PET_Kurtosisbias corrected − 0.021 × PET_
TFC_Mean convergence + 34.521 × PET_TFCCM_
Second angular moment + 139.095 × PET_TFCCM_Code 
Similarity − 24.389 × CT_ GLSZM_Short zone emphasis + 
21.559 ×  CT_TS_Max spectrum.

http://www.r-project.org
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Table 1 Clinical, demographic and metabolic characteristics of patients with solid pulmonary nodules

Characteristics
Training set (n=196) Validation set (n=84)

BPN (n=91) MPN (n=105) P BPN (n=37) MPN (n=47) P

Sex 0.57 <0.01

Male 47 (51.65) 59 (56.19) 11 (29.73) 29 (61.70)

Female 44 (48.35) 46 (43.81) 26 (70.27) 18 (38.30)

Age (years) 55.88±10.17† 63.10±9.97† <0.01 54.89±8.93† 63.81±7.58† <0.01

Height (m) 1.63±0.08† 1.64±0.08† 0.43 1.62±0.06† 1.65±0.08† 0.13

Weight (kg) 64.85±11.55† 62.08±9.57† 0.07 60.74±8.27† 63.81±9.49† 0.12

BMI 24.16±3.04† 22.97±3.06† 0.01 23.08±3.01† 23.45±2.73† 0.55

Smoking 0.04 <0.01

Never 61 (67.03) 55 (52.38) 30 (81.08) 21 (44.68)

Ever/always 30 (32.97) 50 (47.62) 7 (18.92) 26 (55.32)

Symptom 0.25 0.40

Negative 43 (47.25) 41 (39.05) 17 (45.95) 26 (55.32)

Positive 48 (52.75) 64 (60.95) 20 (54.05) 21 (44.68)

Family history 0.13 0.07

Negative 88 (96.70) 96 (91.43) 37 (100.00) 43 (91.49)

Positive 3 (3.30) 9 (8.57) 0 (0.00) 4 (8.51)

Tumor side 0.80 0.83

Right lung 53 (58.24) 63 (60.00) 18 (48.65) 24 (51.06)

Left lung 38 (41.76) 42 (40.00) 19 (51.35) 23 (48.94)

Tumor location 0.13 <0.01

Upper lobe 54 (59.34) 52 (49.52) 14 (37.84) 33 (70.21)

Middle lobe 10 (10.99) 11 (10.48) 1 (2.70) 2 (4.26)

Lower lobe 27 (29.67) 42 (40.00) 22 (59.46) 12 (25.53)

Tumor size (cm) 3.70±1.41† 5.47±1.98† <0.01 3.95±1.42† 4.18±1.77† 0.15

FERR (ng/mL) 234.60 (163.00, 376.90)‡ 218.90 (130.35, 331.35)‡ 0.02 234.60 (87.30, 234.60)‡ 220.00 (132.00, 316.00)‡ 0.05

SCCA (ng/mL) 0.90 (0.68, 1.20)‡ 1.10 (0.70, 1.70)‡ 0.21 0.80 (0.52, 0.89)‡ 0.87 (0.62, 1.55)‡ <0.01

CA199 (U/mL) 12.03 (8.22, 17.70)‡ 11.04 (6.35, 17.50)‡ 0.58 12.10 (8.08, 14.09) ‡ 9.97 (6.07, 17.60) ‡ 0.82

CEA (ng/mL) 2.04 (1.43, 2.96)‡ 3.09 (1.98, 4.88)‡ <0.01 1.70 (0.97, 2.04)‡ 3.22 (2.08, 4.60)‡ 0.02

CYFRA21-1 (ng/mL) 2.48 (2.20, 3.21)‡ 3.24 (2.41, 5.18)‡ <0.01 2.46 (1.75, 2.95)‡ 2.86 (1.93, 4.29)‡ 0.29

NSE (ng/mL) 10.73 (9.52, 12.09)‡ 11.24 (10.17, 13.10)‡ 0.44 11.99 (10.16, 12.82)‡ 11.20 (9.52, 12.60)‡ 0.48

SUVmax threshold <0.01 0.45

<2.5 23 (25.27) 10 (9.52) 7 (18.92) 6 (12.77)

≥2.5 68 (74.73) 95 (90.48) 30 (81.08) 41 (87.23)

Table 1 (continued)
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Table 1 (continued)

Characteristics
Training set (n=196) Validation set (n=84)

BPN (n=91) MPN (n=105) P BPN (n=37) MPN (n=47) P

SUVmin 0.90±0.43† 1.13±0.59† <0.01 0.81±0.36† 1.14±0.69† 0.01

SUVmax 6.21±5.02† 8.17±5.08† <0.01 5.94±3.69† 9.50±7.09† <0.01

SUVmean 2.97±2.17† 4.25±2.76† <0.01 2.72±1.42† 4.62±3.39† <0.01

SUV SD 1.22±1.15† 1.65±1.11† <0.01 1.16±0.86† 1.97±1.67† <0.01

MTV 13.86±18.51† 20.51±30.10† 0.07 19.32±33.47† 18.68±38.77† 0.94

TLG 58.13±103.25† 122.87±245.36† 0.02 72.88±175.68† 137.33±374.88† 0.34

Data are shown as mean ± standard deviation, median (interquartile range) or number (percentage). P values were the results of univariate 
analysis and the bold ones indicated statistical significance. BPN, benign pulmonary nodule; MPN, malignant pulmonary nodule; SD, 
standard deviation; BMI, body mass index; FERR, ferritin; SCCA, squamous cell carcinoma antigen; CA, carbohydrate antigen; CEA, 
carcinoembryonic antigen; CYFRA21-1, cytokeratin 19 fragment antigen; NSE, neuron specific enolase; SUV, standardized uptake value; 
MTV, metabolic tumor volume; TLG, total lesion glycolysis.
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Figure 2 Features selection for the prediction models using LASSO regression in the training set. The X-axis represented log (λ). The Y-axis 
represented the model misclassification rate. The dotted vertical lines were drawn at the optimum values using the minimum criteria and 1-se 
criteria, respectively. The optimal λ values of 0.07, 0.03 and 0.02 were indicated the 7, 14 and 26 features for Clinical Model (A), Radiomics 
Model (B) and Combined Model (C), respectively. LASSO, Least Absolute Shrinkage and Selection Operator.

Model performance and clinical utility evaluation

All the prediction models were significantly associated with 
the pathological subtypes of solid pulmonary nodules, while 
the SUVmax Threshold approach displayed the poorest 
performance with the lowest AUC, specificity and accuracy 
values in the two sets (P<0.05). However, the SUVmax 
Threshold approach had the highest sensitivity value among 
these prediction models. The DeLong test showed that the 
Combined Model held the highest AUC and best prediction 
specificity, accuracy, PPV and NPV for discriminating 
BPN from MPN among the 3 models in both the training 
and validation sets (AUCs of 0.91 and 0.94, respectively)  
(Figure 4A,4B, Table 3). In addition, the FPR of the 

Combined Model in the diagnosis of MPN was remarkably 
decreased compared to the other 3 classifiers (SUVmax 
Threshold approach, Clinical Model and Radiomics 
Model). In addition, when the threshold probability was 
greater than 15%, the Combined Model was demonstrated 
to be the most reliable tool for assessing the malignancy risk 
in patients with solid pulmonary nodules according to the 
DCA and CIC (Figure 4C,4D).

Nomogram development and validation

Thus, we constructed a machine-learning nomogram 
consisting of the Combined Model’s risk factors for 
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visualization according to the above results (Figure 5A), 
and a good consistency between the predictions and the 
actual observations was validated by the calibration curves 
(Figure 5B,5C).

Discussion

In this study, we successfully developed and validated 
a machine-learning nomogram consisting of clinico-
biological factors, tumor markers and 18F-FDG PET/
CT radiomics features, which demonstrated an excellent 
performance in noninvasively distinguishing between BPN 
and MPN patients. 

The relationship between the clinical factors selected in 
the nomogram (age and smoking status) and lung cancer 
risk has previously been well established: an accelerating 
increase in risk associated with advancing age and smoking 
(1,23). The serum tumor markers such as CEA and 

CYFRA21-1 also contribute to the diagnosis of lung cancer, 
and MPN patients generally have significantly higher levels 
of those markers than BPN patients (24,25). Serum FERR, 
a non-specific tumor marker, is highly expressed in benign 
lung diseases, which may be the result of inflammation 
and oxidative stress (26,27). This study’s results were 
corresponded to the above reports’ conclusions.

As a functional imaging modality, 18F-FDG PET/CT 
can provide additional metabolic information that enables 
more accurate characterization of pulmonary nodules that 
are indeterminate on CT images, which frequently alters 
the clinical management strategies (16,28). Malignant 
tissues consist of metabolically active cells that usually have 
a higher uptake of glucose than benign ones, which can be 
measured semiquantitatively using SUV values: the risk of 
malignancy increases with SUV values (29,30). In this study, 
all SUV values of MPN were significantly higher than 
those of BPN, which was consistent with the above reports. 

Table 2 Pre-scores of patients with solid pulmonary nodules in the training set

Pre-score BPN (n=91) MPN (n=105) P

Pre-score (clinical model) −0.59±1.17 1.47±3.06 <0.01

Pre-score (radiomics model) −0.97±1.78 1.23±1.51 <0.01

Pre-score (combined model) −2.49±3.85 2.69±3.41 <0.01

Data is presented as mean ± standard deviation. P values were the results of univariate analysis and the bold ones indicated statistical 
significance. BPN, benign pulmonary nodule; MPN, malignant pulmonary nodule. 

Clinical model Radiomics model Combined model
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Figure 3 Pre-scores of models for patients in the training set. Violin plot of the 3 prediction models for distinguishing BPN from MPN 
patients (A). The black dots represented the median value. The black solid lines were the range from the lower quartile to the upper quartile. 
***P<0.001. The waterfall plot was applied to visualize the distribution of the Combined Model’s Pre-scores of individual BPN and MPN 
patient (B). BPN, benign pulmonary nodule; MPN, malignant pulmonary nodule.
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Figure 4 Model performance and clinical utility evaluation. ROC analysis of the prediction models for differentiating BPN from MPN 
patients in the training (A) and validation (B) sets, respectively. The X-axis of DCA (C) showed the threshold probability. The Y-axis showed 
the net benefit. The gray and black line showed the hypothesis that patients were BPN or MPN, respectively. CIC showed the estimated 
number of patients with a high risk of malignancy declared by Combined Model and the proportion of true positive patients for each risk 
threshold (D). BPN, benign pulmonary nodule; MPN, malignant pulmonary nodule; DCA, decision curve analysis; CIC, clinical impact 
curve.

Table 3 Performance of the models for predicting subtypes in patients with solid pulmonary nodules

Models AUC (95% CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) FPR (%) FNR (%)

Training set

SUVmax threshold 0.58 (0.53–0.63) 90.48 25.27 60.20 58.28 69.70 74.73 9.52

Clinical model 0.80 (0.74–0.87) 75.24 79.12 77.04 80.61 73.47 20.88 24.76

Radiomics model 0.84 (0.79–0.90) 82.86 76.92 80.10 80.56 79.55 23.08 17.14

Combined model 0.91 (0.87–0.95) 87.62 81.32 84.69 84.40 85.06 18.68 12.38

Validation set

SUVmax threshold 0.53 (0.45–0.61) 87.23 18.92 57.14 57.75 53.85 81.08 12.77

Clinical model 0.89 (0.82–0.96) 82.98 83.78 83.33 86.67 79.49 16.22 17.02

Radiomics model 0.69 (0.58–0.81) 80.85 54.05 69.05 69.09 68.97 45.95 19.15

Combined model 0.94 (0.89–0.98) 80.85 94.59 86.90 95.00 79.55 5.41 19.15

AUC, area under the receiver operating curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive 
predictive value; NPV, negative predictive value; FPR, false positive rate; FNR, false negative rate; SUV, standardized uptake value.
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Figure 5 Nomogram development and validation. The probability of each risk factor could be transformed into scores according to the 
“Points” at the top of the nomogram (A). The risk of MPN was determined by adding the corresponding prediction probability at the 
bottom of the nomogram. Calibration curves showed that the prediction of nomogram was closely consistent with the actual probability 
in the training (B) and validation (C) sets, respectively. The X-axis showed the predicted probability of nomogram. The Y-axis showed the 
actual observed rates. The solid line showed the ideal reference line that predicted nodule subtypes corresponded to the actual outcome, the 
short-dashed line showed the apparent prediction of nomogram, and the long-dashed line showed the ideal estimation. MPN, malignant 
pulmonary nodule.

Despite SUV values being frequently correlated with the 
biological behaviors of malignant tissues, the definitive 
threshold SUV values for malignancy diagnosis have not 
yet been identified (31). Previous studies have adopted 2.5 

as a threshold SUVmax to discriminate between patients 
with BPN and MPN and obtained different results (17,32). 
In this study, a SUVmax of 2.5 was applied to classify the 
nodule subtypes and performed poorly in both the training 
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and validation sets (AUCs of 0.58 and 0.53, respectively). 
The above results indicated that using the threshold 
SUVmax values to differentiate BPN from MPN was 
unrealistic. 

Radiomics based on the 18F-FDG PET/CT has been 
demonstrated to have potential in assessing the lung 
cancer risk and could optimize the end-to-end diagnosis-
treatment-follow-up chain (33). Previous studies found 
that PET/CT radiomics could differentiate BPN from 
MPN patients with AUCs >0.8 or an accuracy value of 
80.40% (34,35). However, these studies did not validate 
the results in another independent (internal or external) 
dataset. In this study, the Radiomics Model performed 
better in differentiating BPN from MPN in the training 
set (AUC of 0.84, accuracy of 80.10%, respectively) than 
in the validation set (AUC of 0.69, accuracy of 69.05%, 
respectively). 

Furthermore, we combined the radiomics data with 
clinico-biological features. The Combined Model 
established in this study, which consisted of the SUVmax 
Threshold approach, 4 clinico-biological markers and 7 
PET/CT radiomics parameters, not only significantly 
improved the prediction efficiency for MPN compared 
to each factor alone and performed better than the 
aforementioned studies (AUCs of 0.91 and 0.94, accuracy 
of 84.69% and 86.90%, respectively), but also remarkably 
decreased the FPR values in both the training and validation 
sets (FPRs of 18.68% and 5.41%, respectively). This 
discrepancy may be related to the fact that intranodular 
heterogeneity can be evaluated more comprehensively by 
combining with the multiscale characteristics (36).

According to the above results, we constructed a 
quantitative nomogram that integrated clinico-biologico-
radiological features to provide a noninvasive and accurate 
tool for assessing the malignancy risk and guiding clinical 
decisions for patients with solid pulmonary nodule (37). 
When the probability of lung cancer was >15%, the 
nomogram could add more benefit than either the treat-
all-patients as BPN or the treat-all-patients as MPN, which 
was more valuable for the current trend toward personalized 
medicine (38).

There were some limitations of this study. Firstly, this 
retrospective study was designed in a single center, which 
could lead to the sample selection bias. It is necessary 
to design another prospective study incorporating 
multiple centers to further validate the performance and 
generalization ability of the models developed in this study. 
Secondly, we excluded patients with multiple solid nodules, 

or small nodules with faint 18F-FDG uptake to ensure 
the relationship between baselined clinico-biologico-
radiological features and single pathological subtype and 
the image data quality. The prediction model used for 
these patients will be continually explored in future work. 
Thirdly, the supervised classification approach was used to 
identify the key features for predicting the target variable in 
this study. However, the latent relations between different 
feature types did not been explored. How to integrate 
features obtained across imaging, molecular and clinical 
modalities more reasonably to improve the differentiation 
ability and clarify the potential biological characteristics of 
tumor will be an important direction for future work.

In conclusion, a machine-learning nomogram was 
developed and validated in our study, which could improve 
the diagnostic efficiency and reduce the FPR in the 
noninvasive differentiation of BPN from MPN patients.
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Table S1 Specific categories of radiomics features

Matrix Radiomics feature name Abbreviations

Gray Level Co-occurrence Matrix 
(GLCM)

Second angular moment GLCM_SAM

Contrast GLCM_Contrast

Entropy GLCM_Entropy

Homogeneity GLCM_Homogeneity

Dissimilarity GLCM_Dissimilarity

Inverse difference moment GLCM_IDM

Correlation GLCM_Correlation

Normalized (NL) GLCM Normalized Second Angular Moment NL_GLCM_SAM

Normalized Contrast NL_GLCM_Contrast

Normalized Entropy NL_GLCM_Entropy

Normalized Homogeneity NL_GLCM_Homogeneity

Normalized Dissimilarity NL_GLCM_Dissimilarity

Normalized Inverse difference moment NL_GLCM_IDM

Gray Level Run-length Matrix 
(GLRM)

Short run emphasis GLRM_SRE

Long run emphasis GLRM_LRE

Intensity variability GLRM_IV

Run-length variability GLRM_RLV

Run percentage GLRM_RP

Low-intensity run emphasis GLRM_LIRE

High-intensity run emphasis GLRM_HIRE

Low-intensity short-run emphasis GLRM_LISRE

High-intensity short-run emphasis GLRM_HISRE

Low-intensity long-run emphasis GLRM_LILRE

High-intensity long-run emphasis GLRM_HILRE

Gray Level Neighborhood Intensity-
difference Matrix (GLNIDM)

Coarseness GLNIDM_Coarseness

Contrast GLNIDM_Contrast

Busyness GLNIDM_Busyness

Complexity GLNIDM_Complexity

Strength GLNIDM_Strength

Gray Level Size Zone Matrix 
(GLSZM)

Short-zone emphasis GLSZM_SZE

Large-zone emphasis GLSZM_LZE

Intensity variability GLSZM_IV

Size-zone variability GLSZM_SZV

Zone percentage GLSZM_ZP

Low-intensity zone emphasis GLSZM_LIZE

High-intensity zone emphasis GLSZM_HIZE

Low-intensity short-zone emphasis GLSZM_LISZE

High-intensity short-zone emphasis GLSZM_HISZE

Low-intensity large-zone emphasis GLSZM_LILZE

High-intensity large-zone emphasis GLSZM_HILZE

Standardized Uptake Value (SUV) 
Statistics

SUV Variance Variance

SUV Skewness Skewness

SUV Kurtosis Kurtosis

SUV bias-corrected Skewness Skewnessbias-corrected

SUV bias-corrected Kurtosis Kurtosisbias-corrected

Entropy Entropy

SULpeak SULpeak

Surface area Surface area

Asphericity Asphericity

Asphericity 2 Asphericity 2

Asphericity 3 Asphericity 3

Surface mean SUV 1 Surface SUVmean 1

Surface total SUV 1 Surface total 1

Surface SUV entropy 1 Surface entropy 1

Surface SUV variance 1 Surface variance 1

Surface SUV SD 1 Surface SD 1

Surface SUV NSR 1 Surface NSR 1

Surface mean SUV 2 Surface SUVmean 2

Surface total SUV 2 Surface total 2

Surface SUV entropy 2 Surface entropy 2

Surface SUV variance 2 Surface variance 2

Surface SUV SD 2 Surface SD 2

Surface SUV NSR 2 Surface NSR 2

Surface mean SUV 3 Surface SUVmean 3

Surface total SUV 3 Surface total 3

Surface SUV entropy 3 Surface entropy 3

Surface SUV variance 3 Surface variance 3

Surface SUV SD 3 Surface SD 3

Surface SUV NSR 3 Surface NSR 3

Surface mean SUV 4 Surface SUVmean 4

Surface total SUV 4 Surface total 4

Surface SUV entropy 4 Surface entropy 4

Surface SUV variance 4 Surface variance 4

Surface SUV SD 4 Surface SD 4

Surface SUV NSR 4 Surface NSR 4

SUVmean_prod_asphericity SUVmean_prod_A

SUVmax_prod_asphericity SUVmax_prod_A

Entropy_prod_asphericity Entropy_prod_A

SULpeak_prod_asphericity SULpeak_prod_A

SUVmean_prod_surface_area SUVmean_prod_SA

SUVmax_prod_surface_area SUVmax_prod_SA

Entropy_prod_surface_area Entropy_prod_SA

SULpeak_prod_surface_area SULpeak_prod_SA

Texture Spectrum (TS) Max spectrum TS_Max spectrum

Texture Feature Coding (TFC) Coarseness TFC_Coarneness

Mean convergence TFC_MC

Variance TFC_Variance

Texture Feature Coding co-
occurrence matrix (TFCCM)

Second angular moment TFCCM_SAM

Contrast TFCCM_Contrast

Entropy TFCCM_Entropy

Homogeneity TFCCM_Homogeneity

Intensity TFCCM_Intensity

Inverse difference moment TFCCM_IDM

Code Entropy TFCCM_CE

Code Similarity TFCCM_CS

Neighboring Gray Level Dependence 
(NGLD)

Small number emphasis NGLD_SNE

Large number emphasis NGLD_LNE

Number nonuniformity NGLD_NNU

Second moment NGLD_SM

Entropy NGLD_Entropy
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