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Introduction

Lung adenocarcinoma (LUAD) accounts for about 40% of 
all lung cancer types, and is one of the most aggressive and 
fatal tumor types (1). Progress has been made in developing 
gene expression patterns that share some molecular 

characteristics (2,3). Some gene alterations in LUAD could 
be associated with resistance to drug therapy, and could be 
used as therapeutic target to LUAD with characterized gene 
alteration (4,5). For example, the Kirsten rat sarcoma viral 
oncogene homolog gene (KRAS) mutant, the anaplastic 
lymphoma kinase gene (ALK) positive, and the epidermal 
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growth factor receptor (EGFR) gene have been found to 
be related to distinctive clinicopathological features and 
specific immunohistochemical loss (6,7). There has been a 
lot of research in identifying subgroups of LUAD and the 
discovery the distinct biology and therapeutic vulnerabilities 
of LUAD (8). 

Some studies have found that the expression profiles of 
non-coding genes are associated with frequent lymph nodal 
metastasis and highly invasive outcomes in LUAD (9,10). 
Long non-coding RNA (lncRNA) gene expression plays an 
important role in the early stages of pre-invasive LUAD (11).  
Some studies screening and evaluation of hub genes for 
predicting distant metastasis in lung adenocarcinoma, others 
suggested that some lncRNAs involved in specific signaling 
pathways could regulate the development of LUAD (12,13). 
In addition, lncRNAs have been found to reinforce migration 
and the invasion of LUAD cells by directly binding to the 
related factors or increasing oxidative stress (14,15). It has 
also been reported that lncRNAs are expressed differently in 
LUAD and could be potentially therapeutic and prognostic 
targets (16,17). Therefore, further research needs to be 
aimed at the selection of lncRNAs with high useable targets. 
Future studies in cancer research also needs to include the 
classification of subtypes with different clinical outcomes (18), 
particularly studies on distant metastasis in LUAD.

Using the bioinformatics method, genome analysis for 
distinguishing pathological states in LUAD is a current 
developing trend (19-21). Biomedical research has led to 
demands for tools and strategies so that information can 
be obtained from genome-wide expression data. Several 
studies have used statistical methods to analyze clinical data 
to find differences and correlations between LUAD and 
characteristic genes (22-24). Furthermore, classification 
systems are built through multiple machine learning and 
computational procedures (25). Classification systems 
allow us to identify the query samples’ type/category and 
search for the separation between various disease subtypes, 
as well as distinguish pathological states in disease. In 
machine learning, multiclass classification, often known 
as multinomial classification, refers to the challenge 
of classifying events into one of three or more classes 
(classifying instances into one of two classes is called binary 
classification) (26). Many studies have focused on specifically 
alterative genes and their gene spaces in each disease 
subtype (27,28). Gene space is divided into regions that 
includes genes associated with specific pathological states 
because one or several biological processes could be affected 
and altered by a disease (26). In this theoretical scenario, 

genes that are affected by a given disease can overlap with 
the ones affected by a similar pathological state. Therefore, 
we can differentiate genes that can be altered in multiple 
pathologies with genes that are only affected by a specific 
malignancy when compared with other diseases. Cutting-
edge bioinformatic approach for the classification of distant 
metastasis in LUAD is needed; therefore, the purpose of 
the present study was to construct a multiple-class classifier 
for predicting distant metastasis in LUAD.

We implemented a method to identify RNAs in LUAD. 
Samples in the LUAD dataset were collected from The 
Cancer Genome Atlas (TCGA). We then ranked gene sets 
(or gene signatures) by their posterior probability in each 
sample with distant metastasis. Feature ranking was based 
on the parametric empirical Bayes method (29). We then 
integrated several existing machine learning and statistical 
methods to build the multiclass classification model. The 
machine learning method was implemented iteratively by 
adding genes in order of discriminant powers. Double-
nested internal cross-validation was used for the feature 
selection process and to estimate the generalization error 
of the classifier. Gene networks associated to each subtype 
were based on ranked gene sets and co-expression (30). 
Finally, the hub genes in the network were identified as key 
genes. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-4651/rc).

Methods

RNA sequencing (RNA-Seq) dataset

The RNA-Seq dataset was downloaded from TCGA (http://
tcga-data.nci.nih.gov). Of the available samples in TCGA, 
we divided 576 samples into subtypes as follows: (I) normal 
tissue; (II) LUAD patients with distant metastasis; and 
(III) LUAD patients without metastasis (non-metastasis). 
We collected the preprocessed RNA-Seq expression 
data matrices, including the RNA-Seq by expectation-
maximization, from TCGA and used log2 for further 
analysis. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Statistical methods and algorithm procedures

Gene ranking 
An expectation-maximization algorithm was used to compare 
differential expression patterns across multiple conditions 

https://atm.amegroups.com/article/view/10.21037/atm-22-4651/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-4651/rc


Annals of Translational Medicine, Vol 10, No 20 October 2022 Page 3 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(20):1129 | https://dx.doi.org/10.21037/atm-22-4651

and to provide posterior probability. This algorithm was 
used for the gene expression mixture models. The posterior 
probability was calculated for each gene-class pair with the 
One-versus-Rest (OvR) method to compare samples of  
1 class versus all the other samples. How much each gene 
differentiates a class from the other classes (1 being the 
best value, and 0 the worst) is represented by the posterior 
probability in this method. Genes were arranged in order 
of decreased posterior probability for each class to build 
the gene ranking. The value of the difference between the 
signal expression mean for each gene in the given class and 
the mean in the closest class was used to resolve ties in the 
algorithm. Then the ranking procedure assigned each gene to 
the class in which it has the best ranking Due to this process, 
even if a gene is discovered to associate with several classes 
during the expression analysis, it will only be on the ranking 
of its best class. Before building the ranking, this process 
filters out genes that do not show any significant difference 
between classes. The default threshold of the posterior 
probability was set at >0.95.

Classifier 
Support vector machine (SVM) is a multiclass classifier 
available in R package, included in the algorithm. Using the 
OvR approach, SVM enables linear kernel implementation 
that allows the classification of multiple classes, in which 
all the binary classifications are fitted and the correct class 
is built on a voting system. The classifier was implemented 
using geNetClassifier package in R 4.0.2 on the Genelibs 
platform (www.genelibs.com).

Gene selection 
Gene selection was completed through a wrapper forward 
selection scheme based on 8-fold cross-validation. Each 
cross-validation iteration started with genes in each 
class that ranked first, which trains a temporary internal 
classifier with these genes and evaluates its performance. 
At each step, an additional gene is added to those classes 
for which a “perfect prediction” is achieved; that is, the 
genes are arranged in order from the gene ranking of 
each class until no errors are reached, or the maximum 
number of genes allowed is reached. It selects the 
minimum number of genes per class, which produced the 
classifier with minimum error when finishing the cross-
validation loop. Cross-validation was repeatedly run with 
new samples many times to ensure the best stability in 
the number of selected genes. In each of these iterations, 
the minor number of genes with the smallest error is 

selected. The genes selected in each of the iterations are 
the basis for the final selection. The highest number of 
genes selected in the cross-validation iterations were used 
to select the top ranked genes for each class, and possible 
outlier numbers were excluded.

Discriminant power 
Discriminant power is a parameter calculated based on the 
Lagrange coefficients (alpha) of the support vectors for 
all the genes selected for the classification. The multiclass 
SVM algorithm produces a set of support vectors for each 
binary comparison between classes because it is an OvR 
implementation. Adding up the Lagrange coefficients of all 
the support vectors for each class gives a value per class for 
each gene. The difference between the largest value and the 
closest one is regarded as the discriminant power.

Gene network 
Cellular machinery is based on functional interactions 
between genes in cells and their corresponding protein. 
Therefore, the proteins’ connectivity network needs to be 
considered to fully understand the clinical characteristics of 
LUAD. The gene network was built by accessing the gene 
co-expression network and gene-gene interaction database, 
STRING (https://string-db.org/). Gene co-expression was 
identified by Pearson correlation, with a threshold of 0.8. 
The STRING database (version 11) includes experimental 
datasets that are used to find protein-protein association 
networks and support functional discovery in whole 
genomes. The network was visualized using Cytoscape 3.7.2 
(https://cytoscape.org/).

Results

Dataset

This study was based on the RNA-seq from TCGA and 
included 525 LUAD cases, with the aim of classifying 
the 3 subtypes of LUAD according to the metastasis of 
the patients. We first ranked genes by identification of 
differentially expressed genes for each subtype (distant 
metastasis, non-metastasis, and normal tissue; information 
for criteria used to determine subtypes are described in the 
Methods). We carried out a differential expression analysis 
using an empirical Bayes approach with an OvR strategy (31).  
The analysis enabled us to quantify the size of the gene 
signature assigned to each subtype (compared with the 
other subtypes in this study) and to compare the biological 

https://string-db.org/
https://cytoscape.org/
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or pathological conditions represented in the samples 
specifically. The set of genes considered significant for each 
of the classes was determined by a common threshold for the 
posterior probability (threshold =0.95, P=0.05). 

Compared with the adjacent normal tissue, LUAD tissue 
showed a large amount of differentially expressed genes. 
Further analysis of the 3 subtypes found that each subtype 
had a corresponding characteristic gene and ranked gene 
lists. The subtype of normal tissue was assigned 8,083 
genes, distant metastasis was assigned 329 genes, while non-
metastasis was assigned 397 genes (Figure 1).

Multiclass classification model

For performing feature selection of our classification 
model, we further selected subset of genes, which is good 
enough to do the classification of the subtypes (15). Several 
internal SVM classifiers were trained iteratively. The 
iteration started with 1 gene for each subtype with the 
highest posterior probability. Then, genes with top-ranked 
posterior probability lists were gradually added to the set of 
genes (model was trained with increasing number of genes).

For each iteration, we built the classifier using 
C-classification type and a linear SVM-kernel, and evaluated 
the model using double-nested cross-validation. In the new 
classification model, classifiers with the optimum number 
of genes were evaluated using 8-fold cross-validation. This 
iteration procedure was used until any minimal errors were 

found. The minimal number of genes that provides the best 
performance was selected as feature set, and used to train 
and build a final classifier.

For the first classifier, which aimed to classify normal 
and cancer tissues in LUAD (normal/cancer classification), 
we trained the model with all 576 samples and selected  
97 genes (Figure 2A). In the second classifier, which aimed 
to classify normal, distant metastasis, and non-metastasis 
tissues (metastasis/non-metastasis/normal classification), 
we trained the model with 256 samples and selected  
282 genes (distant metastasis, non-metastasis, normal 
tissues all have similar gene number of 94, as shown in 
Figure 2B,2C). 

To achieve the best stability in the gene selection 
procedure, gene selections and cross-validations were 
carried out 10 times with different samples. In each of 
these repeats, the minor number of genes that provided 
the smallest error was selected. Figure 2C,2D shows the 
total number of genes explored in each iteration. The total 
number of selected genes in each iteration ranged from 
around 150 to 70.

Evaluation of genes in each subtype

To search the enriched pathways in those genes that 
provided the smallest error, we analyzed the gene list 
and carried out enrichment analysis by using an over-
representation approach for each subtype. As shown in 
Figure 3, the PPAR signaling pathway was significantly 
enriched in the distant metastasis subtype, and the 
neuroactive ligand-receptor interaction pathway was top 
enriched in the non-metastasis pathway, while nitrogen 
metabolism was enriched in normal tissue. Those pathways 
indicated the specific pathway features for each subtype.

We also introduced a discriminant power that was 
calculated based on the Lagrange coefficients of all the 
support vectors in the final classification model so that we 
could calculate the contribution of each gene to determine 
the subtypes in our model. The top discriminant power in 
distant metastasis was cytochrome P450 family 4 subfamily 
F member 12 (CYP4F12), the top discriminant power in 
non-metastasis was down syndrome cell adhesion molecule 
(DSCAM), while the top ranked gene in normal tissue was 
solute carrier family 6 member 4 (SLC6A4) (Figure 4).

Among those genes, lncRNAs were found. In distant 
metastasis class, we found lncRNA family with sequence 
similarity 66 member A (FAM66A). In non-metastasis class, 
we found lncRNA PSORS1C3 (Figure 5).
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Gene co-expression networks associated with each subtype

We also identified some key genes by accessing the co-
expression networks in each subtype. Co-expression 
networks were built for searching the mechanism of our 
classification model. To search the connections in those 
genes, we analyzed the gene network of each subtype gene, 
and the results are shown in Figure 6. The connection was 
calculated based on the backbone STRING database and 
co-expression correlation. The network shows a small world 
network to analyze the relationship among proteins. The 
2 subnetworks with 3 vertices in distant metastasis were 
related to GPLD1 and CXCL6, respectively. No featured 

network cluster was found in the non-metastasis class, while 
genes in normal tissue class clustered into SLC6A4- and 
LRRC18-related subnetworks.

Discussion

Cancer deaths around the world are mainly from non-
small cell lung cancer (NSCLC), and histopathological 
assessment is involved in its diagnosis (32,33). Experienced 
pathologists mainly evaluate the stage, type, and subtype of 
lung cancer by visual inspection of histopathological slides 
(34,35). Pathology and molecular biomarkers for distant 
metastasis or other clinical cancer subtypes have recently 
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become a focus of research. Coudray et al. have constructed 
deep-learning models to classify and predict mutation from 
NSCLC by using a deep convolutional neural network 
(CNN) (36). Wei et al. also used a CNN to classify NSCLC 
histopathology types and transcriptomic subtypes (37), 
and Le Page et al. used CNN to classify NSCLC based on 
diagnostic histopathology HES images (38). Smedley et al. 
used deep neural networks and interpretability methods 
to identify gene expression patterns that predict radiomic 
features and histology in NSCLC (39).

Several genes have been linked to the development of 

cancer. In this study, for example, CYP4F12 was discovered 
to be the top gene in the ranking of distant metastasis cases. 
Similarly, a recent study found that increased CYP4F12 
expression in hepatocellular carcinoma is inversely 
connected with decreased expression of cell cycle-associated 
genes (40). Based on data from DMET Console software®, 
CYP4F12 is found to associate with colorectal cancer (41).

It is reported that DSCAM plays key roles in regulating 
estrogen receptor, mediating tumor progression and 
affecting tamoxifen resistance. Meantime, breast cancer 
patients with high expression of DSCAM can obtain better 

Figure 3 Bar plot of enriched terms in distant metastasis (A), non-metastasis (B), and normal tissues (C). PPAR, peroxisome proliferators-
activated receptor; cAMP, cyclic adenosine monophosphate.
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outcome of treatment, suggesting that DSCAM may be a 
prognosis biomarker of breast cancer (42,43). It has reported 
that netrin-1 in primary cortical neurons stimulates the 
interaction between DSCAM and uncoordinated-5C (44). 
According to a study, DSCAM regulates the miR-577/
HMGB1 axis in the pathogenesis of NSCLC, providing 
a promising therapeutic target for NSCLC (45). A recent 
publication reported that the expression of DSCAM 
is related to neuronal self-avoidance, which promotes 
oligodendrocyte differentiation via the neuroactive ligand-
receptor interaction signaling pathway (46).

Our findings indicated that SLC6A4 is associated 
with normal tissues. SLC6A4 as a protein coding gene 
participates in the action of serotonin and recycles via the 
encoded protein. The 5-hydroxytryptamine transporter 
(5-HTT) protein encoded by SLC6A4 has also been 
implicated in inflammation, and SLC6A4 variations could 
be associated with poor survival in colorectal cancer 
patients (47). Pathways associated with SLC6A4 include 
monoamine transport, the selective serotonin reuptake 
inhibitor pathway, and pharmacodynamics. Warchal et al.  
have demonstrated the selective activity of serotonin 
receptor modulators upon growth and survival of breast 
cancer cells, which suggested SLC6A4 for the diagnosis 
and treatment in breast cancer patients (48). Several studies 
have demonstrated that gene polymorphisms could play 
vital roles in the occurrence of lung cancer. SLC6A4 gene 
polymorphisms and 5-HTT are possibly associated with 
the occurrence of pain triggered by lung cancer and could 
influence the chemotherapeutic sensitivity of lung cancer 
cells, which suggests a new potential therapeutic target for 
lung cancer cells (49-51). SLC6A4 directly regulated the 

following 8 genes in our study: SYN2, ST8SIA6, SGCG, 
CNTN6, RS1, CA4, LGI3, and GRIA1. LGI3 functioned as 
a multifunctional cytokine and could increase the expression 
of inflammatory proteins, including tumor necrosis factor-α 
in macrophages (52). SLC6A4 has been shown to mediate 
the roles of the competitive endogenous RNA network. 
This RNA network has demonstrated that SLC6A4 is 
associated with tumor growth by activating the downstream 
complement and coagulation cascades pathway (53,54).

In addition, lncRNAs play a key role in cellular processes, 
and new evidence presents an opportunity for large-scale 
identification of lncRNA genes critical to lung cancer 
progression (10,55). LncRNAs have multiple biological 
roles, such as regulating gene expression and interacting 
with epigenetic factors. Recent studies have demonstrated 
the essential role of some lncRNAs in different pathologies, 
including cancer, and indicated that lncRNAs are valuable 
clinical biomarkers (56-58). Therefore, we selected the 
lncRNA genes for our candidates (59).

Some consistencies were observed when we used the 
algorithm of multiclass classifier (26) to train on a dataset of 
LUAD 576 samples. We found that lncRNA FAM66A and 
lncRNA PSORS1C3 were associated with tumor metastasis 
in LUAD. There is increasing evidence supporting that 
FAM66A can predict early wake-up-related gene expression 
in cancer cells (60,61). Some studies have demonstrated 
that the vitamin D receptor signaling pathway participates 
in various cancers and is regulated by the overexpression 
of FAM66A (62). LncRNA PSORS1C3 is located upstream 
of the Oct4 gene, and Oct4 expression can be regulated 
by PSORS1C3, which can lead to cell differentiation (63). 
Compared with the normal samples, lncRNA PSORS1C3 
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in LUAD had high sensitivity and specificity, indicating its 
value as a diagnostic biomarker (64).

The lncRNA FAM66A was discovered to be linked to 
ovarian carcinosarcoma. However, Feng et al. stated in 

their study that FAM66A is a gene signature that can be 
used to predict prognosis in small cell lung cancer (SCLC). 
Moreover, several investigations have discovered that 
PSORS1C3 can have a role in the advancement of benign 
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Figure 6 Gene network in LUAD distant metastasis, non-metastasis, and normal tissue subtypes. Line between 2 nodes indicates the type 
of interaction evidence. Colored nodes represent the gene in different subtypes. Purple line represents which database it came from, and 
the red line represents experimentally co-expression. Green node represents non-metastasis, purple node represents normal tissue, and light 
yellow node represents distant metastasis. LUAD, lung adenocarcinoma.
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lung disease. In our investigation, we discovered for the first 
time that the lncRNAs FAM66A and PSORS1C3 have a 
role in distant metastasis in LUAD (65,66).

There are clear limitations in this study. First, the sample 
size from the TCGA database was relatively small. Given 
the sample size and the exploratory nature of the study, as 
well as the available resources, it is impossible to effectively 
validate the results. Further clinical studies are needed, and 
an LUAD cell model should be validated in the observation 
experiment. Second, cytometric bead-array assay and 
additional histological descriptors were not available (67). 
Future research should include additional experiments 
to validate the conclusions. The findings of the present 
provide a unique insight into the LUAD transcriptional 
changes that occur after distant metastasis. Moreover, 
our results described transcription differences of lncRNA 
FAM66A and PSORS1C3 between normal distant metastasis 
and non-metastasis patients, which need to be validated in 
cell models. However, there was considerable variation in 
that sampling time that warrants further investigation.
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