Article Abstract

Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition

Authors: Paul A. J. Beckers, Jan F. Gielis, Paul E. Van Schil, Dirk Adriaensen


Dipeptidyl peptidase 4 (DPP4) is a cell surface protease that has been reported to play a role in glucose homeostasis, cancer, HIV, autoimmunity, immunology and inflammation. A role for DPP4 in ischemia-reperfusion injury (IRI) in the heart has been established. Dipeptidyl peptidase 4 inhibition (DPP4i) appeared to decrease infarct size, improves cardiac function and promotes myocardial regeneration. Lung ischemia reperfusion injury is caused by a complex mechanism in which macrophages and neutrophils play an important role. Generation of reactive oxygen species (ROS), uncoupling of nitric oxide synthase (NOS), activation of nuclear factor-κB (NF- κB), activation of nicotinamide adenine dinucleotide phosphate metabolism, and generation of pro-inflammatory cytokines lead to acute lung injury (ALI). In this review we present the current knowledge on DPP4 as a target to treat IRI in the lung. We also provide evidence of the roles of the DPP4 substrates glucagon-like peptide 1 (GLP-1), vasoactive intestinal peptide (VIP) and stromal cell-derived factor-1α (SDF-1α) in protection against oxidative stress through activation of the mitogen-activated protein kinase (MAPK) 1/2 and phosphatidylinositol 3'-kinase (PI3K)/ Akt signal transduction pathways.