Article Abstract

P53 mutations and cancer: a tight linkage

Authors: Francesco Perri, Salvatore Pisconti, Giuseppina Della Vittoria Scarpati


P53 is often mutated in solid tumors, in fact, somatic changes involving the gene encoding for p53 (TP53) have been discovered in more than 50% of human malignancies and several data confirmed that p53 mutations represent an early event in cancerogenesis. Main p53 functions consist in cell cycle arrest, DNA repair, senescence and apoptosis induction in response to mutagenic stimuli, and, to exert those functions, p53 acts as transcriptional factor. Recent data have highlighted another very important role of p53, consisting in regulate cell metabolism and cell response to oxidative stress. Majority of tumor suppressor genes, such as adenomatous polyposis coli (APC), retinoblastoma-associated protein (RB) and Von-Hippel-Lindau (VHL) are inactivated by deletion or early truncation mutations in tumors, resulting in the decreased or loss of expression of their proteins. Differently, most p53 mutations in human cancer are missense mutations, which result in the production of full-length mutant p53 proteins. It has been reported that mutant p53 proteins and wild type p53 proteins often regulate same cellular biological processes with opposite effects. So, mutant p53 has been reported to supply the cancer cells of glucose and nutrients, and, to avoid reactive oxygen species (ROS) mediated damage during oxidative stress. These last features are able to render tumor cells resistant to ionizing radiations and chemotherapy. A future therapeutic approach in tumors bearing p53 mutations may be to deplete cancer cells of their energy reserves and antioxidants.