Article Abstract

Variations in mRNA and protein levels of Ikaros family members in pediatric T cell acute lymphoblastic leukemia

Authors: Julie L. Mitchell, Thomas M. Yankee


Background: Pediatric T cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease in which the cells share phenotypic characteristics with normal human thymocytes. The Ikaros family of transcription factors includes five members that are required for normal T cell development and are implicated in leukemogenesis. The goal of this work was to correlate the pattern of expression of Ikaros family members with the phenotype of the T-ALL cells.
Methods: We obtained twenty-four samples from pediatric T-ALL patients and used multi-parameter flow cytometry to characterize each sample, comparing the phenotype of the leukemic cells with normal human thymocytes. Then, we defined the expression levels of each Ikaros family member to determine whether the mRNA levels or splicing or protein levels were similar to the normal patterns seen during human T cell development.
Results: Multi-parameter analysis of the phenotype of T-ALL cells revealed that each patient’s cells were unique and could not be readily correlated with stages of T cell development. Similarly, the pattern of Ikaros expression varied among patients. In most patients, Ikaros mRNA was the dominant family member expressed, but some patients’ cells contained mostly Helios, Aiolos, or Eos mRNA. Despite that most patients had elevated mRNA levels of Ikaros family members and unique patterns of mRNA splicing, most patients had significantly reduced protein levels of Ikaros and Aiolos.
Conclusions: Our analysis of the cell phenotype and Ikaros expression levels in T-ALL cells revealed the extent of heterogeneity among patients. While it is rarely possible to trace leukemic cells to their developmental origin, we found distinct patterns of Ikaros family mRNA levels in groups of patients. Further, mRNA and protein levels of Ikaros and Aiolos did not correlate, indicating that mRNA and protein levels are regulated via distinct mechanisms.