Communication in locked-in state after brainstem stroke: a brain-computer-interface approach

Ujwal Chaudhary¹, Niels Birbaumer¹²

¹Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; ²Ospedale San Camillo, IRCCS, Venezia, Italy

Correspondence to: Dr. Ujwal Chaudhary. Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-University of Tübingen, Silcherstraße 5, 72076 Tübingen, Germany. Email: uchau001@fiu.edu.

Submitted Feb 03, 2015. Accepted for publication Feb 06, 2015.

doi: 10.3978/j.issn.2305-5839.2015.02.27
View this article at: http://dx.doi.org/10.3978/j.issn.2305-5839.2015.02.27

In a recent study by Sellers et al. (1) a patient in locked-in state after brainstem stroke was able to successfully communicate via electroencephalography (EEG) based brain computer interface (BCI) employing a P300 speller paradigm.

BCI uses the brain signal, which can either be the electrical signal (electroencephalography-EEG) (2) or a change in hemodynamic activity [functional magnetic resonance imaging-fMRI (3,4); near infrared spectroscopy-NIRS (5)], to enable patients lacking control of their muscles in communication and controlling external mechanical devices. BCIs using EEG exist since 1970’s (6) and several researchers have developed BCI using different features of EEG, namely slow cortical potential (SCP) based BCI (7,8), sensorimotor rhythm (SMR) based BCI (9,10) and P300 based BCI (11,12). The scientific literature is full of BCI studies done on healthy human participants where the participants’ moved an object on the computer screen (9), wrote a sentence (8) and moved a robotic arm (13) among several other tasks. Limited studies have been performed on patient populations where the BCI can improve lost functions of individuals with disabilities. In that light it is very exciting whenever a BCI study is performed on an individual who is in dire need of such a technology. In our laboratory SCP-BCI (7,8,14), SMR-BCI (10,14) and P300 BCI (14) have been used extensively since 1999 to help ALS patients in locked-in state in communication. To date very limited research has been done on the application of BCI for communication in patients in locked-in state (LIS) after brainstem stroke. In the scientific literature there are two different studies describing the application of BCI in patient in LIS after brainstem stroke (15,16). In one of the study the patient in LIS after brainstem stroke was trained to control her SCP but the study could not be carried on further as the patient regained some muscular control to some extent (15). In the other study P300 based BCI was used to train a patient in LIS after brainstem stroke, to move a ball on the screen towards a specified target (16). To date no study has been published prior to Sellers et al. (1) were BCI was used for communication in a patient in LIS after brainstem stroke.

In the recent study (1) a P300 speller based BCI was used for communication in a 68 year old male who suffered a multifocal acute ischemic infarction and had little control over eye blinking. If the patients have stable control over their eye blinking or if they can fixate their gaze, eye assistive technology can be used for communication. In the present study the participant attempted unsuccessfully to communicate with a MyTobii eye-tracking device for 2 months. The participant tried to move his eyes up to answer the “yes” and down to answer the “no” questions, but the response was variable. This is generally the case in ALS patients in transition from LIS to completely locked-in state (CLIS), wherein the patients ultimately lose eye control (17). Since brainstem stroke is not a progressive neurodegenerative disorder the patient may never suffer the transition from LIS to CLIS. Hence a visual BCI called P300 speller can be used successfully for communication in these kinds of patients because vision is intact, which is often not the case in ALS locked in patients. The P300 speller is based on an oddball paradigm where an event related potential (ERP) is elicited over the parietal cortex, 300 ms post the attendance of rare stimuli by the participant. In the classic P300-BCI, first introduced by Farwell and Donchin,
participants are presented with a 6×6 matrix where each of the 36 cells contains a letter or a symbol (Farwell and Donchin, 1988) (11). This design becomes an oddball paradigm by first intensifying each row and column for 100 ms in random order and then, by instructing participants to attend to only one (the desired) of the 36 cells. Thus, in one trial of 12 flashes (6 rows and 6 columns), the target cell will flash only twice constituting a rare event, compared to the 10 flashes of all other rows and columns and will therefore elicit a P300 (Sellers and Donchin, 2006) (12). The same oddball paradigm can be used to design different kind of speller consisting either all the alphabets and numbers, as in classical speller design, or certain known words like “yes”, “no”, etc. In the reported study Sellers et al. (1) employed seven different types of spellers, based on oddball paradigm described above, to ascertain the efficacy and speed of communication in patient in LIS after brainstem stroke.

In summary in the reported study (1) Sellers et al. demonstrated successful communication via a noninvasive BCI in a patient in LIS after brainstem stroke. The BCI provided a level of autonomy and a sense of independence to the participant by completely bypassing his otherwise non-functional muscular control. Thus, these results strengthen the long standing assertions in the BCI field on the successful BCI use of a visual, noninvasive P300 speller in a patient in LIS after brainstem stroke thereby raising hope that the BCI can be useful to those with LIS in patients with brainstem stroke too after the successful demonstration of brain- communication in a completely locked-in patient with amyotrophic lateral sclerosis (ALS; Gallegos-Ayala et al. 2014) (18). This study (18) and the
Sellers et al. (1) study underscore the tremendous potential of non-invasive BCIs to cope with the unbearable condition of complete isolation from the social environment. More studies like this is needed to reliably establish the applicability of BCI for communication in LIS and particularly in CLIS (completely locked in patients without eye-control) patients.

Acknowledgements

Funding: Supported by the Deutsche Forschungsgemeinschaft (DFG, Koselleck), The Eva and Horst Köhler Foundation, The Baden-Württemberg Stiftung and the Stiftung Volkswagenwerk (VW).

Disclosure: The authors declare no conflict of interest.

References
