Theme Section: Pneumothorax

Heimlich valve and pneumothorax

Apostolos Gogakos¹, Nikolaos Barbetakis¹, George Lazaridis², Antonis Papaiwannou³, Anastasia Karavergou³, Sofia Lampaki¹, Sofia Baka⁴, Ioannis Mpoukvinas⁵, Vasilis Karavasilis³, Ioannis Kioumis⁵, Georgia Pitsiou², Nikolaos Katsikogiannis⁶, Kosmas Tsakiridis⁷, Aggeliki Rapti⁸, Georgia Trakada⁹, Athanasios Zissimopoulos¹⁰, Katerina Tsirgogianni², Konstantinos Zarogoulidis², Paul Zarogoulidis²

¹Thoracic Surgery Department, Theagenio Cancer Hospital, Thessaloniki, Greece; ²Department of Medical Oncology, Aristotle University School of Medicine, Thessaloniki, Greece; ³Pulmonary-Oncology, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; ⁴Oncology Department, “Interbalkan” European Medical Center, Thessaloniki, Greece; ⁵Oncology Department, “BioMedicine” Private Clinic, Thessaloniki, Greece; ⁶Surgery Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece; ⁷Thoracic Surgery Department, “Saint Luke” Private Hospital, Thessaloniki, Greece; ⁸2nd Pulmonary Clinic of “Sotiria” Hospital, Athens, Greece; ⁹Pulmonary Laboratory of Alexandra Hospital, University of Athens, Athens, Greece; ¹⁰Nuclear Medicine Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece

Correspondence to: Paul Zarogoulidis, MD, PhD. Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece. Email: pzarog@hotmail.com.

Abstract: The Heimlich valve is a small one-way valve used for chest drainage that empties into a flexible collection device and prevents return of gases or fluids into the pleural space. The Heimlich valve is less than 13 cm (5 inches) long and facilitates patient ambulation. Currently there are several systems in the market. It can be used in many patients instead of a traditional water seal drainage system. The Heimlich chest drainage valve was developed so that the process of draining the pleural cavity could be accomplished in a safe, relatively simple, and efficient manner. This valve system has replaced the cumbersome underwater drainage bottle system. Moreover; the Heimlich valve system connects to chest tubing and allows fluid and air to pass in one direction only. This system functions in any position, and it does not ever need to be clamped, a regulated suction can be attached to it if necessary. The valve drains into a plastic bag that can be held at any level, allowing the patient undergoing chest drainage to be ambulatory simply by carrying the bag. In the current mini review we will present the Heimlich valve system and method of insertion.

Keywords: Pneumothorax; Heimlich valve; VATS

Submitted Jan 14, 2015. Accepted for publication Jan 28, 2015.
doi: 10.3978/j.issn.2305-5839.2015.03.25
View this article at: http://dx.doi.org/10.3978/j.issn.2305-5839.2015.03.25

First introduced in 1965, the Heimlich flutter valve is a one-way portable device that was designed for use as a drainage procedure in order to avoid the need for intrapleural suction after thoracotomy (1). The inventor of the valve was Henry Heimlich, an American thoracic surgeon who also first described the Heimlich maneuver. Soon, it became very popular in the outpatient management of patients with prolonged air-leakage from various causes (2), and has also been used in emergency treatment of pneumothorax in battle fronts (3).

As already mentioned, it is a one-way valve, thus it prevents the evacuated air from travelling back to the thoracic cavity along the attached chest tube. The valve is made of a plastic case with a rubber sleeve inside. It has two nozzles, the inlet nozzle which allows the air to pass in the valve through the chest drainage tube attached to it, and the outlet nozzle which allows the air to pass to the environment or a collecting device during expiration. The rubber sleeve is attached to the inlet nozzle in such a manner that, during inhalation, it closes off, thus preventing air to be sucked in, through the valve, to the pleural cavity (Figure 1). The free end of the rubber sleeve is compressed,
so that the two sides remain in contact with each other, in order to achieve this function. When the air passes through the inlet nozzle in the rubber sleeve, the latter one opens allowing the air to escape during expiration. But during inhalation the free end remains closed, due its compression, preventing the air to be sucked back in the thoracic cavity. This way pneumothorax is safely evacuated. By the same mechanism, the Heimlich flutter valve may also facilitate the evacuation of fluid. The inlet nozzle is securely attached to one end of a chest drainage tube, while the other one lies within the patient's pleural cavity. The attachment may be secured with pieces of adhesive tape. The valve is also attached to the patient's chest wall, but care must be taken that the distal end, the outlet nozzle, remains unimpeded (1).

When air passes through the valve, a distinct “flutter” sound can be heard, ensuring that the device is working properly. Absence of the sound accompanied with no movement of the rubber sleeve during placement means that no air passes through the valve, which indicates either the resolution of pneumothorax or possible clogging of the chest tube. Auscultation of the chest or a chest X-ray might be helpful.

The Heimlich flutter valve has some significant advantages compared to under water seal drainage, the most important being its small size and its portability, allowing this way the immediate ambulation of the patient, a very important factor in the successful treatment of pneumothorax (1). It can function in any position and doesn’t need clamping (4). It has a small production cost, thus allowing it to be a disposable device, with no need of re-sterilization. Its function is easily understood both by the medical staff and the patient, due to the distinct sound and movement of the rubber sleeve. If there is need for fluid evacuation, the distal end may be attached to a collecting device, e.g., a bag or Bulau device. Also negative pressure or under water suction may be applied to the outlet nozzle if needed (1). The size of the drainage chest tubes that it can be attached to, may vary (small or large calibre tubes) (5). It may be used over a long-term period in cases that air-leakage is persistent and surgical treatment is excluded, allowing the outpatient management of these patients. Full expansion of the lung is indicated by absence of the “flutter” sound and the immobilization of the rubber tube of the valve during breathing and coughing. After full expansion is diagnosed and confirmed, the system (chest tube drainage and valve) may be removed from the patient.

Small recurrences of pneumothorax have been described in the literature but they are usually insignificant (1).

Probably the most important thing about the Heimlich flutter valve is that it only functions properly under a specific orientation. This means that if it’s connected wrongly at the chest tube drainage it will not function at all. Furthermore, the patient undergoes great risk of developing tension pneumothorax, a very serious complication that may be fatal. If the outlet nozzle is attached to the tube, the rubber sleeve can’t open (due to its compression), the air can’t be evacuated and is accumulated in the pleural space, sometimes leading in tension pneumothorax. Case reports have been published describing this complication (6-8).

For this reason, all the valves have distinct markings on the casing indicating clearly the inlet and outlet nozzles and the proper orientation of the valve during placement, so that reversal of the valve may be avoided.

Care must also be taken during attachment of bags or
other collecting devices in the outlet nozzle, in order to
not block the nozzle and prevent the evacuation of air (9).
During outpatient management period, frequent inspection
of the valve from the medical staff is mandatory.

Another major complication of the Heimlich flutter valve
is the increased risk of developing chest empyema (10,11).
This occurs through infection of the pleural space, mainly
because of the prolonged remaining time of the chest tube
drainage and the valve. The placement of the valve needs
to be performed under sterile conditions (the valve itself is
pre-sterilized) and all the attachments need to be secured
and air-tight, in order to avoid further infection. Accidental
dislodgements of the valve have been reported in the
literature (2). In such case, re-attachment of the valve may
be associated with increased risk of infection.

There isn’t any reported death in the literature,
even in cases of accidental reversal of the valve and the
development of tension pneumothorax. This proves that, if
used correctly, and if the patient and the medical staff are
properly instructed, the Heimlich flutter valve is a safe and
efficient procedure for treating pneumothorax.

There is not any specific contraindication for the use
of a Heimlich flutter valve in the literature. Relevant
contraindications may be large hydro-pneumothorax with
large volumes of fluid in the pleural space or thick secretions
and blood which may cause occlusion of the rubber tube
due to adhesions or clots, preventing the outflow of air (1,8).
If such a case occurs, replacement of the valve or under
water seal drainage is mandatory.

Studies have proved the safe use, with good results, of the
valve in cases of primary pneumothorax treatment (1,12-30)
and in many different cases of secondary pneumothorax in
patients with Pneumocystis carinii, AIDS, cystic fibrosis,
lung metastases etc. (2,10,31-45).

The technological advances nowadays have allowed
the construction of small, portable under water seal
drainage devices, which also facilitate the immediate
ambulation of the patient after placement and have lesser
complications than the Heimlich flutter valve in cases where
pneumothorax is accompanied by large volumes of fluid or
blood (42,46-58). This has led to limited use of the valve
over the recent years, but still holds a place in the outpatient
management of patients with prolonged air-leakage, for
whom further surgical treatment is not an option.

Acknowledgements

Disclosure: The authors declare no conflict of interest.

References

1. Bernstein A, Waqaruddin M, Shah M. Management of
spontaneous pneumothorax using a Heimlich flutter valve.
2. Edenborough FP, Hussain I, Stableforth DE. Use of a
Heimlich flutter valve for pneumothorax in cystic fibrosis.
3. Fox B. Use of the Heimlich flutter valve for chest drainage
treatment of spontaneous pneumothorax using an
improved pocket sized Heimlich valve. Med J Malaysia
6. Mainini SE, Johnson FE. Tension pneumothorax complicating
7. Spouge AR, Thomas HA. Tension pneumothorax after
reversal of a Heimlich valve. AJR Am J Roentgenol
8. Crocker HL, Ruffin RE. Patient-induced complications of
9. Marian PJ, Sharma S. Iatrogenic tension pneumothorax
complicating outpatient Heimlich valve chest drainage. J
10. Van Hengel P, Van de Bergh JH. Heimlich valve treatment
and outpatient management of bilateral metastatic
pleural effusions and pneumothorax with catheters placed
percutaneously under imaging guidance. AJR Am J
12. Sargent EN, Turner AF. Emergency treatment of
pneumothorax. A simple catheter technique for use in the
radiology department. Am J Roentgenol Radium Ther
thoracostomy; chest tube implantation and follow up. J


