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Background: Although the prognosis of patients with bladder cancer (BC) has improved significantly 
with the use of multimodal therapy, reliable prognostic biomarkers are still urgently needed due to the 
heterogeneity of tumors. Our aim was to develop an individualized immune-related gene pair (IRGP) 
signature that could precisely predict prognosis in BC patients. 
Methods: Gene expression profiles and corresponding clinical information were collected from eight 
microarray data sets and one RNA-Seq data set. 
Results: Among 1,811 immune genes, a 30-IRGP signature consisting of 52 unique genes was generated 
in the training cohort, which significantly stratified patients into low- and high-risk groups in terms of 
overall survival. In the testing and validation cohorts, the IRGP signature was also associated with patient 
prognosis in the univariate and multivariate Cox regression analyses. Several biological processes, including 
the immune response, chemotaxis, and the inflammatory response, were enriched among genes in the IRGP 
signature. When the signature was integrated with the TNM stage, an IRGP nomogram was developed and 
showed improved prognostic accuracy relative to the IRGP signature alone. 
Conclusions: In short, we identified a robust IRGP signature for estimating overall survival in BC patients 
that could also be used as a promising biomarker for identifying high-risk patients for individualized therapy.
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Introduction

Bladder cancer (BC) is the 9th most common cancer in the 
United States, with 17,240 estimated new deaths per year (1). 
In the past 30 years, the prognosis of BC patients has been 
poor because the diagnosis is often late, and treatment has 
barely progressed (2). Moreover, patients with the same 
clinical or pathological stage experience different clinical 
outcomes, even if patients receive very similar treatments. 
The genetic heterogeneity of patients contributes the most 
to their inherent clinical diversity (3). Thus, in the era of 
precision medicine, molecular biomarkers are urgently 

needed to estimate prognosis in BC patients and guide 
precise treatment (4,5).

In the genomics era, molecular biomarkers that can 
reliably predict patient survival would have important value 
in the management of several cancers, including BC (6-9). 
Numerous studies have generated multiple gene expression-
based prognostic signatures for patient survival stratification 
in BC (9,10). However, due to problems such as excessive 
fitting in the training set and a lack of sufficient validation, 
none of them have been incorporated into routine clinical 
practice. Currently, public, and large-scale gene expression 

1380

Original Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-1102


Shi et al. IRGPs signature for prognosis prediction in BC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(21):1380 | http://dx.doi.org/10.21037/atm-20-1102

Page 2 of 15

data sets are easy to obtain and can provide an opportunity 
to identify potentially reliable biomarkers for BC patients. 
However, the diversity of data also represents a daunting 
challenge. Gene expression levels sequenced by traditional 
approaches require suitable normalization, which is difficult 
considering biological heterogeneity and technical biases 
across microarray and sequencing platforms. Instead, 
researchers have developed new methods to eliminate the 
limitations to data processing, such as normalization and 
scaling based on the relative ranking of gene expression 
levels, and produced robust results in various studies.

Some components of the immune system have proven to 
be key factors in the onset and progression of cancer (11-13). 
The immune checkpoints strictly control immune function 
to maintain self-tolerance and minimize tissue destruction 
when an immune response occurs in the surrounding tissues 
(13-15). Several immune checkpoints have been identified 
and developed into therapeutic targets for numerous 
cancers. Recent immunotherapies for immune checkpoints, 
such as programmed death-1 or programmed death ligand 1, 
have shown a remarkable, durable response in BC (15-18). 
Recent emerging evidence has demonstrated that multiple 
immune gene-based prognostic signatures are potential 
biomarkers that can estimate overall survival in patients with 
colorectal, ovarian, and lung cancers (13,19,20). Thus, the 
immune system-associated gene-based prognostic signature 
is promising for use in BC. Regarding their prognostic 

potential in BC, the molecular characteristics of tumor 
immune interactions remain to be extensively studied.

In our study, to eliminate the requirement for data 
normalization, using the gene pair method to rank the 
gene expression levels of microarray and RNA-Seq data 
sets, we developed and validated a robust and personalized 
immune prognostic signature. Moreover, to better leverage 
the complementary role of clinical and molecular markers, 
a composite prognostic nomogram was constructed 
by combining the individualized immune-related gene 
pair (IRGP) signature with the TNM stage, which thus 
improved the prognostic accuracy for patients with BC.

Methods

Public datasets and study design

Our study analyzed gene expression in bladder tumor tissue 
samples obtained from public datasets (Figure 1, Table 1). In 
total, nine studies were selected, including eight microarray 
datasets and one RNA-Seq data set. The microarray data 
and corresponding clinical information were downloaded 
from the Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/) and normalized with the robust 
multiarray average (RMA) method, and bias effects across 
batches were corrected using the Combat method (21). The 
Cancer Genome Atlas (TCGA) bladder Carcinoma RNA-
Seq data set and clinical information were downloaded from 
the Cancer Genomics Browser (https://genome-cancer.ucsc.
edu/) in March 2019. We excluded patients who had received 
neoadjuvant therapy or other pharmaceutical treatments that 
may affect the immune system response. In addition, only 
patients with available and valid survival information were 
enrolled in all studies. In total, 1,013 patients were included 
in our study (Table 1). All the microarray datasets were 
merged as a meta-data set, which was then randomly divided 
into training and testing datasets according to an approximate 
1:1 ratio. No further normalization methods were needed for 
merging different datasets. The TCGA data set was used as 
a validation cohort to evaluate the robustness of the IRGP 
model. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Identification of BC-specific IRGPs and construction of the 
prognostic immune signature

We focused on immune-related genes (IRGs) to construct a 
prognostic immune gene signature. A total of 1,811 unique 

Figure 1 Identification of the prognostic immune-related gene 
signature for BC. Study flow of the prognostic analysis of immune 
genes, signature construction and validation. IRGPs, immune-
related gene pairs; TCGA, The Cancer Genome Atlas.
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IRGs were downloaded from the ImmPort database (22) 
(https://immport.niaid.nih.gov) accessed on March 30th, 
2019. These IRGs can be classified into 17 categories, 
including the B cell antigen receptor signaling pathway, 
the T cell receptor signaling pathway, natural killer cell 
cytotoxicity, antigen processing and presentation pathways, 
and cytokines or cytokine receptors. Only the IRGs 
measured by all platforms in any data set were selected. 
Pairwise comparison was conducted for the gene expression 
level in a specific sample to compute a score for each IRGP. 
If IRG 1 was less than IRG 2, the output score was 1, 
while the IRGP score was 0 for the others. After removing 
IRGPs with constant values (0 or 1, which indicates almost 
no changes among patients) in any individual data set, 
the remaining IRGPs were selected as initial candidate 
IRGPs for the prognostic analysis. The development 
of a prognostic immune signature was conducted as 
described previously (13,19). From the initial candidate 
IRGPs, an IRGP signature was generated using least 
absolute shrinkage and selection operator (LASSO) Cox 
proportional hazards regression, and 30 immune gene pairs 
were used to construct the final prognostic immune model. 
We determined the optimal cutoff value of the IRGP 
signature to stratify patients into low- and high-risk groups 
using a receiver operating characteristic (ROC) curve at  
5 years in the training cohort for overall survival. A nearest 
neighbor estimation method was used to estimate the time-
dependent ROC curve. The shortest distance in the ROC 
curve was used to define the optimal cutoff value. We used 
CIBERSORT to analyze the infiltration of immune cells in 
different risk groups.

Validation of the IRGP signature

The prognostic value of the IRGP signature was assessed in 
the training, testing and independent validation cohorts by 
the log-rank test. Moreover, we then combined the IRGP 
signature with the TNM stage in the multivariate analysis. 
The TNM stage was treated as a continuous variable. Stage 
I was replaced with 1; stage II was replaced with 2; stage 
III was replaced with 3; and stage IV was replaced with 4. 
Patients with T4a and Nx were considered 3.5. When no 
pathological TNM stage was available, we used the clinical 
TNM stage instead. The prognostic performance of the 
IRGP signature was evaluated using the concordance index 
(C-index), calibration, and decision curve analysis.

Construction and validation of an IRGP nomogram

We integrated the TNM stage and the IRGP signature 
risk score to develop an IRGP nomogram using Cox 
proportional hazards regression in the training cohort. The 
prognostic efficiency of the IRGP nomogram was compared 
with the C-index of the IRGP signature and depicted by the 
restricted mean survival (RMS) curve, which indicates the 
life expectancy of BC patients with different risk scores at 
10 years.

Functional enrichment analysis

GO annota t ion  (ht tp : / /www.  geneonto logy.org) 
and KEGG signaling pathway were set up using the 
Database for Annotation, Visualization, and Integrated 
Discovery  (DAVID)  (ht tps : / /dav id .nc i fcr f .gov/ ) 

Table 1 Details about the GEO and TCGA data sets used in our study

Datasets Name/accession No. Platform No. of BC

Training/testing dataset GSE13507 Illumina human-6 v2.0 expression beadchip 165

GSE48075 Illumina HumanHT-12 V3.0 expression beadchip 73

GSE48276 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 57

GSE69795 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 38

GSE70691 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 27

GSE19915 Swegene Human 27K RAP UniGene188 array 73

GSE19915 SWEGENE H_v3.0.1 35K 87

GSE31684 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 90

Validation dataset TCGA bladder carcinoma Illumina HiSeq 403

GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6102
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bioinformatics tool (23,24).

Statistical analysis

In this study, we performed all statistical analyses using 
R software (version 3.5.1; https://www.Rproject.org/). 
Continuous variables were compared using Student’s 
t-tests or Wilcoxon rank-sum tests. Survival analyses were 
performed using the Kaplan-Meier method and compared 
using a log-rank test with the ‘survival’ package. Univariate 
and multivariate Cox regression analyses were conducted 
for the IRGP signature and the TNM stage. Time-
dependent ROC curve analysis, LASSO Cox regression 
analysis with 10-fold cross-validation, and nomogram and 
decision curve analyses were estimated using R packages 
(survivalROC, glmnet, rms, and DecisionCurve). The 
C-index was calculated with the R package survcomp and 
compared with the R package compareC. Unless otherwise 
stated, statistical significance was set as a P value <0.05.

Results

Discovery of prognostic IRGPs and construction of the 
IRGP signature

In total, 1,013 patients with BC were enrolled in our study, 
and the detailed study design is depicted in Figure 1. To 
enrich the sample number for model development, we 
combined all the datasets from the GEO, which were 
obtained from the public website. A total of 610 BC patients 
with available survival information derived from the GEO 
were included and then randomly divided into a training 

cohort (n=292) and a testing cohort (n=318) (Table 1). 
Among the 1,811 immune-related genes (IRGs) obtained 
from the ImmPort database, 561 IRGs were detected in all 
platforms, and 157,080 immune-related gene pairs (IRGPs) 
were generated. After removing IRGPs with relatively 
small variation (median absolute deviation =0) in any data 
set, 44,385 candidate IRGPs were left to further analyze 
the association between each IRGP and overall survival in 
BC patients. The clinical characteristics of patients in the 
training and testing cohorts were well balanced (Table 2). We 
assessed the association of the candidate IRGPs with overall 
survival and found 791 prognostic IRGPs with a familywise 
error rate less than 0.05. Using LASSO Cox regression 
and 10-fold cross-validation, we then developed a thirty-
IRGP signature including 52 IRGs based on the training 
data set (Figure 2). The 52 different IRGs among the IRGP 
signature participate in many immune processes, mainly 
including antimicrobials and cytokines (Table 3). The optimal 
cutoff value for the IRGP signature was −0.031, which 
was calculated using time-dependent ROC curve analysis, 
and stratified BC patients into the low- or high-risk group  
(Figure 2C). The risk scores of the patients are illustrated in 
Figure 3, which show the overall survival distribution among 
different risk groups (Figure 3A,B). The heat map shown in 
Figure 3C represents the expression levels of the 30 selected 
gene pairs in the low- and high-risk groups.

Functional analysis of the IRGP signature

To obtain biological information on the IRGP signature, 
we carried out an enrichment analysis of the 52 unique 

Table 2 Clinical characteristics of all patients from training, testing and validation cohorts

Characters Training cohort (GEO cohort 1) Testing cohort (GEO cohort 2) Validation cohort (TCGA)

No. of patients 292 318 403

Median follow-up, month 42.5 38.2 15.8

Stage, n (%)

0 52 (17.8) 56 (17.6) 0 (0.0)

I 74 (25.3) 69 (21.7) 2 (0.5)

II 56 (19.2) 51 (16.0) 128 (31.8)

III 49 (16.8) 68 (21.4) 140 (34.7)

III/IV 13 (6.5) 13 (4.1) 0 (0.0)

IV 37 (12.7) 43 (13.5) 131 (32.5)

GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; III/IV annotated as stage T4aNx patients only.
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Figure 2 Development of the IRGP signature with the LASSO method. (A) LASSO algorithms were used to generate prognosis-related 
IRGPs, and the remaining 30 IRGPs were selected in the training cohort. (B) Coefficient profiles of the 30 prognosis-related IRGPs were 
plotted based on the datasets obtained from the training cohort. (C) Time-dependent ROC curve for IRGPs signature in the training data 
set at 5 years. (D) GO analysis revealed that the 52 immune genes related to the IRGP signature in the training cohort are mostly involved 
in immune biological processes, such as the immune response, chemotaxis, and the inflammatory response. GO functional and pathway 
analyses of the prognostic immune signature were performed using the DAVID tool. LASSO, least absolute shrinkage, and selection 
operator. An FDR-adjusted P value <0.05 was used to screen significant genes for GO. GO, gene ontology; IRGPs, immune-related gene 
pairs; FDR, false discovery rate.
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Figure 3 The distribution of risk scores in patients based on the 30-IRGP classifier. The risk score of each patient increases gradually 
with survival time (A,B). Heat map analysis of the 30 selected IRGPs among the low- and high-risk groups (C). An ROC curve was used 
to calculate the optimum cutoff score for our prognostic model, and BC patients were then classified into low- and high-risk subgroups. 
IRGPs, immune-related gene pairs. Kaplan-Meier curves of overall survival for BC patients stratified by the IRGP signature risk groups in 
the (D) training, (E) testing, and (F) validation cohorts. P values were measured using the log-rank test. IRGPs, immune-related gene pairs.
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Figure 4 Immune infiltration status of the IRGP signature risk groups. Twenty-two immune cell abundances within each risk group of the 
training (A), testing (B), and validation (C) cohorts. Macrophages (M0/M1) and activated mast cells were enriched in the high-risk group, 
while naive/memory B cells and neutrophils were enriched in the low-risk group. In all bar plots, P values were based on the Wilcoxon test. 
IRGPs, immune-related gene pairs.
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IRGs with the DAVID tool. The biological processes of 
gene ontology with a false discovery rate (FDR) value 
less than 0.05 were selected, and eight overrepresented 
biological processes in gene ontology were identified 
(Figure 2D). Most biological processes were the immune 
response, chemotaxis, and the inflammatory response. 
To determine the immune function of the obtained risk 
groups, we conducted an immune infiltration analysis in 
the GEO and TCGA datasets using CIBERSORT, which 
is a popular algorithm describing cell composition from 
the gene expression profiles of bulk tumors, and found that 
the percentages of macrophages (M0/M1), activated mast 
cells and neutrophil infiltration were significantly different 
between risk groups in the IRGP signature (Figure 4). The 
mean level of macrophages in the IRGPI high-risk group 
was 2-fold higher than that in the IRGPI low-risk group 
in each data set. Patients with a higher IRGPI also had 
significantly lower B cell naive infiltration in their tumors. 
However, no statistically significant difference in T cell 
infiltration was observed between the 2 IRGPI risk groups 
in the different datasets.

Validation of the prognostic value of the IRGP signature 

Based on the defined risk groups, we found that the IRGP 
signature was significantly associated with overall survival 
[Figure 3D; HR, 10.91 (6.76–17.60); P=2.0×10−16] in the 
training cohort. To evaluate whether the IRGP signature 
had similar prognostic value in different populations, we 
applied the same formula to the testing and validation 
cohorts. As expected, the IRGP signature significantly 
stratified patients in terms of overall survival [Figure 3E; 
HR, 2.99 (1.92–4.64); P=3.0×10−7] in the testing data set. 
In the TCGA validation cohort, patients in the high-risk 

group experienced significantly worse overall survival than 
patients in the low-risk group [Figure 3F; HR, 4.75 (2.10–
10.75); P=4.0×10−5)].

Developing an integrated prognostic nomogram by 
combining the IRGP signature with clinical features

To further evaluate whether the IRGP signature could 
serve as an independent prognostic factor, univariate and 
multivariate Cox regression analyses were conducted. In 
the training cohort, both the univariate and multivariate 
analyses revealed that the TNM stage and the IRGP 
signature were significantly associated with overall survival 
(Table 4). To further improve the predictive accuracy, 
based on the above results, we developed an IRGP 
nomogram that combined the TNM stage and the IRGP 
signature (Figure 5, Table 4). The risk scores of the IRGP 
nomogram were calculated as (0.378 × stage) + (2.089 × 
IRGP signature). We calculated the optimal cutoff value of 
1.012 based on time-dependent ROC curve analysis in the 
training set, which was used to divide patients into different 
prognosis groups. The estimation accuracy of overall 
survival was enhanced by the continuous form of the IRGP 
nomogram relative to the IRGP signature (Figure 6, mean 
C-index, 0.82 vs. 0.79 in the training cohort). In addition, 
the calibration curves for 5-year overall survival performed 
well in the training, testing and validation cohorts  
(Figure 5B,C,D). After a decision curve analysis was 
conducted for the IRGP nomogram, we also found the 
model’s clinical application value (Figure 5E,F,G). The 
results showed that the IRGP nomogram added more net 
benefit in the testing data set if the threshold probability 
was between 0% and 92%, while in the training and 
validation datasets, decision-making based on the IRGP 

Table 4 Univariate and multivariate analyses of prognostic factors in terms of overall survival

Datasets Variable
Univariate Multivariate

HR (95% CI) P HR (95% CI) P 

Training Stage 1.796 (1.55–2.082) 7.37E-15 1.458 (1.223–1.739) 2.68E-05

Immune risk 12.18 (7.34–20.2) 2E-16 8.074 (4.679–13.931) 1.00E-04

Testing Stage 1.834 (1.587–2.12) 2.3E-16 1.667 (1.418–1.959) 5.62E-10

Immune risk 4.421 (2.958–6.608) 4.21E-13 2.664 (1.695–4.185) 2.14E-05

Validation Stage 1.812 (1.47–2.233) 2.56E-08 1.622 (1.308–2.011) 1.07E-05

Immune risk 4.98 (3.055–8.118) 1.21E-10 4.134 (2.489–6.865) 4.19E-08
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Figure 5 The IRGPs nomogram was developed for BC patients. (A) IRGPs nomogram was generated to predict patients’ prognosis, with 
the TNM stage and IRGPs signature incorporated. Calibration curve of IRGPs nomogram were showed in the training (B), testing (C), 
and validation (D) cohorts, respectively. IRGPs, Immune-related gene pairs. Decision curve analysis of our constructed IRGPs nomogram 
model in the training (E), testing (F) and validation (G) sets. Solid black line: net benefit when all BC patients are considered as not having 
the death event; Solid gray line: net benefit when all patients are considered as having the death event. Solid blue line: net benefit when all 
patients are considered according to the developed nomogram model. If the threshold probability is between 0–80% in any cohort, decision 
making based on the nomogram model to predict death will add more benefit. IRGPs, Immune-related gene pairs.
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nomogram could add more net benefit than the treating all 
patients or none scheme if the threshold probability was 
between 0% and 80%. In summary, our constructed IRGP 
nomogram is clinically useful for BC patients and may tailor 
the current treatment strategy.

Discussion

Patients with BC are at substantial risk for recurrence and 

metastasis within 5 years after diagnosis (25). The TNM 
staging system is a common method used to predict the 
efficacy of systemic therapy and patient survival (26). 
However, the prognosis of patients at the same stage varies 
greatly regardless of whether the treatment is similar, which 
may be due to individual genetic differences (9,10,19). 
Hitherto, researchers have demonstrated that certain 
gene expression signatures can estimate survival in BC 
patients; however, none have been translated into clinical 
practice (9,10). One common disadvantage of all current 
experiments is the normalization of gene expression profiles 
that may produce inherent technical biases across different 
microarray or RNA-Seq platforms (19).

To screen and develop robust molecular biomarkers 
in BC, we used a gene pair method that can overcome 
inherent technological biases between different platforms. 
Our prognostic immune signature was constructed based 
on the relative rank of gene expression values involving 
only a single tumor sample, and data standardization was 
not needed. Therefore, our prognostic signature may assess 
patient prognosis in an individualized, single-sample form 
without reference to other samples and would then be 
easily adopted clinically. Based on 30 prognostic-associated 
IRGPs, our developed immune signature reflects distinct 
biological processes that could function as a marker for 
estimating patient prognosis in BC. The prognostic immune 
signature associated with the immuno-microenvironment 
of tumors may reveal a new prospect for novel predictive 
biomarker development and improve the efficacy of BC 
patients in the era of precision medicine. Our developed 
IRGP signature can stratify patients into low- and high-
risk subgroups based on different overall survival rates. 
In addition, we combined the IRGP signature with the 
TNM stage, which is currently being used for the staging 
classification of most cancers, and found that the integrated 
IRGP nomogram may propose a more accurate estimation 
of overall survival in BC patients.

Cancer immunotherapy has made great breakthroughs, 
and IRGs may hold great prospects for identifying new 
molecular targets (12,27-31). Most genes included in our 
IRGP signature were antimicrobials and cytokines, which 
play key roles in the immune response, chemotaxis, and the 
inflammatory response. Previous studies have shown that 
adjuvant antimicrobial agents can kill oncogenic-related 
microorganisms and exert antiproliferative and cytotoxic 
effects (32-35). Moreover, we found significantly increased 
infiltration levels of macrophages (M0/M1) and activated 
mast cells in the immune high-risk group, which were 

Figure 6 RMS curves for the continuous signature and nomogram 
values in the three cohorts. The RMS curves of the IRGP 
signature and nomogram scores were plotted for the (A) training, 
(B) testing, and (C) validation datasets. Each point represents the 
RMS time of the corresponding IRGP signature and nomogram 
scores. The RMS curves show a larger slope in all datasets with 
the IRGP nomogram, indicating the superior estimation of overall 
survival with the IRGP nomogram. RMS, restricted mean survival; 
IRGPs, immune related gene pairs.
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validated in the testing and validation datasets. Based on 
the results of the current study, immune cell subgroups may 
play a role in the observed prognostic differences between 
risk groups defined by our immune signature. The immune 
genes involved in the IRGP signature have a strong 
biological background, making it possible for them to be 
used to guide clinical adjuvant treatment in the future.

Our study sti l l  has some limitations.  First,  the 
retrospective nature and inherent intratumor genetic 
heterogeneity in our study may influence the estimation 
accuracy, although a large number of samples were included 
for broader validation. Second, our established immune 
gene signature is based on gene expression produced by 
microarray and RNA-seq platforms. Due to the high 
detection costs and expert requirement for bioinformatics 
analysis, it is difficult to widely generalize the signature 
in clinical applications. Thus, we need more data from 
different platforms to validate our developed immune 
signature.

Conclusions

In summary, our constructed IRGP signature could be 
used as a potential prognostic biomarker in BC. We also 
found a positive correlation between the signature and the 
infiltration of immune cell subsets, such as the immune 
response, macrophages (M0/M1), and activated mast cells. 
In the era of immunotherapy, it is necessary to conduct 
prospective studies to further evaluate the accuracy of 
predictions and test their clinical application in personalized 
treatment for BC.
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