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Background: The incidence of asthma in Chinese children has rapidly increased as a result of inadequate 
management. This is mainly due to the failure of many primary-level pediatricians to distinguish asthma 
from common respiratory diseases, such as bronchitis and pneumonia. Such misdiagnoses often lead to the 
abuse of antibiotics and systemic glucocorticoids. Additionally, if asthma is not diagnosed early, chronic 
airway inflammation results in lesions that not only hamper children’s athletic abilities, but serve as the 
primary cause for adult chronic airway diseases, such as chronic obstructive pulmonary disease (COPD).
Methods: A number of machine learning–based models including CatBoost, Logistic Regression, 
Naïve Bayes, and Support Vector Machines (SVM) have been developed to identify asthma via utilizing 
retrospective electronic medical records (EMRs) of patients. These models were evaluated independently 
using EMRs from both the Pulmonology Department and other departments of the Children’s Hospital, 
Zhejiang University School of Medicine, China.
Results: Two independent test sets were applied for performance evaluation. TestSet-1 consisted of 325 
positive asthma cases and 428 negative cases from the Pulmonology Department. TestSet-2 was composed 
of 2,123 cases from non-pulmonology departments, and included 337 positive and 1,786 negative cases. 
Experimental results showed that the CatBoost model outperformed other models on both test sets with an 
accuracy of 84.7% and an area under the curve (AUC) of 90.9% on TestSet-1, and an accuracy of 96.7% and 
an AUC of 98.1% on TestSet-2. 
Conclusions: The artificial intelligence (AI) model could rapidly and accurately identify asthma in general 
medical wards of children, and may aid primary pediatricians in the correct diagnoses of asthma. It possesses 
great clinical value and practical significance in improving the control rate of asthma in children, optimizing 
medical resources, and limiting the abuse of antibiotics and systemic glucocorticoids.
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Introduction

Asthma is pathologically characterized by chronic airway 
inflammation. It is estimated that over 10 million children 
under the age of 14 have asthma. Furthermore, its incidence 
among Chinese children is rising rapidly with a relatively 
poor control rate (1-3). This is in part attributable to the 
failure of primary pediatricians to distinguish asthma from 
common respiratory tract virus infections in children, 
with asthma often being misdiagnosed as bronchitis or 
pneumonia. The average accuracy of asthma diagnosis 
among pediatricians at all levels was reported to be only 
59.29%, and the level of diagnosis in primary units was 
significantly lower than that of tertiary class hospitals (4). 
Poor asthma control results in excessive and inefficient 
use of medical resources and leads to the abuse of 
antibiotics and systemic glucocorticoids. Moreover, this 
not only develops the continuous progression of chronic 
inflammatory diseases of airways that hamper the athletic 
abilities of children, but is also a significant cause of chronic 
airway diseases, such as chronic obstructive pulmonary 
disease (COPD), in adults (5). Therefore, an automatic 
asthma detection mechanism for children is critical for 
the efficient and accurate diagnoses of asthma by primary 
pediatricians. 

With recent advancements in machine learning 
technologies, researchers have conducted novel studies 
on asthma. Latent class analysis can be used to identify a 
set of heterogeneous diseases with the diagnostic label of 
asthma (6), but such approaches cannot be directly applied 
to diagnosing asthma from the electronic medical records 
(EMRs) of patients. Prosperi and Marinho (7) used logistic 
regression and random forests to identify asthma, wheeze, 
and eczema. However, their model used a large set of 
attributes including 223 non-genetic variables and 215 
single-nucleotide polymorphisms. The need for such large 
variables will not only lower the efficiency of the model, 
but also reduce its applicability in real world settings since 
generating such a large set of variables is not common in 
practice. Additionally, the data set used was small with 
only 554 subjects, which might have been insufficient 
in obtaining a general model. Tomita et al. (8) explored 
the effectiveness of deep neural networks in modeling 
combinations of symptom-physical signs and objective tests, 
using a total of 22 variables to predict the initial diagnosis 
of adult asthma. They used fewer variables than the study 
reported by Prosperi. However, deep neural networks-based 
methods are more sensitive to missing values commonly 

observed in real clinical practice, thereby making their 
model less practical. A dataset with only 566 EMRs was 
another limitation of their work. 

The present study thus aimed to identify an effective and 
efficient artificial intelligence (AI) model which can be used 
to assist pediatricians in diagnosing asthma in real clinical 
settings. It is hoped that such a model can eventually be 
deployed as a personalized diagnostic tool to lower the 
misdiagnosis rate of asthma among children and to reduce 
the misuse of antibiotics and systemic glucocorticoids. 

Methods

Study approval was granted by The Institutional Review 
Board (IRB) of the Medical Ethics Committee of Children’s 
Hospital, Zhejiang University School of Medicine, China 
(IRB approval ID: 2020-IRB-039). The procedures were 
performed in accordance with the Declaration of Helsinki 
(as revised in 2013) and relevant guidelines & regulations. 
Informed consent was obtained after the procedure was 
fully explained to all participants and their legal guardians. 

Datasets 

In this study, two sets of retrospective EMRs of patients 
under the age of 14 were collected from the Children’s 
Hospital, Zhejiang University School of Medicine, 
China. DataSet-1 consisted of 3,761 cases, with 1,624 
positive asthma cases and 2,137 negative cases from the 
Pulmonology Department. DataSet-2 was composed 
of 2,123 cases with 337 positives and 1,786 negatives 
from non-pulmonology departments including the 
Cardiovascular Department, Endocrinology Department, 
Nephrology Department, Neurology Department, and 
Hematology Department of the hospital. All records were 
reviewed by at least two respiratory experts who performed 
independent asthma diagnoses for each record, based on 
the guide of Children’s bronchial asthma diagnosis and 
prevention (2016 version) (9). Initially, two respiratory 
experts issued their independent assessment. Subsequently, 
the gold standard for diagnostic decision (i.e., ground 
truth label for model training) for each record was made 
by judgment consistency. Where a discrepancy between 
the two independent judgments was apparent, additional 
independent assessments were performed by another two 
respiratory experts. The second round of expert opinions 
prevailed if a diagnostic agreement was made. In cases 
where an agreement was not achieved by the second review, 
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the process was repeated until a diagnostic agreement was 
reached.

Feature extraction 

As shown in Table 1, the collected raw dataset consists of 
free texts arranged in a set of predefined fields in EMRs 
such as gender, birth date, chief complaint, physical 
examinations, lab tests, history of current disease, family 
history of diseases, history of diseases, and so on. 

In order to train machine learning-based models, 
features were extracted from the relevant raw EMR fields. 

Due to the semi-structured property of the raw EMR data, 
traditional rule-based nature language processing (NLP) 
methods were utilized for feature extraction. In this study, 
a set of NLP methods including regular expression, word 
distance, synonym analysis, etc. were applied to convert 
the raw free texts into features with either numerical 
or yes/no (1/0 binary) values. For example, the regular 
expression for total serum immunoglobin E (IgE) values 
were written as “IgE [:><]*?([+]+|[0-9]+\+) ”. For all binary 
features (i.e., yes/no), zero was the default value, unless the 
corresponding regular expression identified given key words 
with no surrounding negatives in a thesaurus; in this case, 

Table 1 Raw EMR data in English translation

Fields Descriptions

Gender Male

Birth date 2011-07-17 11:13:00

Chief complaint Cough, wheezing for 6 days

Physical examinations Body temperature was 36.5℃, heart rate was 130 beats/min, breathing was 36 beats/min, blood pressure was 
112/60 mmHg, and percutaneous oxygen saturation was 96%. Clear, spirited, superficial lymph nodes are 
not enlarged, ecchymosis on the back (after scraping), no cyanosis around the mouth, negative trident sign, 
pharyngeal congestion, thick lung sounds, wheezing sound can be heard and phlegm sounds, heart rhythm, 
no obvious pathological murmur, soft abdomen, liver and spleen under the ribs and swelling, neurological 
examination was normal, no obvious rashes were seen throughout the body

Lab tests Blood routine (2014.12.25 in our hospital) white blood cell count 8.02×109/L, neutrophil 60.1%, hemoglobin 
129 g/L, platelet count 436×109/L, CRP 4mg/L; chest radiograph (2014.12.25 our hospital): pneumonia, with a 
small amount of mediastinal emphysema, interstitial emphysema of the lower left lung may be

History of current disease The child had cough, wheezing, paroxysmal continuous cough at home 6 days ago without obvious  
incentives, each time coughing 5-6 sounds, sputum is not easy to cough out, redness, chest tightness, and 
occasional abdominal pain during cough drama, wheezing is obvious at night and when the activity is intense, 
there is shortness of breath, and can be relieved spontaneously, with fever at the beginning of the disease, 
body temperature of 37.5 ℃, no fear of chills, chills, no cyanosis, no barking cough, no hemoptysis, no rash, 
no nausea, Vomiting, no bloating, diarrhea, no night sweats, the next day she was treated at the “Lin’an  
People’s Hospital”, given “cefuroxime” intravenous drip treatment for 3 days (12.22–12.24), “methadone” 
(12.23) intravenous drip treatment for 1 day After treatments such as asthma and scraping, the child’s cough 
and asthma did not improve significantly, so he came to the hospital for medical examination, blood test  
(12.25 in our hospital) white blood cell count 8.02×109/L, neutrophil 60.1%, hemoglobin 129 g/L, platelet count 
436×109/L, CRP 4 mg/L, chest radiograph (12.25 in our hospital): pneumonia, with a small amount of  
mediastinal emphysema, the left lower lung interstitial emphysema may be given, “Xi Shumei,  
methylprednisolone 30 mg QD” static After 2 days of instillation and nebulization treatment (12.25–12.26), the 
child’s condition improved slightly. In order to seek further treatment, “pneumonia” is planned to be admitted 
to the hospital. The sick child had a good spirit, poor appetite, good sleep, no obvious abnormalities in urine 
and urine, no significant increase or decrease in body weight, and denied the history of foreign body  
inhalation and choking. 

History of diseases The child had previous “cough and wheezing 5 times” and was about 3 years old at the first onset. Denied 
history of convulsions. Denied a history of allergies such as food. Denied a history of infectious diseases. In 
May 2014, he was diagnosed as “bronchial asthma” in “Lin’an People’s Hospital” without formal treatment

Family history of diseases Denied the history of genetic diseases and infectious diseases in the family
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feature value was set to 1. Features and their corresponding 
properties/values extracted from the EMR fields including 
cough, wheeze, tachypnea, chest tightness, history of 
wheezing, family history of asthma and allergy, ages, and 
various allergen test results, are listed in Table 2. The 
features extracted from the EMR fields were highly sparse 
with many empty entries. To reduce the level of sparsity, we 
limited the number of regular expressions. As a result, 16 
regular expressions were developed for feature extraction 
from commonly used fields in real clinical settings (as 
shown in Table 2). The statistics of missing features for both 
datasets are also summarized in Table 3. 

Statistical analysis

In this study, four sets of statistical analysis between asthma 
positive and negative groups were analyzed using t-test 
within the Pulmonology Department, the non-Pulmonology 
Department, as well as across the Pulmonology and the 
non-Pulmonology Departments. As shown in Tables 4 and 5, 
most of the features extracted from the EHR data showed 
significant statistical difference (*P<0.05) between asthma 
positive and negative groups within both the Pulmonology 
Department and the non-Pulmonology Department, 
which confirmed that the features extracted were indeed 

Table 2 Extracted features and their properties

EMR fields Extracted features Property/values

Chief complaints Cough Yes/No (1/0) 

Wheezing Yes/No (1/0) 

Tachypnea Yes/No (1/0)

Chest tightness Yes/No (1/0) 

Disease history History of wheezing Yes/No (1/0)

Family history of diseases Allergy diseases Yes/No (1/0)

Asthma Yes/No (1/0)

Assessment of atopic status Protein Yes/No (1/0) 

Fungus Yes/No (1/0)

Dust mite Yes/No (1/0)

Pollen or grass or tree Yes/No (1/0)

Total serum IgE values Numerical 

Physical examination Whistling in the chest Yes/No (1/0) 

Silent in the chest Yes/No (1/0)

Inducements Inducements Yes/No (1/0) 

Demographic information Age (decimal in years) Numerical 

IgE, immunoglobin E.

Table 3 Statistics of missing features in different departments

Missing features Pulmonology department (%) Other departments (%)

History of wheezing 0.2 0.7

History of allergy 0 0.9

Family disease history 2.4 1.7

Allergen testing (for serum IgE) 31.81 65.23

IgE, immunoglobin E.
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discriminative. Among all asthma positive patients, the 
majority of the extracted features showed insignificant 
statistical difference (*P>0.05) between the Pulmonology 
Department and the non-Pulmonology Department 
which confirmed that all asthma positive patients have 
similar characteristics. Among asthma negative patients, 
the majority of the extracted features showed significant 
statistical difference (*P<0.05) between the Pulmonology 
Department and the non-Pulmonology Department, which 
also make sense since patients with diverse diseases should 
have different characteristics. 

Machine learning models

In this study, 80% of DataSet-1 from the Pulmonology 
Department which comprised 1,299 asthma cases and 1,709 
negative cases was used as training data for modeling. The 

remaining 20% comprising 325 positive and 428 negative 
cases was used as TestSet-1 for performance evaluation. 
Four machine learning based models, including CatBoost, 
Naïve Bayes, Support Vector Machines (SVM), and Logistic 
Regression (10-12) have been developed to identify asthma. 
CatBoost is an innovative ordered gradient boosting 
algorithm, which uses ordered target-based statistics for 
categorical features processing and permutation strategies 
to avoid prediction shift. Its base learner is an oblivious 
tree and each tree corresponds to a partition of the feature 
space. The model learns the feature space partition at each 
training iteration and finally obtains the aggregated data 
as a classification result. Naïve Bayes is a generative model 
that uses Bayes probabilities for calculating the classification 
total probabilities based on feature value combination; it 
assumes that each feature is independent. SVM aims at 
locating a hyper plane in the feature space with maximum 

Table 4 Statistical characteristics of subjects within different clinical departments

Characteristic

Pulmonology Department Non-pulmonology Department

Positive group 
(N=1,624)

Negative group 
(N=2,137)

P
Positive group 

(N=337)
Negative group 

(N=1,786)
P

Chief complaints (mean ± SD)

Cough 0.966±0.1825 0.907±0.2899 <0.0001* 0.938±0.2420  0.169±0.3749 <0.0001*

Wheezing 0.754±0.4305 0.358±0.4795 <0.0001* 0.707±0.4551 0.037±0.1882 <0.0001*

Tachypnea 0.064±0.2448 0.055±0.2284 0.2556 0.063±0.2437 0.011±0.1035 <0.0001*

Chest tightness 0.006±0.0782 0.001±0.0216 0.0014* 0.008±0.0880 0.004±0.0667 0.0198*

Disease history (mean ± SD)

History of wheezing 0.770±0.4210 0.210±0.4074 <0.0001* 0.817±0.3867 0.035±0.1848 <0.0001*

Family history of diseases (mean ± SD)

Allergy diseases 0.008±0.0891 0.002±0.0432 0.0055* 0.008±0.0880 0.001±0.0227 <0.0001*

Asthma 0.007±0.0856 0.003±0.0571 0.0780 0.013±0.1138 0.001±0.0292 <0.0001*

Assessment of atopic status (mean ± SD)

Protein 0.108±0.3101 0.023±0.1497 <0.0001* 0.084±0.2774 0.019±0.1356 <0.0001*

Dust mite 0.055±0.2288 0.005±0.0682 <0.0001* 0.055±0.2279 0.003±0.0540 <0.0001*

Pollen or grass or tree 0.018±0.1324 0.003±0.0529 <0.0001* 0.024±0.1522 0.004±0.0627 <0.0001*

Total serum IgE 288.883±379.2370 79.546±301.1114 <0.0001* 166.857±427.6217 59.982±423.8480 <0.0001*

Physical examination (mean ± SD)

Whistling in the chest 0.674±0.4687 0.370±0.4828 <0.0001* 0.688±0.4633 0.047±0.2120 <0.0001*

Demographic information (mean ± SD)

Age 3.680±2.6891 2.176±2.8111 <0.0001* 3.605±2.7956 4.975±4.0442 <0.0001*

*, P<0.05, with statistical difference between two groups. SD, standard deviation; IgE, immunoglobin E.
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margin. Logistic Regression aims to squeeze weighted 
sum combinations of feature values into categories. In our 
study, we applied a grid-search strategy with 5-fold cross 
validation on the training data to find the optimal hyper-
parameters for all models including “maximum tree depth”, 
“maximum iteration number”, “learning rate”, “L2 leaf 
regularization” , and “early stopping rounds” for CatBoost; 
the “margin cost” parameter “C”, the kernel parameter 
“gamma”, and “kernel type” for SVM; and the “penalty 
strength” parameter “C” and “maximum iteration number” 
for Logistic Regression. 

Performance evaluation metrics

Algorithm performance was measured by two metrics, 
namely, the accuracy rate (Eq. [1]) and the area under 
the receiver operating curve (AUC). The accuracy rate 

calculated the percentage of correctly predicted individuals 
among the whole test set, whereas the receiver operating 
curve (ROC) was generated by plotting the curve of 
sensitivity (Eq. [2]) vs. specificity (Eq. [3]). 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
	 [1]

TPSensitivity
TP FN

=
+

	 [2]

TNSpecificity
TN FP

=
+ 	 [3]

where TP, FP, TN, FN are true positive, false positive, true 
negative, and false negative rates, respectively. TP and TN 
represent correctly predicted positives and negatives with 
respect to the ground truth labels. FP and FN represent 
incorrectly predicted positives and negatives with respect to 
the ground truth labels. 

Table 5 Statistical characteristics of subjects between asthma positive and negative groups

Characteristic

Positive groups Negative groups

Pulmonology 
(N=1,624)

Non-pulmonology 
(N=337)

P
Pulmonology 

(N=2,137)
Non-pulmonology 

(N=1,786)
P

Chief complaints (mean ± SD)

Cough 0.966±0.1825 0.938±0.2420 <0.0001* 0.907±0.2899 0.169±0.3749 <0.0001*

Wheezing 0.754±0.4305 0.707±0.4551 0.0005* 0.358±0.4795 0.037±0.1882 <0.0001*

Tachypnea 0.064±0.2448 0.063±0.2437 0.9313 0.055±0.2284 0.011±0.1035 <0.0001*

Chest tightness 0.006±0.0782 0.008±0.0880 0.5234 0.001±0.0216 0.004±0.0667 0.0060*

Disease history (mean ± SD)

History of wheezing 0.770±0.4210 0.817±0.3867 0.0001* 0.210±0.4074 0.035±0.1848 <0.0001*

Family history of diseases (mean ± SD)

Allergy diseases 0.008±0.0891 0.008±0.0880 0.9416 0.002±0.0432 0.001±0.0227 0.0324*

Asthma 0.007±0.0856 0.013±0.1138 0.0739 0.003±0.0571 0.001±0.0292 0.0034*

Assessment of atopic status (mean ± SD)

Protein 0.108±0.3101 0.084±0.2774 0.0070* 0.023±0.1497 0.019±0.1356 0.1954

Dust mite 0.055±0.2288 0.055±0.2279 0.9481 0.005±0.0682 0.003±0.0540 0.1854

Pollen or grass or tree 0.018±0.1324 0.024±0.1522 0.1861 0.003±0.0529 0.004±0.0627 0.4279

Total serum IgE 288.883±379.2370 166.857±427.6217 <0.0001* 79.546±301.1114 59.982±423.8480 0.0413*

Physical examination (mean ± SD)

Whistling in the chest 0.674±0.4687 0.688±0.4633 0.3321 0.370±0.4828 0.047±0.2120 <0.0001*

Demographic information (mean ± SD)

Age 3.680±2.6891 3.605±2.7956 0.3694 2.176±2.8111 4.975±4.0442 <0.0001*

*, P<0.05, with statistical difference between two groups. SD, standard deviation; IgE, immunoglobin E.
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Results

Two independent test sets were applied for performance 
evaluation. TestSet-1 consisted of 753 cases with 325 
positive asthma cases and 428 negative cases from the 
Pulmonology Department. Table 6 summarizes the overall 
performance of all four models on TestSet-1 where the 
CatBoost model outperformed all other models with an 
accuracy of 84.7% and an AUC of 90.0%. This result 
exceeded the second-best Logistic Regression and SVM 
by about 4% in accuracy and 2% in AUC. Naïve Bayes 
exhibited relatively lower scores, displaying less than 80% 
accuracy and an AUC of 84.62% respectively. Figure 1 
illustrates the AUC of these models more explicitly.

Similarly, Table 7 and Figure 2 demonstrate the overall 
performance of all four models on TestSet-2, composed of 
2,123 cases (with 337 asthma-positive and 1,786 asthma-
negative cases) from the non-pulmonology departments 
including the Cardiovascular Department, Endocrinology 
Department, Nephrology Department, Neurology 
Department, and Hematology Department. Since this 

dataset was composed of data from other departments not 
involved in training, it was a perfect testbed to evaluate 
the robustness and generalization capacity of the model 
via quantitatively and qualitatively assessing its efficacy in 
a real clinical setting. As shown in Table 7 and Figure 2, the 
CatBoost model displayed superior performance with an 
accuracy of 96.7% and an AUC of 98.1%. On TestSet-2, 
Naïve Bayes performed well with an accuracy of 91.0% and 
an AUC of 96.4%. The Logistic Regression was ranked last 
among these four models with an accuracy of 88.6% and an 
AUC of 92.3%. 

In addition to accuracy and AUC, in this study, feature 
importance was also explored. This was calculated based on 
each feature’s contribution to the model in performance. 
Figure 3 shows the feature importance calculated by the 
CatBoost model. Age, considered seemingly irrelevant 
to asthma symptoms, was a highly correlated feature  
(Figure 3A). In clinical practice, pediatricians often consider 
wheezing and wheezing history with age. For example, a 
patient over the age of three exhibiting wheeze is more likely 
to have asthma than the patient’s younger counterparts. 

Table 6 Performance comparison on TestSet-1

Model Accuracy (%) AUC (%)

CatBoost 84.7 90.9

Logistic regression 80.5 88.5

SVM 80.3 89.1

Naïve Bayes 77.8 84.6

AUC, area under the receiver operating curve.

Table 7 Performance comparison on TestSet-2

Model Accuracy (%) AUC (%)

CatBoost 96.7 98.1

SVM 91.8 94.2

Logistic Regression 88.6 92.3

Naïve Bayes 91.0 96.4

AUC, area under the receiver operating curve.

Figure 1 Performance evaluation on TestSet-1. ROC, the receiver 
operating curve.

Figure 2 Performance evaluation on TestSet-2. ROC, the receiver 
operating curve.
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Figure 3 Feature importance calculated by the CatBoost Model. SHAP, SHapley Additive exPlanation.

Wheezing and wheezing history was ranked as second 
and third most important features, exhibiting a combined 
weighted score of over 40%. While total serum IgE is an 
important feature in practice, it was not ranked among the 
top three most important features by CatBoost. This could 
be attributed to the fact that 40% of patients would not have 
been administered serum IgE tests, resulting in empty entries 
in the EMR. The degree of empty fields in this feature left 
a degree uncertainty, and potentially led to a lower ranking 
by the model. Figure 3B demonstrated polarity (positive or 
negative) impacts of features on model performance.

We also conducted ablation experiments on top feature 
bagging. As illustrated in Table 8, a superior performance 

was observed with more features in general. However, the 
performance improvement was marginal on top 12 features 
and above, which is also demonstrated in the feature 
importance graph in Figure 3. 

Discussion

Implications and findings

Our findings reveal that CatBoost clearly exhibited the 
highest accuracy and AUC compared to all other models 
on both test sets. CatBoost’s success may have be explained 
by its ability to process categorical features and modeling 
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feature combinations. Additionally, CatBoost’s new capacity 
in undertaking feature combination increases its nonlinear 
modeling abilities. On TestSet-1, Naïve Bayes performed 
the worst, which was likely due to the feature independence 
assumption of this model. In practice, features from allergen 
test results are related to serum IgE, and thereby violate the 
independence assumption. On the other hand, Naïve Bayes 
performed well on TestSet-2; it is reasonable to conclude 
that as this model received higher negative label probability 
with more negative individuals, it had increased chances 
for negative predictions. In addition, the insensitivity of 
Logistic Regression to categorize features and its decreased 
ability to model nonlinear functions, along SVM’s 
assumption of kernel space, might have contributed to their 
lower ranking compared to CatBoost on both data sets. 
Generally, all models demonstrated improved performance 
on TestSet-2. This was due to the presence of increased 
predictable negative instances of patients unlikely to have 
asthma, such as patients with no cough, wheeze, tachypnea, 
oppression in chest, history of wheeze, negative allergen 
test results, or family history of asthma and allergies.

Advantages of AI

At present, the accuracy of Chinese primary pediatricians 
in diagnosing asthma is relatively low. One study of 
pediatricians in Jinhua City, Zhejiang Province, reported the 
average accuracy of asthma diagnosis among pediatricians 
at all professional levels to be only 59.29%. In addition, the 
diagnostic accuracy of primary units at lower professional 
levels (e.g., level 1 and level 2) was lower than that of level 

3 (4). Therefore, if this AI system is routinely applied to the 
work of primary pediatricians, it will greatly increase the 
accuracy of their asthma diagnosis, and thus, significantly 
improve the management of asthma in Chinese children. 

Limitations

Currently, this system is only suitable for identifying the 
existence of asthma, and it cannot provide disease severity 
classification or treatment suggestions. Furthermore, it 
is also unable to prompt clinicians to complete medical 
records and auxiliary examinations. 

Future expectations

The complete AI system including the NLP-based feature 
extraction module and the machine learning-based asthma 
identification module can be integrated into hospitals’ 
information and data management systems as a whole to 
identify asthma in pediatric inpatient setting, through 
extracting data from EMR as inputs for the developed AI 
system. With a questionnaire-based interactive interface for 
feature inputs, it could allow the AI model to be applied as 
an efficient screening tool in the outpatient service system 
to identify more patients with a mild level asthma. 

At present, the developed asthma identification model 
has been integrated into a smart phone APP with a 
questionnaire-based interactive interface for feature inputs 
and applied in the outpatient service in the Children’s 
Hospital, Zhejiang University School of Medicine, China. 

On the basis of a pre-diagnosis function, systems 
focused on auxiliary treatment and follow-up could be 
simultaneously developed to utilize AI-assisted methods as 
complete management tools for asthma patients.

Conclusions

The AI model can quickly and accurately identify children 
with asthma, which can aid primary pediatricians in 
making more precise diagnoses, whilst further preventing 
undetected cases. Our findings are of great clinical value 
and practical significance in improving the asthma control 
level of children in China, optimizing medical resources, 
and decreasing the abuse of antibiotics and systemic 
glucocorticoids. 

Table 8 Performance of top feature bagging 

Top-N  
features 

TestSet-1 TestSet-2

Accuracy (%) AUC (%) Accuracy (%) AUC (%)

Top 4 84.1 90.3 95.0 96.9

Top 5 84.3 90.8 95.8 97.9

Top 8 84.5 90.8 96.6 98.0

Top 9 84.5 90.8 96.7 98.1

Top 12 85.0 90.8 96.3 98.1

All 16 features 84.7 90.9 96.7 98.1

AUC, area under the receiver operating curve.
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