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Weighted gene co-expression network analysis identifies FCER1G
as a key gene associated with diabetic kidney disease
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Background: Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. However, the
pathogenesis of DKD remains unclarified, and there is an urgent need for improved treatments. Recently,
many crucial genes closely linked to the molecular mechanism underlying various diseases were discovered
using weighted gene co-expression network analysis.

Methods: We used a gene expression omnibus series dataset GSE104948 with 12 renal glomerular DKD
tissue samples and 18 control samples obtained from the gene expression omnibus database and performed
weighted gene co-expression network analysis. After obtaining the trait-related modules, gene ontology and
Kyoto encyclopedia of genes and genomes enrichment analyses of the modules were conducted and the key
gene associated with DKD was selected from the top two most significant gene ontology terms using the
maximal clique centrality method. Finally, we verified the key gene using protein-protein interaction analysis,
additional datasets, and explored the relationship between the key gene and DKD renal function using the
Nephroseq v5 online database.

Results: Among the 10 gene co-expression modules identified, the darkorange2 and red modules were
highly related to DKD and the normal biological process, respectively. Majority of the genes in the
darkorange2 module were related to immune and inflammatory responses, and potentially related to the
progression of DKD due to their abnormal up-regulation. After performing sub-network analysis of the
genes extracted from the top two most significant gene ontology terms and calculating the maximal clique
centrality values of each gene, FCERIG, located at the center of the protein-protein interaction network,
was identified as a key gene related to DKD. Furthermore, gene expression omnibus validation in additional
datasets also showed that FCERIG was overexpressed in DKD compared with normal tissues. Finally,
Pearson’s correlation analysis between the expression of FCERIG and DKD renal function revealed that the
abnormal upregulation of FCERIG was related to diabetic glomerular lesions.

Conclusions: Our study demonstrated for the first time that FCERIG is a crucial gene associated with the
pathogenesis of DKD.

Keywords: Diabetic kidney disease (DKD); pathogenesis; weighted gene co-expression network analysis
(WGCNA); key gene; FCERIG
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Introduction

Diabetic kidney disease (DKD), as a common diabetic
microangiopathy, manifests as proteinuria or impaired renal
function clinically (1). If untreated, the end-stage renal
disease caused by DKD is fatal (2). Furthermore, kidney
disease can also lead to macrovascular complications (3),
and diabetic patients with renal complications have a higher
mortality (4). Currently, the treatment for DKD is limited
and further exploration of the underlying pathogenesis is
urgently needed. Studies have shown that the molecular
mechanisms underlying DKD are complicated, involving
metabolic factors, oxidative stress, renal hemodynamic
changes, as well as growth factors and cytokines (5,6).
Furthermore, there is extensive evidence that supports that
the genetic background affects the progress of nephropathy
in patients with diabetes (7,8) as only a subgroup of these
patients progress to nephropathy, whereas the rate of
progression varies between patients (9). The expression
of genes or proteins, distinguished from the relatively
static DNA sequences, represents the dynamics of this
disease. In recent years, high-throughput technologies and
bioinformatics have developed rapidly and research on gene
expression profiling has been widely used to detect key
genes related to the pathogenesis of diseases. Weighted gene
co-expression network analysis (WGCNA) is an effective
data mining method widely used to screen out key genes in
various diseases, such as tumors (10-13), chronic diseases
(14,15), immune (16-18), and mental diseases (19,20),
and kidney diseases (21-23). Based on the detected gene
correlations, WGCNA constructs a network and divides
the genes into several co-expression modules, each of which
contains genes that may have common biological regulatory
functions. The modules that are the most relevant to a
certain disease are worthy of further study, whereas the
most central genes in a crucial module are regarded as key
genes. Thus, WGCNA is applied to identify biologically
relevant key genes, which may be utilized as therapeutic
targets.

In the present study, we used WGCNA to explore the
key genes associated with DKD with the aim to provide a
new insight into DKD biomarker discovery.

We present the following article in accordance with
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the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-1087).

Methods
Microarray data information

We searched the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) and obtained
GSE104948 matrix format files, containing 12 DKD renal
glomerular tissue samples, and 18 normal samples, from
patients with DKD and healthy living donors, respectively.

Data pre-processing

We conducted probe annotation to map probes to gene
symbols using Affymetrix platforms in a Perl environment,
with log2-transformed expression values. All the microarray
probes that matched multiple genes were removed. In the
case where a gene matched several probes, we calculated
the average value of the different probes as the final gene
expression value.

Construction of the weighted gene co-expression network

Consensus clustering was applied to recognize the types
of samples and remove outlier samples before performing
WGCNA.

We conducted WGCNA according to the protocol
included in the WGCNA package using the R platform
(version 3.5.3) (24).

Initially, Pearson’s correlation was used to evaluate the
correlation between two genes. Subsequently, the pairwise
correlations of all genes formed a correlation matrix.

Next, the scale-free fit index and average connectivity for
soft-thresholding powers (B) in the range of 1 to 30 were
calculated to select the most proper P value and translate the
correlation matrix to a scale-free network. When the scale-
free fit index reached 0.85, the B value with the maximum
average connectivity was selected as the most appropriate
for scale-free network translation.

Finally, the scale-free network was transformed to
a topological overlap matrix (TOM) to understand the
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indirect relationship between genes. Based on the TOM,
we conducted average linkage hierarchical clustering and
grouped all the genes into several co-expression modules.

In a given module, the module eigengenes (MEs) were
the chief components of the module, which represented
the expression pattern of a certain module (24). The
correlations between the MEs of different modules were
determined, and highly correlated modules were merged
into one (Pearson’s correlation >0.75).

Further, the adjacency of eigengenes in modules and the
correlation among randomly picked genes were calculated
to evaluate the reliability of the constructed modules. The
results were visualized using heatmaps.

Identification of trait-related modules

The modules that were positively correlated with DKD
were involved in the pathogenesis of DKD, while modules
that were positively correlated with normal trait were
important in maintaining the normal biological function.
After obtaining the gene co-expression network and
modules using WGCNA, the correlation between the
modules and traits can be analyzed, and the module with
the highest correlation with a trait can be selected as a trait-
related module for further analyses. In our study, DKD
and normal are the sample traits, while MEs represent the
expression pattern of a given module. We used Pearson’s
test to calculate the correlation coefficient between the MEs
and clinical traits to identify the trait-related modules.

Gene significance (GS) represents the relationship
between individual genes and clinical traits, while module
membership (MM) indicates the associations between the
gene expression value and the MEs in a given module.
When a certain module had a high correlation between
GS and MM, it indicated that the genes in that module
contributed greatly to this module and the corresponding
traits (25). We calculated the GS and MM of trait-related
modules, and then visualized the results using a scatter plot
diagram.

Enrichment analyses and differentially expressed genes
(DEGs) analyses of the trait-related modules

We performed gene ontology (GO) and Kyoto encyclopedia
of genes and genomes (KEGG) enrichment analyses of
the trait-related modules using clusterProfiler based on
Hypergeometric test to better understand the biological
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functions (26). For the enrichment analyses, a P value
of <0.01 (P<0.05 after Benjamin-Hochberg correction)
was considered statistically significant. The top 10
most significant terms were selected for visualization.
Furthermore, the DEGs based on Empirical Bayes test were
analyzed to compare the differences between the DKD and
normal samples using the limma package (27), and the cut-
off criteria for DEGs were set as |log FC| >1 and P<0.05.

Identification of key genes in trait-related modules

The key genes located at the center of the co-expression
network had a relatively strong correlation with the other
genes. Therefore, the key genes of the trait-related modules
may be important in the pathogenesis of DKD. After
identifying the most significant trait-related GO terms using
GO enrichment analysis, we extracted the sub-networks of
the gene clusters of the top two most significant terms from
the whole WGCNA network. Following this, we imported
the two gene clusters and their weighted correlations of
the sub-WGCNA networks into the Cytoscape software
to analyze the relationships among genes (28). We ran
cytohubba (a plugin of Cytoscape) to calculate the maximal
clique centrality (MCC) value of each gene in the sub-
networks (29), and screened the key genes, which were
defined as the genes possessing the top 10 MCC values.

Protein-protein interaction (PPI) network creation

Since most proteins function by interacting with other
proteins, investigating their interactions and functions as
an integrated system may help us to better understand their
function. The STRING2 database (30) contains information
about the interactions between proteins, derived from
experimental studies. To explore the biological relationships
among genes in the trait-related module, we identified the
PPI pairs among them with a confidence score of 0.700 and
built the PPI network using the STRING online analysis
tool (http://www.string-db.org). Subsequently, the exported
data were imported into Cytoscape for visualization.

GEO validation

"To verify the robustness of our results in external datasets,
we compared the expression level of the key genes associated
with DKD and normal controls in three additional datasets
downloaded from GEO.
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Figure 1 Study flowchart.

Clinical validation

We used the Nephroseq v5 online database (http://
v5.nephroseq.org), an integrated data-mining platform
for gene expression data sets of kidney diseases, to validate
the correlation between the key genes and clinical traits
of DKD using Pearson’s correlation analysis. A P value of
<0.05 was considered statistically significant.

Results
Evaluation and preparation of data

Figure 1 shows the flowchart of our study. We obtained
the expression profiles of 11,884 genes from 30 renal
glomerular samples and all genes were used for further
analysis. After performing cluster analysis for all the
samples, one outlier DKD sample was removed and
the final results are shown in Figure 24A. We found that
the samples were divided into two clusters: one cluster
contained 11 DKD samples, while the other contained
18 normal samples, which indicated a high consistency
between samples of the same type.

Construction of the weighted gene co-expression network

We selected B=19 as the soft-threshold to construct a scale-
free network (Figure 2B). The co-expression modules were
confirmed using Dynamic Tree Cutting and represented by
different colors. Ultimately, modules with diverse sizes and
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colors were generated (Figure 3A4), whereas the number of
genes in the modules ranged from 99 to 4,156.

The eigengenes adjacency of the modules was analyzed
to further evaluate the adjacency of all modules (Figure 3B).
Most modules had a low adjacency to other modules, which
meant the clustering was independent and precise.

The interaction relationships of 1,000 randomly selected
genes are presented in the network heatmap (Figure 3C).
The results revealed that the genes in the same module
were highly correlated, while they were weakly correlated to
those in other modules. Thus, the reliability of the modules

was verified.

Selection of trait-related modules

Figure 44 shows the correlations between modules and
traits. The darkorange2 module (1,429 genes) was the most
positively related to DKD (r=0.88, P=3e-10), while the
association between the red module (367 genes) and normal
trait was higher than that of other modules (r=0.8, P=2e-07).
A scatterplot of the GS vs. MM in the darkorange2 module
was plotted (Figure 4B), in which the GS and MM had a
highly significant correlation (cor =0.8, P<1e-200). Most
genes were distributed in the upper right corner, with the
GS ranging from 0.5 to 1 and the MM from 0.7 to 1. The
red module also had a similar significant association between
the GS and MM (cor =0.58, P=2.3e-34) (Figure 4C).
Hence, we identified the darkorange2 and red modules as
the most valuable modules for subsequent analysis.
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Figure 2 Gene cluster analysis. (A) Sample dendrogram and trait heatmap. The branches of the dendrogram correspond to clustered

samples. (B) Construction of the scale-free network with a suitable soft-thresholding power (B). The red line represents the value of the

scale-free fit index (0.85).

Enrichment analyses and DEGs analyses of the trait-
related modules

We conducted GO and KEGG enrichment analyses of the

genes in the darkorange2 and red modules. The top 10 GO

items in the darkorange2 module are shown in Figure 5.
Regarding their biological process (BP) (Figure 5A),
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the enriched genes were primarily related to immunity,
inflammation and extracellular matrix (ECM) organization.
The top four significant GO terms were the following:
leukocyte migration (102 genes, P=1.57e-22), T cell
activation (96 genes, P=8.55¢-20), ECM organization (77
genes, P=2.56e-18) and extracellular structure organization
(83 genes, P=1.26e-17).
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Regarding cellular component (CC) (Figure 5B), the
enriched genes were related with the ECM (97 genes,
P=4.02e-20), receptor complex (66 genes, P=3.14e-11), and
cytoplasmic vesicle lumen (57 genes, P=3.98e-09).

Regarding their molecular function (MF) (Figure 5C),
the enriched genes were mainly correlated with cell
adhesion molecule binding (72 genes, P=4.47¢-08),
glycosaminoglycan binding (46 genes, P=1.1e-10), and
cytokine activity (42 genes, P=2.49¢-8).

Figure 5D shows the top 10 terms of the KEGG
enrichment analysis in darkorange2 where most of the
genes were related to immune and inflammatory responses,
for instance cytokine-cytokine receptor interaction (62
genes, P=1.78¢-09) and the chemokine signaling pathway
(43 genes, P=7.37¢-08). Furthermore, most genes were
also related to ECM organization, like ECM-receptor
interaction (21 genes, P=2.37e-05).

© Annals of Translational Medicine. All rights reserved.

Figure 6 presents the GO and KEGG enrichment
analyses of the red module, in which most of the genes
were linked to the metabolic process. For instance, the top
four GO-BP terms were “small molecule catabolic process”
(P=6.51e-34), “organic acid catabolic process” (P=6.14e-32),
“carboxylic acid catabolic process” (P=6.14e-32), “cellular
amino acid metabolic process” (P=1.54e-27) and the top 4
KEGG terms were “fatty acid degradation” (P=4.06e-13),
“glycine, serine and threonine metabolism” (P=3.17e-11),
“valine, leucine and isoleucine degradation” (P=4.16e-10),
“carbon metabolism” (P=4.42¢-10).

We performed DEGs analysis in the darkorange2 and
red modules. A total of 246 DEGs were confirmed in the
darkorange2 module, including 231 upregulated and 15
downregulated genes in DKD compared with the control
(Figure 74). In the red module, 70 DEGs were identified,
including 68 downregulated and 2 upregulated genes in

Ann Transl Med 2020;8(21):1427 | http://dx.doi.org/10.21037/atm-20-1087
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Figure 7 Differentially expressed genes (DEGs) analysis. (A) Heatmap of DEGs in the darkorange2 module. Columns correspond to

samples, and rows correspond to the gene expression level. Colors from green to red correspond to the gene expression level from low to

high. (B) Heatmap of DEGs in the red module.

DKD compared with the control (Figure 7B). These results
indicated that most genes in DKD were abnormally activated
or upregulated compared with their levels in normal tissues.

Identification of the key gene associated with DKD

The top-ranking clusters of the GO-BP enrichment
analysis were “leukocyte migration” and “T cell activation”.
Thus, we extracted the genes of these two clusters from
the darkorange2 module for sub-network analysis. The top
150 genes with weighted correlations in the sub-network
analysis were imported into Cytoscape. Then, we calculated
the MCC values of each gene using the Cytohubba plug-
in and screened the key genes with the top 10 MCC values

© Annals of Translational Medicine. All rights reserved.

(Figure 84,B). Finally, FCERIG, the gene with the largest
MCC value in both selected sub-networks, was identified as
the key gene potentially associated with DKD.

PPI network creation

We interrogated the STRING database for constructing
PPI networks to determine the biological connectivity
of genes in darkorange2. A total of 657 interaction pairs
were identified among those genes, and the proteins with
their interaction scores were then imported into Cytoscape
for visualization (Figure 9). FCERIG, which was centrally
located in the network, was one of the top 9 central genes in
the PPI network with more than 20 interaction pairs.

Ann Transl Med 2020;8(21):1427 | http://dx.doi.org/10.21037/atm-20-1087
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Figure 8 Identification of the key gene associated with diabetic kidney disease (DKD). (A) Weighted gene co-expression network analysis
(WGCNA) sub-network analysis of the leukocyte migration cluster in the darkorange2 module. Each node corresponds to a gene. Colors
from yellow to red correspond to the top 10 maximal clique centrality (MCC) values from low to high. (B) WGCNA sub-network analysis
of the T cell activation cluster in the darkorange2 module. The MCC value of FCERIG with red color was the largest in both sub-networks.
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Figure 9 Protein-protein interaction (PPI) network creation. A PPI network with 167 nodes and 657 edges was created in the darkorange2

module.

GEO validation

We analyzed the expression of the key gene in three
additional datasets (GSE47183, GSE99339, GSE99340),
and found that FCERIG was overexpressed in DKD
compared with the levels in normal tissues in each dataset,

thus verifying our finding (Figure 10).

Clinical validation

We used the Nephroseq v5 online database to explore the
correlation between the expression of FCERIG and clinical
traits of DKD. As shown in Figure 11, there was a negative
correlation between the expression of FCERIG in DKD
glomeruli and the glomerular filtration rate (GFR) (r=-0.61,
P=0.003), indicating that the abnormal upregulation of
FCERIG was associated with impaired renal function, which
may aggravate the development of DKD.

Discussion

We used WGCNA to identify the key gene related to the

© Annals of Translational Medicine. All rights reserved.

molecular mechanisms underlying DKD. We concluded
that the darkorange2 module had the most significant
association with DKD and we investigated it further to
understand more regarding the underlying pathogenesis.
The results of the subsequent GO enrichment analyses
showed that leukocyte migration and T cell activation were
chiefly enriched. Furthermore, KEGG enrichment analysis
identified genes primarily related to cytokine-cytokine
receptor interaction and chemokine signaling pathways,
revealing that the majority of genes were related to immune
and inflammatory responses. DEGs analysis found that
major genes in the darkorange2 module were upregulated
in DKD, indicating an abnormal activation of inflammatory
and immune responses. Based on the importance of the
darkorange2 module in the DKD trait, we selected the
top two most significant GO-BP terms for WGCNA sub-
network analysis, which revealed that FCERIG is the key
gene associated with DKD. Moreover, PPI network analysis
indicated that FCERIG was one of the top nine central
genes with more than 20 interaction pairs. Validation of
external datasets from the GEO database showed that

Ann Transl Med 2020;8(21):1427 | http://dx.doi.org/10.21037/atm-20-1087
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Figure 10 Gene expression omnibus (GEO) validation: the expression of FCER1G in diabetic kidney disease (DKD) compared with normal

tissues in the GSE47183, GSE99339, GSE99340 datasets.

FCERIG was overexpressed in DKD compared with its
levels in normal tissues. Furthermore, Pearson’s correlation
analysis between the expression of FCERIG and renal
function in DKD revealed that the abnormal up-regulation
of FCERIG was associated with diabetic glomerular lesions,
which may be important in the progress of DKD.

Regarding the red module, it was highly correlated with
normal traits. Enrichment analyses revealed that major
genes in this module participated in various metabolic
processes, which were involved in maintaining normal
biological functions. The results also indirectly reflected
that DKD is possibly a metabolic disorder. As previously
reported, metabolic abnormalities, such as amino acid and
lipid abnormalities, were associated with impaired kidney
function in DKD (31-35).

Gene FCERIG is located on chromosome 1q23 and
encodes the y subunit of the fragment crystallizable (Fc)
region (Fc R) of immunoglobulin E (IgE). Fc R vy is a signal-
transducing subunit that plays an essential role in chronic
inflammatory programs (36-38). The binding between
the Fc of immunoglobulins and the Fc¢ R of immune cells
activates cellular effector functions via the antigen-antibody

© Annals of Translational Medicine. All rights reserved.

binding reaction. In the normal immune system state, Fc:Fc
R recognize and eliminate non-self antigens, while the same
combination may trigger destructive inflammation, immune
cell activation, phagocytosis, oxidative burst, and cytokine
release in a pathological immune state (39).

Currently, the knowledge regarding the function of
FCERI1G and its relationship with kidney disease is very
limited. In a mouse model of glomerulonephritis, deficiency
of the Fc R y chain decreased urinary albumin excretion and
alleviated the pathological changes of the glomeruli, such as
mesangial thickening, glomerulosclerosis, and infiltration
of inflammatory cells (40). Suppression of the Fc R v chain
attenuated renal inflammation in models of immune-
mediated glomerulonephritis by reducing inflammation
and preventing fibrosis (41). Furthermore, the lack of
the Fc R y chain in a model of lupus prevented severe
nephritis, even immune system component deposition
in the glomeruli (42,43). Thus, the absence of the Fc R
y chain protected against the inflammatory response and
autoimmune glomerulonephritis, which provides another
potential pathway for therapeutic intervention (44).
Thereby, FCER1G may be important in the immune and

Ann Transl Med 2020;8(21):1427 | http://dx.doi.org/10.21037/atm-20-1087
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Figure 11 Correlation between the expression of FCERIG in
diabetic kidney disease (DKD) glomeruli and the glomerular
filtration rate (GFR), a P value of <0.05 was statistically significant.

inflammatory responses that occur in renal disease.

The relationship between FCERIG and DKD has not
been previously reported. However, it has been proposed
that immunity and inflammation are tightly linked to DKD.
As long ago as 1991, inflammatory cytokines were found to
be involved in the molecular mechanisms of DKD (45), and
subsequent studies verified their role in the development
of DKD (46,47). Renal pathology analysis of patients with
DKD indicated that the inflammatory cells deposited in the
kidney were related to glomerular sclerosis and interstitial
fibrosis (48,49). Although DKD is not considered an
“immune-mediated” renal disease, an increasing number
of studies demonstrated that immune system components
participated in the progression of DKD (50). Clinical research
studies have revealed that the activation of T cells (51) and the
increasing levels of immune complexes in the circulation
(52,53) are related to nephropathy progression in patients
with diabetes mellitus. Consistent with our GO enrichment
analysis results, several studies in animal models of DKD
have also examined the effect of T cells, and T-regulatory
cells in DKD (54,55).

Therefore, we propose that FCERIG overexpression
regulates immune and inflammatory pathways that are
involved in the pathogenesis of DKD.

We identified FCERIG as a key gene related to DKD
by constructing a WGCNA network. This is the first study
to report that gene FCERIG is a potential biomarker of
DKD. Our study provides a new insight into the molecular
mechanisms underlying DKD and offers a novel candidate
target for the precise treatment of this disease.

© Annals of Translational Medicine. All rights reserved.
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