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Crocin induces autophagic cell death and inhibits cell invasion of 
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Background: Cervical cancer is a prevalent tumor mainly induced by Human Papilloma Virus (HPV). 
Autophagy was inactivated with HPV to promote cancer progression. Here we explored the effects of crocin 
on cervical cancer cells, mainly on autophagy and apoptosis. 
Methods: SiHa cells were treated with crocin, and proliferation, metastases, apoptosis and autophagy were 
measured using a CCK-8 assay, transwell migration assay, flow cytometry and immunofluorescence. Protein 
levels were measured using western blotting. The antitumor effects of crocin were validated in female BALB/
c nude mice injected with SiHa cells.
Results: The result showed that 2, 4, 8 and 16 mM of crocin significantly reduced the viability of SiHa cells 
within 24 h. Subsequently, 0, 1, 2 and 4 mM crocin concentrations were used in later experiments. Treatment 
with crocin reduced invasive cells, while increasing autophagic and apoptotic cells dose-dependently. The 
enhanced apoptosis and autophagy were partly validated by an increase in cleaved caspase-3/caspase-3, 
cleaved caspase-9/caspase9, LC3B II/I, Beclin1 and ATG7. AMPK and mTOR were inactivated with crocin 
treatment, while PI3K was activated. These results indicated that crocin might promote autophagy and 
apoptosis by inactivating AMPK and mTOR signaling. Tumor progression was inhibited in mice treated 
with 50 mg/kg/d of crocin, which was demonstrated by smaller tumor volumes, less VEGF expression, more 
intense caspase-3 staining and increased LC3B II/I in the tumor tissues.
Conclusions: Crocin inhibited the progression of cervical cancer in vitro and in vivo, possibly through 
inactivation of AMPK and mTOR, inhibition of proliferation and invasion, and promotion of autophagy and 
apoptosis. These results support the potential therapeutic value of crocin in treating cervical cancer.
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Introduction

Cervical cancer, the most common human papillomavirus 
(HPV)-associated cancer, is one of the most prevalent 
tumors among women in the developing world (1). As 
vaccination is still largely economically unavailable, 
cervical cancer continues to be a growing major public 
health issue (2). Once diagnosed, the prognosis of cervical 
cancer is poor, especially in women with metastatic or 
recurrent disease. Novel therapeutic approaches including 
immunotherapy and targeted therapy, for example platinum 
combined with bevacizumab or pembrolizumab, have been 
able to extend overall survival (3). However, these treatment 
approaches remain insufficient and expensive.

Autophagy have critical effects on HPV infection 
and development of cervical cancer [reviewed in (4)]. 
HPV inhibited autophagy via inhibiting the fusion of 
autophagosome-lysosome with multiple ways. Autophagy 
was inhibited upon infection to avoid digestion, and in 
later processes to promote proliferation and carcinogenesis 
of infected cells. Inhibited autophagy could also avoid 
apoptotic cell death induced with violent autophagy. It is 
thus very important to restore the autophagic processes in 
treating cervical cancer.

Saffron, a traditional Chinese medicine, is the dried 
dark-red stigma of the plant Crocus sativus L. Saffron has 
been used traditionally to treat some conditions (5), such 
as certain cancers, neurological defects, cognitive problems 
and inflammatory diseases. One of the main bioactive 
components of Saffron is crocin, a soluble carotenoid with 
two D-gentiobioside glycosyl esters. The mechanism of 
action of crocin is complex (5), and includes the inhibition 
of DNA and RNA synthesis, reversion of epithelial-
mesenchymal transition (EMT), suppression of cell 
invasion and metastasis, targeting of cellular topoisomerase 
and microtubules, induction of apoptosis, suppression 
of telomerase activity, reduction of oxidative stress, and 
epigenetic effects. These mechanisms suggest that crocin 
may have potential as an antitumor agent. Furthermore, 
emerging evidence suggests that saffron is selectively 
toxic to tumor cells but safe to normal cells (6,7). Crocin 
was implied to induce autophagy and promote apoptosis 
in hepatocellular carcinoma by inhibiting Akt/mTOR  
activity (8). Crocin has also demonstrated time and dose 
dependent inhibition of cervical cancer cell viability, and 
induced apoptosis and cell cycle arrest (7). However, 
whether or not autophagy and apoptosis could be 

induced with crocin in cervical cancer still require further 
investigation.

To this end, the current study tested the effects of crocin 
on SiHa cells. Viability, apoptosis, autophagy and potential 
signaling molecules were investigated, and also validated 
in female BALB/c nude mice. We present the following 
article in accordance with the ARRIVE reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-5882).

Methods

Cell culture and viability

SiHa cells were purchased from the American Type Culture 
Collection (Rockville, MD, USA), and were maintained at 
37 ℃ with 5% CO2. Cells were cultured with Dulbecco’s 
modified eagle medium (DMEM) supplemented with 10% 
fetal bovine serum and 1% penicillin/streptomycin solution. 
For testing cell viability, the SiHa cells were seeded onto 
96-well plates with 3×103 cells/well in 100 μL of DMEM 
medium supplemented with 0.06, 0.13, 0.25, 0.5, 1, 2, 4, 8 
and 16 mM of crocin (#17304, Sigma-Aldrich, Missouri, 
USA). After 22 hours, 10 μL CCK-8 solution was dissolved 
in 90 μL of DMEM medium and subsequently added to 
each well. The plates were incubated for 2 hours, and the 
absorbance value was measured at 450 nm.

Transwell migration assay

A transwell migration assay was conducted to measure cell 
invasion. The Matrigel (Becton, Dickinson and Company, 
Bioscience, San Jose, CA, USA) was pre-cooled at 4 ℃ 
overnight for liquidation, and diluted with serum-free 
medium on ice for a 1:1 dilution. The Matrigel mixture 
(15 μL) was then added to the upper chamber (Costar, 
Cambridge, MA, USA) in each well and cultured at 37 ℃  
for 1 hour, then rinsed three times using serum-free 
medium. SiHa cells (1×105 cells) suspended in DMEM were 
added to the upper chamber, and 600 μL DMEM complete 
medium containing 15% FBS was added to the basolateral 
chamber. To both chambers, 0, 1, 2 or 4 mM of crocin was 
added, then cultured for 24 hours. The chambers were 
then fixed with 50% methyl alcohol for 15 minutes. Crystal 
violet staining was performed, and 6 visual fields from each 
well were randomly observed and imaged under an inverted 
microscope (200×, Olympus Optical Co., Ltd.). The average 
number of cells was calculated in each field.

http://dx.doi.org/10.21037/atm-20-5882
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Flow cytometry

To detect cell apoptosis, SiHa cells were treated with 
crocin (0, 1, 2 and 4 mM) for 24 hours then digested with 
trypsin. The trypsin digested cells (1×106) were subjected 
to flow cytometry using an Annexin V-FITC/PI Apoptosis 
Detection kit (Beyotime, Shanghai, Chain) following the 
manufacturer’s protocol. Cells with Annexin V-positive 
values were considered early apoptotic cells, those with PI-
positive values were considered necrotic, and those with 
double positive values were considered late apoptotic.

Western blotting analysis

Western blotting was performed to measure protein 
expression. SiHa cells were treated with crocin (0, 1, 2 and 
4 mM) for 24 hours then washed twice with cold PBS, and 
RIPA lysis buffer (Beyotime) was added to collect protein 
lysates. Total protein concentration was measured using 
the BCA Protein Assay Reagent (Pierce, Rockford, IL, 
USA), and the sample concentrations were diluted with 
PBS. Equal amounts of protein from experimental groups 
were subjected to SDS-PAGE and transferred to PVDF 
membranes. The membranes were blocked with 5% fat-free 
milk, probed with the primary and secondary antibodies, 
then enhanced with a chemiluminescence (ECL) reagent 
(Amersham Pharmacia Biotech). The following antibodies 
(Abcam, Cambridge, UK) were used: anti-Caspase-3 
(ab32351), anti-Caspase-9 (ab202068), anti-LC3B 
(ab48394), anti-Beclin1 (ab210498), anti-ATG-7 (ab52472), 
anti-AMPK (ab80039), anti-p-AMPK (ab133448), anti-
AKT (ab8805), anti-p-AKT (phospho T308, ab38449), 
anti-mTOR (ab2732), anti-p-mTOR (ab109268), anti-
VEGF (ab150375), anti-Actin (ab8227) and goat-anti-rabbit 
IgG (ab205718).

Immunofluorescence

Immunofluorescence of SiHa cells was performed 
as previously described (9). After fixation with 4% 
paraformaldehyde for 15 min at 37 ℃, SiHa cells were 
permeabilized with 0.1% Triton X-100 (Beyotime, China) 
for 30 min, and blocked with goat serum for 15 min. Cells 
were incubated with primary LC3 antibody (1 µg/m, 
Abcam) overnight at 4 ℃, and then with AlexaFluor® 647 
conjugated secondary antibody (#4414, 1:2,000, CST, USA) 
at room temperature for 60 min. DAPI (Beyotime) was used 
to counterstain the cell nuclei. Immunofluorescence images 

were acquired with confocal microscopy (LSM 510 Meta, 
Zeiss, Oberkochen, Germany). LC3 puncta were counted 
from 10 random fields per slide.

Animal experiments

The study was approved by the Medical Ethics Committee 
of West China Second Hospital, Sichuan University (No. 
2014-2020). All animal experiments were approved by the 
Institutional Animal Care and Use Committee of Sichuan 
Academy of Medical Sciences & Sichuan Provincial People’s 
Hospital, and were performed according to institutional 
guidelines. Twelve 4-week-old female BALB/c nude mice 
were purchased from Shanghai SLAC Laboratory Animal 
Co., Ltd. The mice were housed in 2 polypropylene cages at 
room temperature with a relative humidity of 60 ± 5% and 
a photoperiod of 12 h/day. Approximately 1×107 SiHa cells 
suspended in 100 μL of PBS were injected into the right 
thigh of all mice. After 5 days, the formation of tumors was 
confirmed, and mice were randomly divided into two groups 
and administered as: crocin (50 mg/kg/d) or saline (vehicle) 
by referring to previous research (10). After 4 weeks,  
the mice were sacrificed. The tumors were surgically 
removed, fixed in 10% formalin, and subjected to routine 
histological examination.

Immunohistochemical staining

Caspase-3 and vascular endothelial growth factor (VEGF) 
protein expression in xenograft tumors was determined by 
immunohistochemistry (IHC) (11). The primary antibodies 
used were the same as those used for western blotting. The 
fixed tumors were embedded in paraffin and 4 μm slices 
were sectioned. The sections were rehydrated and incubated 
in citrate buffer for 3 min at 100 ℃. The sections were 
then incubated with primary antibodies against caspase-3 
and VEGF overnight at 4 ℃. After further incubation 
with goat anti-rabbit IgG (Boster Biological Technology, 
Wuhan, China) for 30 min, the sections were stained with 
diaminobenzidine and photographed under a microscope. 
Four random and nonoverlapping positively stained 
microscopic fields at 400× magnification were examined in 
each section. The protein expression levels in each section 
were measured with integral optical density values (IOD) 
(IOD = sum of four discontinuous visual fields/4) measured 
with Image-Pro Plus 6.0 software (Media Cybernetics Inc., 
Maryland, USA).
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Statistical analysis

All in vitro experiments were repeated three times. Two-
tailed unpaired Student’s t-tests and one-way ANOVA 
(analysis of variance) were used to evaluate the differences 
between the two groups. GraphPad Prism 6 software 
(San Diego, CA) was used for the statistical analysis. All 
quantitative data were presented as mean ± standard error 
of mean. P<0.05 was considered statistically significant.

Results

Crocin inhibited viability and invasion capacity of SiHa 
cells

To test the effects of crocin on SiHa cells, cells were 
incubated with 0.06, 0.13, 0.25, 0.5, 1, 2, 4, 8 and 16 mM 
of crocin in 100 μL of medium for 24 hours. The viability 
of SiHa cells were dose-dependently reduced with crocin, 
with 2, 4, 6 and 8 mM significantly reducing cell viability  
(Figure 1A). In later experiments, 0, 1, 2 and 4 mM 
concentrations of crocin were established to show its 
underlying mechanism. The invasive cells tested with a 
transwell migration assay showed a significant reduction 
in the 2 mM group, and even fewer in 4 mM group  
(Figure 1B,C). The results demonstrate the inhibition of cell 
viability and invasion of SiHa cells treated with crocin.

Crocin promoted apoptosis of SiHa cells

Apoptosis is a common downstream mechanism of most 
anticancer therapeutics. In crocin treated SiHa cells, 
apoptosis was significantly induced by 2 and 4 mM of crocin 
(Figure 2A,B). The induced apoptosis was further validated 
with the increased ratio of cleaved caspase-3/caspase-3 
and cleaved caspase-9/caspase-9 (Figure 2C,D). The 
results indicated that apoptosis was also the downstream 
mechanism of crocin in the suppression of SiHa cells.

Crocin enhanced autophagy of SiHa cells

The ratio of LC3II/I, Beclin1 and ATG7 were all 
markedly increased after 2 and 4 mM of crocin treatment  
(Figure 3A,B). The induced autophagy was also validated by 
the presence of increased LC3 puncta positive cells after 2 
and 4 mM of crocin treatment (Figure 3C,D). These results 
suggest that autophagy was induced dose-dependently after 
crocin exposure.

Crocin inactivated AMPK/MTOR

AMPK, AKT and mTOR are implicated in the regulation 
of autophagy and apoptosis in crocin treated cells (12). 
As shown in Figure 4A,B, the ratio of p-AMPK/AMPK 
and p-mTOR/mTOR were inhibited dose-dependently, 
while p-AKT/AKT increased. These results indicate that 
AMPK and mTOR signaling were potentially involved in 
the mechanism of action of crocin in suppressing SiHa cell 
proliferation.

Crocin suppressed tumor progression in vivo

In SiHa cell-bearing mice, 50mg/kg/d of crocin significantly 
reduced tumor formation (Figure 5A). The tumor volumes 
in the crocin group were significantly smaller than the 
control group (Figure 5B). Proliferation and metastases were 
inhibited with crocin (Figure 5C), as seen through increased 
caspase-3 (Figure 5D) and reduced VEGF (Figure 5E) in 
treated tumors. Autophagy in the tumors was assessed 
using western blotting (Figure 5F), and demonstrated that 
the ratio of LC3II/I was significantly elevated in tumors of 
crocin treated mice (Figure 5G).

Discussion

Persistent viral infection of the high-risk HPV subtype is 
the main cause of cervical cancer worldwide. The risk for 
cervical cancer remains high in certain countries, despite the 
increasing availability of vaccination (13). Chemotherapy 
for late stage cervical cancer mainly includes carboplatin/
pacl itaxel  or topotecan/pacl itaxel  combined with 
bevacizumab (14,15). Development of novel therapeutic 
strategies is still required, as current treatment options 
remain limited. In the present study, we showed that crocin 
inhibited the progression of cervical cancer in vitro and 
in vivo, as indicated by the inhibition of proliferation and 
invasion, and the promotion of autophagy and apoptosis in 
SiHa cells and in xenograft mice. These effects were at least 
partly the result of inactivated AMPK/mTOR pathway, 
supporting the value of autophagy promoting effects in 
treating cervical cancer. We suggest that crocin is worthy of 
further study to combat cervical cancer.

Crocin has been implicated in tumor suppression 
across multiple cancers, through several complex pathways 
and mechanisms (16). For example, crocin exerts anti-
tumor effects through the activation of p53 and Bax 
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while inactivating Bcl-2 in gastric cancer and lung cancer 
(17,18), inactivating NF-κB and inf﻿lammation in colorectal  
cancer (19), and inhibiting histone deacetylase 2, Wnt/
β-catenin and CD34 in breast cancer (20-22). Molecular 
docking has predicted several  targets  for crocin, 
including telomeric DNA (23), coronavirus (nCoV-
2019) main protease (24), human tyrosinase (25), human 

serum albumin (26), glucagon-like peptide-1 (GLP-1)  
receptor (27), catalase (28), TLR4 and TGF-βR1 (29). Most 
of these predicted targets have been validated in specific 
cells. The many predicted targets partly explain the complex 
mechanism of action for crocin. On the other hand, some 
of these targets highlight the potential for adverse effects 
and interactions with other therapeutics that may limit 

Figure 1 Cell viability and invasion of SiHa cells treated with crocin. (A) SiHa cells were treated with indicated concentrations of crocin for 
24 hours and viability was tested using a CCK-8 assay; (B) invasive SiHa cells treated with 0, 1, 2 and 4 mM of crocin for 24 hours and tested 
with a Matrigel-enabled transwell migration assay, stained with crystal violet and observed under 400× scope; (C) the invasive cells were 
counted. *, P<0.05 versus control with t-test.
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the development and application of crocin, such as raising 
blood glucose, competing receptors, or changing the in vivo 
distribution of drugs.

Currently, the mechanism of action for crocin in cervical 

cancer mainly includes the induction of apoptosis and 
the inhibition of proliferation (8). Crocin also suppressed 
spindle microtubule dynamics and reduced the cell viability 
of HeLa cells without significantly increasing cellular ROS 

Figure 2 Apoptosis of SiHa cells treated with crocin. SiHa cells were treated with 0, 1, 2 and 4 mM of crocin for 24 hours. (A) The 
apoptotic SiHa cells were assessed using flow cytometry; (B) the apoptotic cell counts are shown in bar graphs; (C) markers of apoptosis were 
measured with western blotting; (D) the ratio of cleaved caspase-3/caspase-3 and cleaved caspase-9/caspase-9 were estimated with Image J. *, 
P<0.05 versus control with t-test.
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Figure 3 Autophagy of SiHa cells treated with crocin. SiHa cells were treated with 0, 1, 2 and 4 mM of crocin for 24 hours. (A) Expression 
of autophagy marker proteins were measured with western blotting; (B) the relative expression of LIC II/I, Beclin1 and ATG7 were 
estimated with Image J; (C) LC3 puncta in SiHa cells were visualized with immunofluorescence and observed under 400× scope, green: LC3 
puncta, blue: nucleus; (D) LC3 puncta per cell were evaluated with Image Pro Plus. *, P<0.05 versus control with t-test.

Figure 4 AMPK, AKT and mTOR expression in SiHa cells treated with crocin. SiHa cells were treated with 0, 1, 2 and 4 mM of crocin for 
24 hours. (A) Protein expression of AMPK, p-AMPK, AKT, p-AKT, mTOR and p-mTOR were measured with western blotting; (B) the 
protein expression profiles were measured with Inage J. *, P<0.05 versus control with t-test.
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Figure 5 In vivo effects of crocin. SiHa cervical cancer cells were inoculated in female BALB/c mice. The mice were injected with crocin 
(50 mg/kg/d) or saline for 28 days. (A) The tumors were imaged; (B) the tumors were weighed and compared; (C) immunohistochemical 
staining of the tumors observed under 200× scope showing caspase-3 and VEGF, violet: cell nucleus, yellow: Caspase-3 or VEGF positive 
signal. Caspase-3 (D) and VEGF (E) positive cells were counted; (F) LC3 expression in tumors; (G) the relative expression of LC3II/I was 
measured with Image J. *, P<0.05 versus control with t-test.
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(30,31). In the present study, we also demonstrated a dose-
dependent inhibition of cell proliferation. Additionally, 
invasive cells were reduced after crocin exposure, and 
apoptosis and autophagy were induced after crocin 
treatment. These results suggest that autophagy induced 
apoptosis in crocin treated SiHa cells. The AMPK, AKT 
and mTOR pathways are implicated in the regulation of 
autophagy and apoptosis in crocin treated cells in other 
tumors (12). In the present study, AMPK and mTOR were 
inactivated while PI3K was activated with crocin treatment. 
These results suggest that induced autophagy was a result of 
inhibited AMPK rather than PI3K.

Using a relatively high concentration, Jiang et al. 
showed that 125 mg/L of crocin inhibited the proliferation 
of HeLa cells in vitro; and 120 mg/kg of crocin in male 
albino rats decreased alanine transaminase (ALT), aspartate 
transaminase (AST), lactate dehydrogenase (LDH), alkaline 
phosphatase (ALP), blood urea nitrogen (BUN), creatinine, 
bilirubin, albumin and total protein, while increasing 
glucose, cholesterol, thyroglobulin (TG), and glutathione 
(GSH) (32). Based on these results, they argued that the 
adverse effects of crocin might limit its clinical application. 
However, crocin has long been utilized as a food colorant 
and additive in the food industry worldwide, which strongly 
supports its safety profile (33). On the other hand, less 
protein/peptides and more glucose or TG in serum may 
be of benefit in combating tumors, as the protein supply 
of tumors can be limited and the immune system can be 
activated. In this study, we observed no significant adverse 
effects in mice. Crocin administration significantly reduced 
tumor growth, and promoted autophagy and apoptosis. 
These results support the efficacy and safety of crocin for 
cancer treatment.

There are limitations to this study. There are many 
reported targets of crocin, and the mechanism of action for 
crocin in cervical cancer is complicated, but only one aspect 
was investigated in the current study. The complexity of 
crocin also raises concerns about potential adverse effects 
and possible interactions with other therapeutics, which 
remain largely unexplored.

In conclusion, we showed that crocin inhibited 
proliferation and invasion, and promoted autophagy and 
apoptosis of SiHa cells and in xenograft mice. We propose 
that the anti-tumor effects of crocin was a result of induced 
autophagy through AMPK and mTOR inhibition but 
not PI3K. Also, the results suggest that crocin could be a 
potential prodrug for cervical cancer treatment.
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