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Background: Hereditary factors contributed to breast cancer susceptibility. Low BRCA mutation 
prevalence was demonstrated in previous BRCA mutation screening in Chinese breast cancer patients. 
Multiple-gene sequencing may assist in discovering detrimental germline mutation in BRCA-negative breast 
cancers.
Methods: A total of 384 Chinese subjects with any two of high-risk factors were recruited and screened 
by next-generation sequencing (NGS) for 30 cancer susceptible genes. Variants with a truncating, initiation 
codon or splice donor/acceptor effect, or with pathogenicity demonstrated in published literature were 
classified into pathogenic/likely-pathogenic mutations.
Results: In total, we acquired 39 (10.2%) patients with pathogenic/likely-pathogenic germline mutations, 
including one carrying two distinct mutations. Major mutant non-BRCA genes were MUTYH (n=11, 2.9%), 
PTCH1 (n=7, 1.8%), RET (n=6, 1.6%) and PALB2 (n=5, 1.3%). Other mutant genes included TP53 (n=3, 
0.8%), RAD51D (n=2, 0.5%), CHEK2 (n=1, 0.3%), BRIP1 (n=1, 0.3%), CDH1 (n=1, 0.3%), MRE11 (n=1, 
0.3%), RAD50 (n=1, 0.3%) and PALLD (n=1, 0.3%). A splicing germline mutation, MUTYH c.934-2A>G, 
was a hotspot (9/384, 2.3%) in Chinese breast cancer. 
Conclusions: Among BRCA-negative breast cancer patients with high hereditary risk in China, 10.2% 
carried mutations in cancer associated susceptibility genes. MUTYH and PTCH1 had relatively high 
mutation rates (2.9% and 1.8%). Multigene testing contributes to understand genetic background of BRCA-
negative breast cancer patients with high hereditary risk.
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Introduction

Breast cancer susceptibility is demonstrated to be associated 
with hereditary background, and it is estimated that 
hereditary and genetic factors contributed to 27% of breast 
cancer incidences (1,2). BRCA1 and BRCA2 germline 
mutations are the most common cause of hereditary breast 
cancer. In our previous study, comprehensive screening in 
Chinese breast cancer patients with high hereditary risk in our 
cancer centre showed a low BRCA mutation prevalence (3), 
which suggesting the majority of Chinese hereditary breast 
cancer is associated with other susceptible genes. Apart 
from the first discovery of BRCA1 and BRCA2, other breast 
cancer associated susceptibility genes have been identified 
constantly, including high-penetrance susceptible genes 
(TP53 and PTEN), moderate-penetrance susceptible genes 
(CDH1, STK11, NF1, PALB2, CHEK2, ATM and NBN), 
and low-penetrance susceptible genes (BARD1, FANCC, 
MRE11A, MUTYH heterozygotes, RECQL, RAD50, 
RET1, SLX4, SMARCA4, XRCC2 and so on) (4-6). Despite 
the fact that breast cancer susceptible genes have been 
extensively studied and multiple genes testing have been 
widely performed in Caucasians, Ashkenazi Jewish and 
African Americans, insufficient data supports the knowledge 
of hereditary background in Chinese breast cancer patients. 

Many retrospective studies proved that clinicopathologic 
features and outcomes of breast cancer varied between 
Chinese and Caucasian population. Chinese patients had a 
younger age at diagnosis of breast cancer, whose peak age 
onset was between 45 and 55 years old, compared to an 
average of between 60 and 70 years old in Caucasian breast 
cancer patients (7). Besides, Chinese patients had a lower 
rate of incidence of invasive lobular breast cancer. Genomic 
profiling studies also demonstrated disparities between 
breast cancers of different ethics. One study compared 
gene expression and microRNA profiles between Chinese 
and Italian breast cancers and found lower prevalence of 
Luminal A subtype among Chinese breast cancers (8). A 
more recent study revealed a higher mutational prevalence 
for TP53 and AKT1 in Chinese patients (9).

The National Comprehensive Cancer Network (NCCN) 
has set criteria of hereditary risk evaluations for breast 
cancer patients since 2014 (6,10-12). Main concerns in 
NCCN guidelines include early-age onset breast cancer, 
triple negative breast cancer under 60 years old, primary 
bilateral breast cancer, male breast cancer and breast 
cancer with certain family history. The NCCN guidelines 
recommend multigene testing should ideally be offered in 

the context of professional genetic expertise for pre- and 
post-test counselling, and warranted’ in those who have 
tested negative for a single inherited syndrome (6,10,11). 
However, no consensus or guidelines regarding the 
identification of hereditary mutation (beyond BRCA1 and 
BRCA2) carriers and clinical management options has been 
integrated for Chinese breast cancer patients.

Next-generation sequencing (NGS) is driving growth 
and possibilities in genomic researching, providing reading 
lengths as long as the entire genomes, reducing the cost 
of sequencing, and enabling the application of genetic 
testing as a clinical tool (13,14). Moreover, NGS allows 
for the sequencing of multiple genes simultaneously at an 
unprecedented speed. Multiple gene panel testing could not 
only include high-penetrance susceptible genes associated 
with a specific cancer, but also include moderate- and low-
penetrance susceptible genes as well (15). Meanwhile, 
multiple gene panels for inherited cancer risk have proved 
to be a more time- and cost-efficient approach in hereditary 
risk management.

In our present study, we are aiming to provide more 
information about and get better knowledge of mutational 
spectrum in Chinese population, to identify novel mutations 
in high hereditary risk breast cancer patients with BRCA1 
and BRCA2 testing negative, and to aid in updating the 
clinical recommendations for genetic testing.

Methods

Pathologic data

A triple-negative breast cancer (TNBC) case was defined as 
a patient whose tumour sample was negative for oestrogen 
receptor (ER), progesterone receptor (PR) and human 
epidermal growth factor receptor 2 (HER2) expression 
upon immunohistochemical (IHC) staining. ER or PR 
immunostaining was considered positive when >1% of the 
tumour cells showed positive nuclear staining. Patients 
showing HER2 expression (IHC, score equal to 2+) were 
subjected to florescence in situ hybridization (FISH) to 
determine HER2 gene amplification. The HER2 over-
expression subgroup was defined as those patients who were 
FISH-positive or presented an IHC staining score equal to 3+. 

Cases and samples

We selected the breast cancer patients with high-risk 
hereditary background who was previously tested negative 
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in BRCA1 and BRCA2 genes. Breast cancer patients with 
any two of the five following risk criteria were defined to 
harbour high-risk hereditary background in the present 
study: (I) pathological diagnosis of TNBC, (II) male breast 
cancer, (III) primary bilateral breast cancer, (IV) early-
age onset breast cancer (less than or equal to 40 years of 
age at diagnosis), or (V) positive family history of breast 
and/or ovarian cancer. All the cases were collected from 
three independent hospitals in China, which were Fudan 
University Shanghai Cancer Center, the Affiliated Union 
Hospital of Fujian Medical University, and Shanghai 
First Maternity and Infant Hospital. Finally, a total of 384 
patients were enrolled and peripheral blood samples were 
collected. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of Fudan University 
Shanghai Cancer Center (No. 050432-4-1212B) and 
informed consent was taken from all the patients.

Multigene testing

The Multigene panel includes 30 breast cancer associated 
susceptibility genes (Table 1). All coding regions and exon-
intron boundaries of the genes were screened. The average 
intronic sequence length was 70 bp (ranging from 5 to  
204 bp). 

Multiplex PCR 

Genomic DNA was isolated from peripheral lymphocytes 
using a TGuide M16 automatic extraction machine 
(Tiangen Biotechnology, Beijing, China). The DNA 
concentration was quantified using a NanoDrop ND2000 
(NanoDrop Technologies, Wilmington, DE, USA) 
spectrophotometer, and the samples were diluted to  
20–50 ng/µL if the DNA concentration was higher than 
50 ng/µL. Thirty-microliter aliquots of the DNA samples 
were transferred to the wells of a 96-well-plate. A total of 
384 extracted genomic DNA samples were used for target 
capture and sequencing. 

All DNA samples were amplified in two separate 
multiplex PCR assays. Each amplification reaction was 
prepared by mixing 3 μL of the genomic DNA, 8 μL of 
each primer panel, 12.5 µL of the KAPA2G Robust hot 
start ready mix (Kapa Biosystems, Wilmington, MA, USA) 
and 1.5 μL of H2O. The PCR program was 95 ℃ for  
4 min followed by 18 cycles of 98 ℃ for 15 s and 60 ℃ for 
4 min. The PCR products were cleaned up using AMPure 

XP Beads (Beckman Coulter, Pasadena, CA, USA). The 
procedure was performed according to the manufacturer’s 
protocol and described in the supplementary materials.

Barcoding and Illumina sequencing

Barcoding was performed in a 20-µL reaction mixture that 
contained 8 µL of the cleaned PCR products, 10 µL of 
KAPA2G Robust hot start ready mix (Kapa Biosystems, 
Pasadena, CA, USA), 1 µmol/L barcode F primers and  
1 µmol/L barcode R primer. The reaction was performed 
in a conventional PCR thermal cycler using the following 
conditions: 95 ℃ for 30 seconds; 5 cycles of 95 ℃ for  
15 seconds, 55 ℃ for 15 seconds, and 72 ℃ for 1 minute; 
and a completion step at 72 ℃ for 5 minutes. 

The barcoded PCR products from the various samples 
were cleaned up using AMPure XP Beads (Beckman 
Coulter, Pasadena, CA, USA). The procedure was 
performed according to the manufacturer’s protocol and 
described in the supplementary materials. The purified PCR 
product library was quantified using a Qubit Fluorometer 
(Thermo Fisher Scientific, Waltham, MA, USA). Based 
on library quantitation, the PCR products were pooled 
together in equal molar ratios. The purified libraries were 
routinely sequenced on a NextSeq 500 sequencer (Illumina, 
San Diego, CA, USA) using the 2×150 bp end sequencing 
protocol.

Analysis of sequencing data

Demultiplexed, compressed FASTQ files were generated 
from BCL using bcl2fastq Conversion Software v1.8.4 
(Illumina, San Diego, CA, USA). For all successful 
sequencing runs, the read depth was 30× at any given 
position, with 100× mean coverage across the entire 
targeted sequence and Q30 at greater than 75% of reads. 
The variant calling and coverage of each captured region 
were analysed using an in-house-developed bioinformatics 
pipeline based on the general analysis algorithm pipeline. 
Briefly, the reads were mapped to the hg19 version of the 
human reference genome (GRCh37) and then filtered to 
remove off-target and poor-quality reads. Variants were 
identified and annotated. The variants and annotation 
results were transferred into Excel spreadsheets. 

Interpretation of the mutation testing results

The mutations were classified as benign, likely-benign, 
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variants of uncertain significance, likely-pathogenic, and 
pathogenic. If applicable, detailed information was obtained 
using the gene-specific databases dbSNP (http://www.ncbi.
nlm.nih.gov/projects/SNP), ClinVar (http://www.ncbi.
nlm.nih.gov/clinvar/). Subsequently, a manual literature 
search was performed using a Google search in PubMed, 
Science-Direct, and BioMed Central to confirm that there 
had been no previous reports on each specific mutation. 
Novel mutations were defined when there was no match 
to the reference single-nucleotide polymorphism (RS) 
numbers in the dbSNP database. Mutations were classified 
according to American College of Medical Genetics and 
Genomics recommendations (48) and interpreted as positive 
for a oncogenic mutation when (I) frameshift insertions 
or deletions resulted in the expression of an abnormal or 
truncated protein product; (II) mutations in noncoding 
intervening sequence at splicing sites caused abnormal 
processing of the mRNA transcript; or (III) missense 
mutations and non-frameshift insertions or deletions were 
defined as pathogenic in a database and/or published study. 
The mutations with clear oncogenic impacts reported in 
previous studies were selected for further analysis.

Variant confirmation

A subset of variants, including known variants that were 
pathogenic or likely pathogenic and newly identified 
variants with functional damage, was confirmed by 
conventional Sanger sequencing using the BigDye 
Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher 
Scientific, Waltham, MA, USA). Variants that could not be 
confirmed were excluded from further analysis.

Statistical analysis

The Chi-square test, t-test and Fisher’s exact test were 
applied in statistical analysis. The statistical analyses were 
performed using SPSS software version 20.0 (IBM institute, 
Chicago, IL, USA). All P values in the study were two-
sided, and P<0.05 was considered statistically significant.

Results

Description of the NGS dataset

Our NGS analysis revealed 18,435 candidate variants in 
the 30 genes’ coding regions and the adjacent splice sites, 

with a range of 34–78 genetic variants in individual samples. 
These candidate variants included 27 splicing variants, and 
18,408 exonic variants. The exonic variants represented 
7,266 missense variants, 11,102 silent variants, 11 stop-gain 
variants, 3 stop-loss variants, and 26 insertion variants.

Associations between clinical characteristics and mutation 
status

As it was described above, a total of 384 Chinese breast 
cancer patients with high hereditary risks were recruited. All 
the participants were tested to be BRCA-negative who came 
from our previous study (3). The baseline characteristics of 
breast cancer patients and its relationship with oncogenic 
mutations were showed in Table 2.

A total of 39 (39/384, 10.2%) mutation carriers were 
identified in our multigene screening. Most kinds of 
clinical characteristics didn’t have statistically significant 
associations with multigene mutation status, except that 
breast cancer patients with HER2 positive tended to have a 
higher mutation prevalence than those with HER2 negative 
(20% versus 9%, P=0.049).

In our study, the average age at diagnosis of breast cancer 
was similar between patients with and without germline 
mutations in these BRCA-negative cases (42 versus 39, 
P=0.431; Table 3). However, we found the average age at 
diagnosis of breast cancer was significantly older for patients 
with deleterious RET mutations than the patients without 
germline mutations (49 versus 39, P=0.028; Table 3). We 
further evaluated whether patients with mutations in the 30 
predisposition genes were associated with a stronger family 
history of breast or ovarian cancers than non-mutated 
patients. In particular, all patients with RET mutations were 
enriched for a family history of breast cancer (100% versus 
49%, P=0.014; Table 3). However, no carriers had a family 
history of ovarian cancer.

We also evaluated associations between mutation status 
of single predisposition gene and clinical stages (Table 4) 
as well as tumor pathology (Table 5). Overall, carriers and 
non-carriers had similar tumor stages (Table 4). When 
each receptor was examined alone, we observed PALB2 
mutation carriers were more likely to be ER-positive than 
non-carriers (80% versus 28%, P=0.027; Table 4). Notably, 
TP53-mutated breast cancers were significantly more likely 
to be ER−, PR− and HER2-positive (100% versus 28%, 
P=0.024 for ER; 100% versus 27%, P=0.020 for PR; 100% 
versus 9%, P=0.001 for HER2; Table 5).

http://www.ncbi.nlm.nih.gov/projects/SNP
http://www.ncbi.nlm.nih.gov/projects/SNP
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
l 
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Table 2 Characteristics of breast cancer patients and mutation carriers

Characteristics
No. of  

patients

Non-carriers (N=345) Mutation carriers (N=39)
P

No. % No. %

Family history of breast cancer

Negative 193 175 91 18 9 0.588

Positive 191 170 89 21 11

Family history of other neoplasms

Negative 267 236 88 31 12 0.141

Positive 117 109 93 8 7

Histologic classification

Carcinoma in situ 44 38 86 6 14 0.435

Invasive carcinoma 340 307 90 33 10

ER status

Negative 270 246 91 24 9 0.205

Positive 113 98 87 15 13

Unknown 1 1 0

PR status

Negative 275 252 92 23 8 0.069

Positive 108 92 85 16 15

Unknown 1 1 0

HER2 status

Negative 341 310 91 31 9 0.049
#

Positive 40 32 80 8 20

Unknown 3 3 0

Ki67 status

<15% 59 50 85 9 15 0.103

≥15% 262 241 92 21 8

Unknown 63 54 9

Tumor size

≤2 cm 185 169 91 16 9 0.395

>2 cm 186 165 89 21 11

Unknown 13 11 2

Tumor grade

I–II 99 92 93 7 7 0.548

III 175 159 91 16 9

Unknown 110 94 16

Table 2 (continued)
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Table 2 (continued)

Characteristics
No. of  

patients

Non-carriers (N=345) Mutation carriers (N=39)
P

No. % No. %

Cancer emboli

Negative 287 258 90 29 10 0.907

Positive 95 85 89 10 11

Unknown 2 2 0

Lymph nodes status

Negative 262 237 90 25 10 0.546

Positive 121 107 88 14 12

Unknown 1 1 0

Stage 

0–II 325 293 90 32 10 0.613

III–IV 49 43 88 6 12

Unknown 10 9 1
#
, denote two-sided P<0.05.

Table 3 Gene-based age at diagnosis and family history of cancer

Gene
No. of 

Mutations

Age at diagnosis  
(years)*

Family history of cancer
†

Breast Ovarian

Mean Range P Yes No Positive % P Yes No Positive % P

Mutated genes 39 42 20–92 0.431 21 18 54 0.616 0 39 0 1.000 

BRIP1 1 30 30–30 – 0 1 0 1.000 0 1 0 1.000 

CDH1 1 32 32–32 – 0 1 0 1.000 0 1 0 1.000 

CHEK2 1 34 34–34 – 0 1 0 1.000 0 1 0 1.000 

MRE11 1 34 34–34 – 0 1 0 1.000 0 1 0 1.000 

MUTYH 11 51 23–92 0.145 7 4 64 0.378 0 11 0 1.000 

PALB2 5 38 27–54 0.725 4 1 80 0.172 0 5 0 1.000 

PALLD 1 38 38–38 – 0 1 0 1.000 0 1 0 1.000 

PTCH1 7 40 34–62 0.901 3 4 43 1.000 0 7 0 1.000 

RAD50 1 30 30–30 – 0 1 0 1.000 0 1 0 1.000 

RAD51D 2 48 36–59 0.293 0 2 0 1.000 0 2 0 1.000 

RET 6 49 34–81 0.028
#

6 0 100 0.014
#
 0 6 0 1.000 

TP53 3 28 20–38 0.073 2 1 67 0.549 0 3 0 1.000 

Wildtype 345 39 21–77 Referent 170 175 49 Referent 9 336 3 Referent
#
, denote two-sided P<0.05. *, associations with age at diagnosis were evaluated by t-test. 

†
, associations with family history of breast or 

ovarian cancer were evaluated by Fisher’s exact test. 



Lang et al. Multiple genes sequencing in BRCA-negative breast cancer

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(21):1417 | http://dx.doi.org/10.21037/atm-20-2999 

Page 10 of 20

T
ab

le
 4

 A
ss

oc
ia

tio
n 

be
tw

ee
n 

m
ut

at
io

n 
st

at
us

 a
nd

 c
lin

ic
al

 s
ta

ge
s

G
en

e
N

o.
 o

f 
M

ut
at

io
ns

C
lin

ic
al

 s
ta

ge
s

T*
N

*
TN

M
 s

ta
ge

*

≤2
 c

m
%

>
2 

cm
%

U
nk

no
w

n
%

P
P

os
iti

ve
%

N
eg

at
iv

e
%

U
nk

no
w

n
%

P
I–

II
%

III
–I

V
%

U
nk

no
w

n
%

P

B
R

IP
1

1
0

0
1

10
0

0 
0

0.
49

3 
1

10
0

0
0

0 
0

0.
31

3 
1

10
0

0
0

0 
0

1.
00

0 

C
D

H
1

1
0

0
0

0
1 

10
0

–
0

0
1

10
0

0 
0

1.
00

0 
0

0
0

0
1 

10
0

0.
13

1 

C
H

E
K

2
1

0
0

0
0

1 
10

0
–

0
0

1
10

0
0 

0
1.

00
0 

0
0

0
0

1 
10

0
0.

13
1 

M
R

E
11

1
1

10
0

0
0

0 
0

1.
00

0 
0

0
1

10
0

0 
0

1.
00

0 
1

10
0

0
0

0 
0

1.
00

0 

M
U

TY
H

11
5

45
6

55
0 

0
0.

76
8 

5
45

6
55

0 
0

0.
33

3 
9

82
2

18
0 

0
0.

64
1 

PA
LB

2
5

4
80

1
20

0 
0

0.
37

2 
1

20
4

80
0 

0
1.

00
0 

4
80

1
20

0 
0

0.
50

1 

PA
LL

D
1

0
0

1
10

0
0 

0
0.

49
3 

1
10

0
0

0
0 

0
0.

31
3 

1
10

0
0

0
0 

0
1.

00
0 

P
TC

H
1

7
3

43
4

57
0 

0
0.

72
0 

2
29

5
71

0 
0

1.
00

0 
6

86
1

14
0 

0
1.

00
0 

R
A

D
50

1
0

0
1

10
0

0 
0

0.
49

3 
0

0
1

10
0

0 
0

1.
00

0 
1

10
0

0
0

0 
0

1.
00

0 

R
A

D
51

D
2

0
0

2
10

0
0 

0
0.

24
3 

1
50

1
50

0 
0

0.
52

7 
2

10
0

0
0

0 
0

1.
00

0 

R
E

T
6

2
33

4
67

0 
0

0.
44

4 
3

50
3

50
0 

0
0.

38
3 

4
67

2
33

0 
0

0.
18

0 

TP
53

3
1

33
2

67
0 

0
0.

61
8 

0
0

3
10

0
0 

0
0.

55
5 

3
10

0
0

0
0 

0
1.

00
0 

W
ild

ty
pe

34
5

17
0

49
16

4
48

11
 

3
R

ef
er

en
t

10
7

31
23

7
69

1 
0

R
ef

er
en

t
29

3
85

43
12

38
 

11
R

ef
er

en
t

*,
 a

ss
oc

ia
tio

ns
 w

er
e 

ev
al

ua
te

d 
by

 F
is

he
r’s

 e
xa

ct
 te

st
.



Annals of Translational Medicine, Vol 8, No 21 November 2020 Page 11 of 20

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(21):1417 | http://dx.doi.org/10.21037/atm-20-2999 

T
ab

le
 5

 A
ss

oc
ia

tio
n 

be
tw

ee
n 

m
ut

at
io

n 
st

at
us

 a
nd

 tu
m

or
 p

at
ho

lo
gy

G
en

e
N

o.
 o

f 
M

ut
at

io
ns

tu
m

or
 p

at
ho

lo
gy

E
R

*
P

R
*

H
E

R
2*

P
os

iti
ve

%
N

eg
at

iv
e

%
U

nk
no

w
n

%
P

P
os

iti
ve

%
N

eg
at

iv
e

%
U

nk
no

w
n

%
P

P
os

iti
ve

%
N

eg
at

iv
e

%
U

nk
no

w
n

%
P

B
R

IP
1

1
0

0
1

10
0

0 
0

1.
00

0 
0

0
1

10
0

0 
0

1.
00

0 
0

0
1

10
0

0 
0

1.
00

0 

C
D

H
1

1
0

0
1

10
0

0 
0

1.
00

0 
0

0
1

10
0

0 
0

1.
00

0 
0

0
1

10
0

0 
0

1.
00

0 

C
H

E
K

2
1

0
0

1
10

0
0 

0
1.

00
0 

0
0

1
10

0
0 

0
1.

00
0 

0
0

1
10

0
0 

0
1.

00
0 

M
R

E
11

1
0

0
1

10
0

0 
0

1.
00

0 
0

0
1

10
0

0 
0

1.
00

0 
0

0
1

10
0

0 
0

1.
00

0 

M
U

TY
H

11
4

36
7

64
0 

0
0.

52
0 

5
45

6
55

0 
0

0.
18

0 
2

18
9

82
0 

0
0.

28
7 

PA
LB

2
5

4
80

1
20

0 
0

0.
02

7#  
0

0
5

10
0

0 
0

0.
33

1 
0

0
5

10
0

0 
0

1.
00

0 

PA
LL

D
1

0
0

1
10

0
0 

0
1.

00
0 

0
0

1
10

0
0 

0
1.

00
0 

0
0

1
10

0
0 

0
1.

00
0 

P
TC

H
1

7
1

14
6

86
0 

0
0.

67
8 

1
14

6
86

0 
0

0.
68

0 
0

0
7

10
0

0 
0

1.
00

0 

R
A

D
50

1
1

10
0

0
0

0 
0

0.
28

7 
1

10
0

0
0

0 
0

0.
27

0 
1

10
0

0
0

0 
0

0.
09

6 

R
A

D
51

D
2

0
0

2
10

0
0 

0
1.

00
0 

0
0

2
10

0
0 

0
1.

00
0 

0
0

2
10

0
0 

0
1.

00
0 

R
E

T
6

2
33

4
67

0 
0

1.
00

0 
2

33
4

67
0 

0
0.

66
1 

1
17

5
83

0 
0

0.
45

2 

TP
53

3
3

10
0

0
0

0 
0

0.
02

4#  
3

10
0

0
0

0 
0

0.
02

0#  
3

10
0

0
0

0 
0

0.
00

1#  

W
ild

ty
pe

34
5

98
28

24
6

71
1 

0
R

ef
er

en
t

92
27

25
2

73
1 

0
R

ef
er

en
t

32
9

31
0

90
3 

1
R

ef
er

en
t

*,
 a

ss
oc

ia
tio

ns
 w

er
e 

ev
al

ua
te

d 
by

 F
is

he
r’s

 e
xa

ct
 t

es
t. 

# , d
en

ot
e 

tw
o-

si
de

d 
P

<
0.

05
. E

R
, e

st
ro

ge
n 

re
ce

pt
or

; P
R

, p
ro

ge
st

er
on

e 
re

ce
pt

or
; H

E
R

2,
 h

um
an

 e
pi

de
rm

al
 g

ro
w

th
 fa

ct
or

 
re

ce
pt

or
 2

.



Lang et al. Multiple genes sequencing in BRCA-negative breast cancer

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(21):1417 | http://dx.doi.org/10.21037/atm-20-2999 

Page 12 of 20

Associations between hereditary risk factors and mutation 
status

According to the study design, all patients were specifically 
chosen to harbour at least two known risk factors of 
hereditary background. Breast cancer patients with two 
risk factors took the main part of our cohort (354/384, 
92%), while breast cancer patients with three risk factors 
took the rest (30/384, 8%). We didn’t observe any person 
who harboured four or five risk factors as described in the 
selection criteria. In the meanwhile, no male patients with 
primary bilateral breast cancer or a positive family history 
of breast/ovarian cancer could be enrolled in our cohort. 
In our study, most of the participants included were early-
age onset patients with triple negative (147/384, 38%), 
followed by early-age onset patients with a positive family 
history of breast cancer or ovarian cancer (99/384, 26%) 
(Table 6). 

Though the number of patients is rare, male breast 
cancer patients under 40 years old were very likely to be 
tested positive in multigene screening (1/3, 33%). The 
early-age onset patients with primary bilateral breast cancer 
showed a high prevalence of germline mutation (4/18, 
22%), followed by primary bilateral breast cancer with a 
positive family history of breast/ovarian cancer (2/13, 15%). 
Interestingly, multigene mutation frequency was similar 
between breast cancer patients with two risk factors (36/354, 
10%) and those with three factors (3/30, 10%).

Multigene germline mutations

Among the 39 patients (39/384, 10.2%) with pathogenic/
likely-pathogenic germline mutations, one participant 
(patient code, 295860) carried two distinct mutations, 
which were RET c.341G>A and MUTYH c.C55T (Table 7). 
The major mutant non-BRCA genes were MUTYH (n=11), 
PTCH1 (n=7), RET (n=6) and PALB2 (n=5). Other mutant 
genes included TP53 (n=3), RAD51D (n=2), CHEK2 (n=1), 
BRIP1 (n=1), CDH1 (n=1), MRE11 (n=1), RAD50 (n=1) and 
PALLD (n=1). We identified 4 novel mutations which were 
never reported before, including PALB2 c.2964_2965insAA, 
PALB2 c.T1352G, RAD50 c.C1966T and RAD51D 
c.331_332insTA. A splicing germline mutation, MUTYH 
c.934-2A>G, was demonstrated to be a hotspot (9/384, 
2.3%) in Chinese breast cancer. Besides, we observed two 
recurrent mutations in our cohort, including RET c.341G>A 
(4/384, 1.0%) and PTCH1 c.2479A>G (6/384, 1.6%) 
mutations.

The association between distribution of multigene 
germline mutations and hereditary risks was not statistically 
apparent. We could merely tell PALB2 and RET mutations 
possibly tend to occur in breast cancer patients with family 
history of breast or ovarian cancer, for all those mutations 
were only observed in groups carrying risk factor of a 
positive family history of breast or ovarian cancer (Table 8).  
Similarly, TP53 mutations might associate with breast 
cancer taking place at a young age for they were all falling 

Table 6 Distribution of patients according to selection criteria

Selection criteria
Enrolled  

patients, No.

Non-carriers (N=345) Mutation carriers (N=39)

No. % No. %

Harboring two hereditary risks

Triple-negative BC: male BC 2 2 100 0 0

Triple-negative BC: primary bilateral BC 15 13 87 2 13

Triple-negative BC: early-age onset BC 147 137 93 10 7

Triple-negative BC: family history of BC or OC 57 51 89 6 11

Male BC: early-age onset BC 3 2 67 1 33

Primary bilateral BC: early-age onset BC 18 14 78 4 22

Primary bilateral BC: family history of BC or OC 13 11 85 2 15

Early-age onset BC: family history of BC or OC 99 88 89 11 11

Total 354 318 90 36 10

Harboring three hereditary risks 30 27 90 3 10

BC, breast cancer; OC, ovarian cancer.
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into groups carrying risk factor of early-age onset.

Discussion

The present study demonstrated about 10% of Chinese 
breast cancer patients with high hereditary risk who were 
previously tested BRCA-negative could benefit from 
multigene testing. Our study contributed to the knowledge 
of germline variations in multiple cancer susceptible genes 
in Chinese population. In previous studies, beyond BRCA1 
and BRCA2, the prevalence of germline mutations varied 
from 4.3% to 34.3% according to different recruiting 
criteria, gene panels or sequencing methods (49-55).  
Li et al. conducted a multi-centre study to investigate 
mutational frequency in Chinese patients with high 
hereditary risk breast cancer patients, and the study showed 
23.8% of participants contained germline mutations, 
including 6.8% in 38 other non-BRCA genes (52). Similarly, 
the study also defined multiple hereditary risks as selection 
criteria. A more recent study carried out by Wang et al. 
found 8.5% of patients harboured non-BRCA oncogenic 
mutations through a 22-gene panel screening, which 
were mainly found in ATM, CHEK2, PALB2, and BRIP1  
genes (55). In a much larger study with more susceptibility 
genes testing, the data from 8,085 cases demonstrated a 
mutation frequency of 2.9% in non-BRCA susceptibility 
genes (54). In spite of the fact that a more general gene 
panel was applied, the mutation frequency didn’t go up as 
the rising number of sequenced genes. However, it seemed 
quite different when genes number crossing over one 
hundred. There is another study using a panel of 152 genes 
associated with hereditary cancer, and the study identified 
16.1% of hereditary breast cancer patients as non-BRCA 
germline mutation carriers. Taken together, these collective 
evidences suggested criteria should be carefully chosen 
when using a small gene panel to detect genetic variations 
in hereditary breast cancer patients.

In our previous study, we observed BRCA mutation 
frequency raised up with hereditary risk factors added up (3).  
However, the theory didn’t work well in non-BRCA 
mutations. It was noted that multigene mutation frequency 
was similar between breast cancer patients with two risk 
factors (36/354, 10%) and those with three factors (3/30, 
10%) in our present cohort. Due the limited sample 
size and the lack of comparable study, it is hard to tell a 
difference for now, so more data and larger studies await to 
demonstrate such phenomenon.

PALB2 germline mutation frequency was demonstrated 

to be 1.3% in our study, and the results varied from 
0.7–1.2% in other Chinese studies (52,56,57). We further 
observed a potential association between PALB2 mutation 
carriers and breast cancer with a positive history of breast/
ovarian cancer, and other studies also proved the conclusion 
(56,57). Wu et al. performed PALB2 mutation screening 
a large Chinese breast cancer cohort, and demonstrated 
that compared with non-carriers, PALB2 mutation carriers 
were significantly more likely to have a familial aggregation 
of breast cancer and/or ovarian cancer (27.8% vs. 8.4%, 
P<0.001) (57). In the meanwhile, we also RET mutations 
tended to occur in breast cancer patients with family history 
of breast or ovarian cancer, but no further studies support 
the conclusion for RET mutations were less studied in breast 
cancer. A previous study only found one RET mutation 
carriers out of 8,085 consecutive unselected Chinese breast 
cancer patients (54). It seemed RET mutations could be 
more prevalent in breast cancer with high hereditary risk 
which needed to be confirmed by further investigation.

As mentioned before, we identified a hotspot germline 
mutation, MUTYH c.934-2A>G, in Chinese breast cancer. 
MUTYH is a human base excision repair gene involved 
in preventing 8-oxo-dG-induced mutagenesis (58). Bi-
allelic germline mutations of the MUTYH gene lead to 
autosomal recessive colorectal adenomatous polyposis and 
very high colorectal cancer risk in Caucasian population 
(59,60). MUTYH c.934-2A>G was first found in Japanese 
familial gastric cancer patients and also demonstrated to 
cause a splicing abnormality that led to the production 
of an aberrant mRNA transcript encoding a truncated 
MYH protein and lead to an impaired ability of excision 
repair (61). Interestingly, experts hold converse opinion 
about the MUTYH mutation, saying that some support 
its pathogenicity (62-65), while some do not (52,66,67). 
Notably, a Chinese study reported a relatively high 
variant rate (4.2%, 5/120) of MUTYH c.892-2A>G in 
their high-risk group, but lower rate (0.8%, 1/120) in 
their breast cancer group (66). According to the 5-tier 
rating system in American College of Medical Genetics 
and Genomics recommendations, MUTYH c.934-2A>G is 
likely pathogenic (48). Besides, another Chinese study also 
noticed 8 MUTYH mutation carriers out of 937 patients 
with high hereditary risk breast cancer (52). Moreover, 
a more recent study identified a MUTYH germline 
pathogenic variant and somatic loss of the wild-type allele 
which contributed to tumorigenesis (65). Considering all 
above, with currently available evidence suggesting that the 
variant is pathogenic, but the available data is insufficient 
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to prove that conclusively. Therefore, this variant was 
classified as likely pathogenic in our study.

We also explored whether the mutation status could 
impact the survival in these BRCA-negative breast cancer 
(data not showed), but no significant results were observed 
in comparing disease-free survival (DFS) or overall 
survival between the germline mutation carriers and non-
carriers. Previous studies came to inconsistent conclusions 
about BRCA mutation status as a prognostic factor in 
breast cancer (68-73). Among other predisposition genes, 
CHEK2 1100delC was demonstrated to be associated with 
increased risk of second breast cancer and a worse long-
term recurrence-free survival rate (74). Another study 
indicated CHEK2 H371Y mutation carriers were more 
likely to respond to neoadjuvant chemotherapy than 
non-carriers (75). However, we failed to identify these 
two mutations in our cohort. Moreover, breast cancer 
patients with PALB2 mutations were considered to be at 
a higher risk of death from breast cancer compared with  
non-carriers (76). A more recent study involved 16 DNA-
repair genes including ATM, BLM, CHEK2, FANCC, 
MER11A, MLH1, MSH2, MSH6, MUTHY, NBN, PALB2, 
PMS2, RAD50, RAD51C, RAD51D and TP53 (77), where 
most genes were also comprised in our study. The study 
concluded that 3.4% of BRCA-negative breast cancer 
patients carried germline mutations in the 16 DNA-repair 
genes, and the DNA-repair gene mutation carriers exhibited 
an aggressive phenotype and had poor survival compared 
with non-carriers. By virtue of the germline mutations, 
breast cancers harboring these mutations had unique 
mechanisms that could be rationally targeted for therapeutic 
opportunities. Increasing evidences demonstrated mutations 
in non-BRCA1/2  DNA-repair genes contributed to 
sensitivity to PARP inhibitors, which suggested carriers of 
mutated DNA-repair genes could undergo treatment with 
PARP inhibitors (78). Besides PARP, there were other key 
components, like PTEN (79-81), ATM (82), MSH2 (83,84) 
and APC (85), showing potentials for targeted therapy.

In conclusion, appropriately selected patients may gain 
benefit from multigene sequencing, and comprehensive 
gene panels could help understand hereditary mutations 
in genetic counselling, for hereditary breast cancer could 
be associated with more than breast cancer specific 
susceptibility genes especially when it was tested BRCA-
negative. As the costs of genomic testing decline and the 
benefits of sequencing appearing, it is inevitable that the 
use of gene-panel testing, even whole-exome and whole-
genome sequencing, will become widespread and come into 

daily clinical practice in China.

Conclusions

Our study demonstrated 10% of Chinese breast cancer 
patients with high hereditary risk who were previously 
tested BRCA-negative could benefit from multigene 
testing. Comprehensive gene panels could help understand 
hereditary mutations in genetic counselling, for hereditary 
breast cancer could be associated with more than breast 
cancer specific susceptibility genes when it was tested 
BRCA-negative.
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