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Background: Parkinson’s disease (PD) gradually degrades the functionality of the brain. Because of its 
relevance to the abnormality of the brain, electroencephalogram (EEG) signal is used for the early detection 
of this disease. This paper introduces a novel computer-aided diagnosis method to detect PD, which is 
an efficient deep learning method based on a pooling-based deep recurrent neural network (PDRNN). 
Therefore, the purpose of this study is to detect Parkinson’s disease based on deep recurrent neural network 
of EEG signal
Methods: The EEG signals of 20 patients with Parkinson’s disease and 20 healthy people in Henan Provincial 
People’s Hospital (People’s Hospital of Zhengzhou University) were examined, and a PDRNN learning 
method was applied on the dataset for managing the demand of the traditional feature presentation step. 
Results: The suggested DPRNN network gives the precision, sensitivity and specificity of 88.31%, 84.84% 
and 91.81%, respectively. Nevertheless, 11.28% of the healthy cases are wrongly categorized in Parkinson 
class. Also, 11.49% percent of Parkinson cases are classified wrongly in the healthy class.
Conclusions: The experimental model has high efficiency and can be used as a reliable tool for clinical PD 
detection. In future research, more cases should be used to test and develop the proposed model.
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Introduction

In the brain, the maximum number of the neurons is 
reached at birth (1), and, unlike other cells in the human 
body, these neurons cannot be repaired. Thus, over the 
time, neurons die and fail to be replaced (2). Usually, 
Parkinson’s disease (PD) arises from the death of these 
nerve cells (3). The nerve cells generate dopamine, which 

is a chemical substance that mainly controls the body’s 
motion. Therefore, the quantity of the generated dopamine 
decreases when nerve cells die, which begins to affect the 
multiple communication modes of the brain (4). This 
disease appears mostly in people 50 years or older. Unstable 
posture, muscle stiffness, slow movement, tremor, loss of 
balance, and reduced fine motor skills are some initial signs 
of PD (4).
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Statistically, about 10 million people suffer from PD (as 
reported by the World Health Organization) (5). If there are 
no visible motor (or non-motor) signs, it becomes difficult 
to detect PD. Hence, intelligent detection methods can 
be valuable for the early diagnosis of abnormal signs (6,7). 
As automated diagnosis systems, these methods are able 
to objectively detect PD by electroencephalogram (EEG) 
signals. Using the EEG signals, functions of cortical (or 
sub-cortical) segments in the brain can be easily detected. 
Other disease brain-related diseases, such as Alzheimer’s and 
epilepsy, can be identified by these signals (8-11). We thus 
aimed to use these EEG signals to configure a computer-
aided system capable of diagnosing PD.

As is evident from the literature, EEG signals are 
complicated and inherently non-linear. So, most of the 
linear feature selection methods cannot be precisely applied 
to EEG signals (7). These signals of PD patients have a 
higher frequency band (12-15). Therefore, implementing 
non-linear feature extraction methods may be helpful for 
distinguishing between healthy and PD EEG signals.

In this way, deep neural networks, as a subsection of 
machine learning methods, have recently been applied 
to good effect in various fields of pattern identification 
and natural language processing (16). Deep learning 
methods are a subgroup of machine learning techniques 
known as deep network structures, with this idea being 
first introduced in the form of cybernetics (17). It was not 
immediately considered to be a practical concept due to 
three main limitations: the lack of an adequate dataset, the 
lack of computational tools to manage high-dimension 
networks, and a lack of effective learning methods. These 
limitations have been since overcome by the advent of 
efficient computing methods and tools.

Thus far, these methods have been successfully applied 
in several fields: for instance, in computer vision for 
Google Goggles by employing deep learning methods 
in object detection; in expert systems like Alpha Go, 
which is programmed by DeepMind (18); and for medical 
applications that help companies design new drugs (19).

Deep recurrent neural networks (DRNN) are very 
common forms of deep learning methods reported in the 
literature (20,21). For presenting a view of performed 
works in this field, proposed methods based on artificial 
intelligence for learning important features are provided 
in this section. As an example, Spadoto et al. (22) proposed 
the OPF classification (Optimal-Path Forest) method to 
diagnose the PD disease. Then, same authors suggested 
another method based on an evolutionary algorithm for 

selection of most important features to enhance the PD 
diagnosis precision (23). Due to parameterless and easy-
application features of OPF method, it seems to be a proper 
method for this aim.

In the study of Soleimaniangharehchopogh et al. (24), 
an artificial neural network is proposed with multi-layer 
perceptron for diagnosis of PD impacts. Pereira et al. (25) 
applied sound-based properties and complex valued neural 
networks for helping Parkinson disease detection.

Most of performed works addressing PD computer-
aided detection methods are signal-based methods (26). 
Nevertheless, some algorithms are also proposed based on 
image processing methods in the literature to diagnose PD 
disease. Writing tests utilizing visual trained are used in 
Peker et al.’s research (27) to detect the Parkinson’s disease, 
and they designed a dataset named ‘HandPD’ containing 
all extracted images/features from handwriting tests. Also, a 
convolutional neural network is employed for data analysis 
of handwritten dynamics in the context of computer-aided 
Parkinson’s disease detection (28).

With reference to the relevant studies, we developed a 
novel computer-aided method to automatically detect PD 
by using a pooling-based deep recurrent neural network 
(PDRNN) model for the first time. Several RNN layers are 
attached into a deep configuration achieving the DPRNN 
neural network. A certain implementation of RNN layers 
is considered here (long short-term memory) to obtain 
the best efficiency of RNN neural network. This neural 
network is a novel pooling technique that can address the 
over-fitting problem through introduction of a new data 
dimension. A novel computer-aided method is developed in 
this study that classifies the used dataset into two Parkinson 
and healthy groups. Configuration of the suggested model 
is depicted in Figure 1. The utilized neural network is 
comprehensively described in the next parts.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-5100). 

Methods

Proposed deep learning method

Deep learning is a class of machine learning method, which 
successfully hybridizes feature extraction and clustering 
procedures (4,29-31). In the present work, the obtained 
characteristics from the considered dataset were utilized for 
construction of a robust DRNN model. Then, they were 
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used for validation of the detection efficiency of the trained 
model in the testing stage. The efficient application of the 
DRNN model has been reported in the literature (20,21).

Deep recurrent network with Long Short-Term Memory 
(LSTM) units

Convolutional deep NNs, deep sparse autoencoders, 
DRNNs, and multi-layer perceptrons are some ordinary 
configurations of deep learning methods (32). Among these 
methods, DRNN was used in our study for detection of 
PD.

In this deep network, several RNN layers are connected 
to each other to structure a deep configuration (20). We 
used a state-of-art recurrent network as the LSTM in order 
to obtain the highest efficiency of the RNN network.

Here, the structure of the DRNN is presented first and 
followed by a description of how the LSTM units were 
applied to the structured DRNN.

DRNN architecture

The sharing states of this configuration are separated into 
several layers in order to obtain the advantages of deep 
structures. The higher efficiency of deep structures of 
recurrent is reported in various sources (20,21).

The RNN maps the input vector (x) to the equivalent 
output set (y). In this graph, the learning procedure is 
carried out in each time-step in the range of t =1 to τ. The 
sharing states related to the variables of each node in the lth 

layer are updated as follows (26):

( ) ( ) ( )1 1 1 1 1* 1 *a t b W h t U x t= + − +
	

[1]

( ) ( )( ) ( )  1,l lh t activation function a t l N= − ∈
	

[2]

( ) ( ) ( ) ( )1* 1 * 1,l l l l l la t b W h t U h t l N−= + − + ∈
	

[3]

( ) ( ) ( )* 1 *N N N N Ny t b W h t U h t= + − +
	

[4]

( ) ( )( )  targetL loss function y t and y t+ −
	

[5]

In which, x(t) denotes the input in time-step t; y(t) and 
ytarget(t) are the predicted and real outputs; hl(t) indicates the 
sharing states of layer l; al(t) is the input of lth layer that is 
composed of (I) x(t) or hl−1(t), (II) b (bias values), and (III) 
hl(t−1). Because of the shared features of the recurrent 
neural network, it is able to learn the iterated uncertainties 
of the prior time-steps.

Applying the LSTM units

The LSTM is a certain configuration of recurrent networks 
that can tackle the non-solved long-term dependencies of 
the standard RNN configuration. In the learning process, 
the recurrent network aims to learn the presentation of 
frequently occurring patterns in the past via sharing the 
variables across all of the time-steps. However, the memory 
of the previously learned patterns can fade over the time. 
Dependencies of the past two input values (x(0) and x(1)) 
become weaker in the predicted output once it has a 

Input signal 1D convolution Max. pooling 1D convolution Max. pooling 1D convolution Max. pooling

N

PD

Figure 1 The designed CNN configuration. CNN, convolutional neural networks.
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reasonably large value.
Consequently, long short-term memory was proposed to 

overcome this problem by generating paths through which 
the gradient is able to flow in long periods. The computing 
process of this unit depicts the manner of memorizing the 
long-term patterns by LSTM units.

Unlike conventional recurrent networks, LSTM units 
use a certain sharing-variables vector of S(t) (memory 
variable vector), which is used for storing the memorized 
data. The memory variable is composed of the three 
following operations in all time-steps:

(I)	 Elimination of the unnecessary data from S(t);
(II)	 Addition of new i(t) data chosen from x(t) and 

h(t−1) to the memory vector;
(III)	 Acquisition of the new h(t) from the S(t)vector.
From the depiction in the LSTM units, only two 

operations are conducted over h(t) including memorizing 
the new data and eliminating the out-of-time data. Thus, 
the sharing memory is able to preserve the helpful data 
for a sufficient time, which leads to an increase in RNN 
efficiency.

Suggested deep learning configuration

The structure of the developed model is outlined in Figure 1.  
Two phases are considered for this model: the learning and 
testing phases. The stratified 10-fold cross validation is 
presented in the training phase, in which the used dataset is 
divided into 10 uniform sections. From these sections, 9 are 
used for the training phase, and 1 one section is used in the 
testing phase. This process is repeated 10 times, in a way in 
which all 10 sections are used in both stages. In addition, 
for evaluating the training progression in the ending of the 
epochs, 20% of the learning dataset is assigned to validate 
the derived model. Moreover, the Single Sign On (SSO) 
optimizer (33) is employed, along with a few activation 
functions, such as Relu in all layers and softmax in the end 
layer. Also, dropout is adjusted to 0.5 in the dropout layer.

Results 

Parkinson’s and healthy cases

The EEG signals for 20 Parkinson patients (10 males and 
10 females) were collected from Henan Provincial People’s 
Hospital (People’s Hospital of Zhengzhou University). The 
ages of these patients ranged from 45 to 65, and their mean 
sickness period was 5.75±3.52 years (range, 2–10 years). 

The Hoehn and Yahr phases were in the following form (34):
	Phase 1: two patients;
	Phase 2: eleven patients;
	Phase 3: seven patients.
The obtained Mini-Mental State Examination (MMSE) 

results were within the range of the typical boundaries 
of 25 to 30 (26.9±1.51). Presence of further neurological 
situations or psychiatric disturbances were the exception 
conditions. The L-dopa drugs were used by Parkinson’s 
patients for decrement of non-uniformity.

Furthermore, 20 healthy cases with equal age range (9 
males and 11 females) without past a record of neurological 
(or mental) disorders were also examined. The MMSE 
results obtained from the healthy cases were in the range 
of 27.15±1.63 years. Both the healthy and Parkinson’s 
cases were right-handed as determined by the Edinburgh 
Handedness Inventory. All patients’ had perfectly sound 
hearing.

All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Medical Ethics Committee of Henan Provincial People’s 
Hospital (2019-031) and informed consent was taken from 
all the patients.

Preprocessing phase and EEG signals

The required recordings were performed for 5 minutes in 
the steady state with a 128-Hz sample rate. For this, we 
used an emotive EPOC neuroheadset with 14 channels. 
Participants were asked sit comfortably in the appointed 
silent room. Then, before recording, they were instructed 
not to move their body in any way (including blinking) 
during the recording process. Afterwards, the recorded 
signals were divided into 2-second window lengths.

We employed a threshold method for eliminating the 
signals at a level higher than ±100 μV (in order to eliminate 
the eye-blinking effects). Subsequently, the frequencies were 
filtered using a Butterworth six-order band-pass filter with 
the forward-reverse method. This filtering was performed 
in order to bind the frequencies at the interval of (1) Hz. At 
last, 1,588 artifact-free epochs were additionally analyzed. 
Figure 2 shows an example of EEG signals recorded from 
both healthy and Parkinson’s participants.

PDRNN analysis

The suggested PDRNN model was applied over all of 
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Figure 2 Samples of healthy (A) and Parkinson’ (B) EEG signals. EEG, electroencephalogram.
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the EEG signals. The proposed PDRNN model was 
implemented in Python environment and was run in a 
PC with an Intel-Xeon 2.4 GHz processor and 24 GB of 
random-access memory.

Precision, sensitivity, and specificity were considered 
the assessment metrics. Based on the obtained results, the 

best detection efficiency was observed in 1E−4 training 
rate. The suggested DPRNN network yielded a precision, 
sensitivity, and specificity of 88.31%, 84.84%, and 91.81%, 
respectively. Efficiencies of the proposed model in the 
presence and absence of the dropout layer are respectively 
depicted in Figures 3 and 4. Remarkably, it was possible for 
over-fitting to occur in the model without a dropout layer. 
As can be seen from Figure 3, there is no a considerable 
difference between the precision of the learning and testing 
datasets in the presence of the dropout layer. Meanwhile, 
Figure 4 shows the considerably different precision measures 
of the testing and learning datasets.

The confusion matrix of the obtained results is illustrated 
in Figure 5. According to this figure, 11.28% of the healthy 
cases were wrongly categorized into the PD class, while 
11.49% of PD cases were classified incorrectly into the 
healthy class.

Discussion

An array of noninvasive methods have recently been 
suggested for the detection of PD, including those using 
voice (35-37) and gait (38). Also, various computer-aided 
methods have been proposed for obtaining proper models 
in order to differentiate between healthy and PD cases. 
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Figure 3 Accuracy profile of various epochs.
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For example, a feature reduction approach was proposed 
by Chen et al. (36) to remove the undesired data from 
the PD voice signals. These researchers obtained about 
96.07% mean detection precision using the principal 
component analysis (PCA) reduction method and fuzzy 
k-nearest neighbor (FKNN) classification algorithm. 
Subsequently, Zuo et al. (37) increased the precision by 
applying a population-based optimization method on the 
FKNN classification method. This proposed method is 

used for the classification of the healthy versus Parkinson’s 
voices. In the study by Ma et al. (35), a hybrid method was 
proposed based on an extreme learning machine (ELM) 
method for differentiating Parkinson’s from healthy voices, 
which obtained a mean precision of 99.49%. Furthermore, 
a Fourier transform-based feature selection method was 
applied to distinguish the healthy and Parkinson’s gait  
signals (38). This proposed method resulted in 91.2% 
precision. Despite these attempts, few studies have used 
EEG signals for the detection PD. One experimental  
study (7) that did endeavor to diagnose PD cases by EEG 
signal found that the entropy levels of the PD EEG signal 
were considerably greater than those of healthy cases. Thus, 
the EEG signals related to PD have higher complexity (6). 
The higher order statistics (HOS) method also attempted to 
identify the diagnostic EEG features of PD. Results showed 
that the HOS method could explicitly present the hidden 
non-linear features of the PD EEG signals for the purposes 
of differentiation.

 The present work proposes a deep RNN configuration 
for PD diagnosis. This proposed network contains a 
multitude layers to efficiently separate the PD from healthy 
cases by EEG signals. In addition, there is no requirement 
for manually obtained features in the proposed method. 
This distinction in the proposed method considerably 
reduces the number of procedural steps and allows for the 
optimal acquisition of the primary distinguishing features.

Furthermore, a web-based detection method was 
introduced for further enhancing the performance of the 
automated detection method, and may be investigated 
in future research. The procedure for this web-based 
automated method is illustrated in Figure 6. Network 
of detect is used in this method for detecting PD. The 
collected EEG signals are recorded in the local database 
in the clinic, and are forwarded via the cloud wherein 
our DRNN-based model is developed. Then, calculated 
results are sent back straight to the patients through phone 
messages. The use of this system can considerably decrease 
the workload of experts and clinicians.

The main novelties of the proposed method are 
summarized as follows:

(I)	 A deep RNN architecture equipped with LSTM 
units can automatically detect PD using EEG 
signals;

(II)	 The extraction, selection, and classification of the 
features is not required;

(III)	 A stratified 10-fold cross validation method is used 
for authentication of the model;
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Figure 4 Accuracy profile of various epochs in the absence of the 
dropout layer.
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(IV)	 This is the first time a deep learning method has 
been proposed to diagnose PD using EEG signals;

(V)	 Good diagnostic efficiency could be achieved even 
with a low number of healthy and PD cases, which 
shows good robustness of the proposed model;

Nevertheless, our proposed method and study may also 
exhibit the following limitations:

(I)	 A low number of cases (20 healthy and 20 PD cases) 
were used for developing the proposed PDRNN 
model;

(II)	 The proposed PDRNN model may have high 
computing costs in comparison with the traditional 
machine learning methods.

A high number of cases from various age/race ranges 
can be used to develop a more efficient model in future 
study. Moreover, the proposed model can be extended for 
diagnosis of other brain disease such as Alzheimer’s, autism, 
and depression disorders.

Conclusions

A novel computer-aided method based on a deep RNN 
network for the detection of PD by EEG signals was 
proposed. Based on our best knowledge, this is first time 
that this deep learning method has been applied for 
diagnosing PD by EEG signals. Although a low number 
of cases were studied in the present work, the proposed 
model could achieve good efficiency. This model yielded 

a precision, sensitivity, and specificity of 88.31%, 84.84%, 
and 91.81%, respectively. Due to high efficiency of the 
proposed model, it can be used as a reliable tool for the 
detection PD in the clinics. A larger number of the cases 
should be used to test and develop the proposed model in 
future research.
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