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Foxk1 regulates cancer progression
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Cancer remains a major cause of morbidity and mortality. 
The lifetime risk for developing cancer is one in three 
and approximately 1.7 million new cases of cancer were 
diagnosed in the U.S. in 2019 according to the American 
Cancer Society (1). Worldwide, gastric carcinoma (GC) 
is the fourth most common malignancy and is the second 
leading cause of death (1,2). GC is a malignant disease 
and is associated with a poor long-term prognosis (1,2). 
Therefore, new therapies are warranted, which require an 
enhanced understanding of the mechanisms that govern 
gastric cancer progression. Previous in vitro studies have 
defined pathways (sonic hedgehog, stem cell signaling, 
cell cycle, DNA damage, Notch, PI3K/AKT, Tgfb, Wnt, 
etc.) and transcription factors (TP53, EGR1, GATA, GLI, 
STAT, MYC/MAX, SMAD2/SMAD3/SMAD4) that are 
expressed in gastric cancer cell lines (3). One pathway that 
has received intense interest is the forkhead/windged helix 
transcription factor family. 

Forkhead was initially discovered in the fly and disruption 
of the gene resulted in a forked head phenotype (4). 
More than 100 members have been assigned to the family 
based on the homology of the 100 amino acid containing 
DNA binding domain (the forkhead/windged helix or 
Fox domain) (5-7). These family members function as 
transcription factors to regulate cell and lineage specification 
during development, metabolism, aging or survival, stem 
cell populations, tissue repair, diseases and others (5-7). For 
example, Foxd3 (Genesis) has been shown to be expressed in 
embryonic stem cells (8) whereas Foxb1 has been shown to 

be a regulator of neural progenitors (9) and Foxm1 has been 
shown to be expressed in regenerating hepatocytes (10). In 
addition, Foxo factors have been shown to inhibit apoptosis, 
regulate PI3K signaling and serve as an anti-aging factor (7).  
More recently, members of this family have been shown 
to function as pioneer factors as they have the ability to 
bind nucleosomal DNA and unwrap the chromatin thereby 
exposing DNA binding motifs for the binding of other 
transcription factors and subsequent regulation of gene 
expression (8,9). In addition to this array of molecular and 
cellular functional roles, this family also regulates cell cycle 
kinetics. Foxk1 has been shown to be an essential regulator 
of cell proliferation. 

Foxk1 was initially termed MNF (Myocyte Nuclear 
Factor) based on the restricted expression pattern in the 
myogenic lineages during murine embryogenesis and was 
discovered in the Williams’ laboratory (10,11). Structurally, 
Foxk1 harbors motifs that have important functional roles 
including: the leucine zipper motif, the Sin3 interacting 
motif (SIM) domain, and the Forkhead-associated (FHA) 
domain, which increase the complexity regarding its 
functional role(s), the winged helix DNA binding domain 
(WHD) and the transcriptional activation domain (TAD) 
(Figure 1A) (12,13). For example, Foxk1 is the prototype for 
the FHA domain, which is a phosphopeptide-binding motif 
that functions to recruit interacting proteins and regulate 
cell cycle kinetics (14). Previous studies have demonstrated 
that Foxk1 and its interacting partners (Fhl2, Sds3 and 
others) function to repress the p21 gene thereby promoting 
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cell proliferation and repressing lineage differentiation 
(Figure 1B) (14-17). Using gene disruption technology, 
Foxk1 null mice have been shown to be partially lethal and 
the limited null mice that survived were growth retarded 
and had impairments in tissue regeneration (18). Studies 
have also shown an increase of Foxk1 expression associated 
with a number of malignancies including: melanoma, breast, 
pancreatic, osteosarcoma, glioblastoma, ovarian, esophageal, 
prostate and gastric cancers (19-24). 

The role of Foxk1 and GC was further examined in the 
recent study by Wang et al. (25). These investigators used 
computational biology, western blot analysis and tissue 
microarrays to define FoxK1 expression in GC cell lines 
and human gastric cancer specimens. Not only did they 
verify an induction of Foxk1 expression associated with GC 
(compared to controls) but they also observed a correlation 
between those having increased Foxk1 expression and 
malignant progression of GC (25). Next, using in vitro 
assays, overexpression or siRNA knockdown strategies and 
EdU incorporation Wang et al., demonstrated that Foxk1 
increased GC cell proliferation, migration and invasion 
(Figure 1B) (25). Importantly, they further demonstrated 
that increased Foxk1 expression portended a poor prognosis 
for patients with GC. Wang et al., then established the 
mechanistic role for increased Foxk1 expression and GC 
as Foxk1 was shown to suppress autophagy in GC via the 
PI3K/AKT/mTOR pathway (Figure 1B) (25). 

The study by Wang et al., has a number of important 
findings. First, they used human in vitro (GC cell lines) and 
in vivo (GC samples) specimens. Second, they used a large 
number of GC samples (43 pairs of GC and control or non-
GC specimens). Third, their results supported the notion 

that Foxk1 functioned in the context of GC as a repressor 
of autophagy via the PI3K/AKT/mTOR pathway (25). This 
study provides the rationale for using Foxk1 as a molecular 
marker for progression of GC and response to treatment. 
Moreover, based on this study, Foxk1 may be an important 
target for GC treatment. Therefore, small molecule or 
chemical genetics strategies may be employed, in the future, 
to identify Foxk1 specific inhibitors that may be used in 
combination with surgical debulking or chemotherapies in 
patients with GC. In some respects, the findings by Wang 
et al., are somewhat predictable. This is, in part, due to the 
previous studies that have conclusively shown that Foxk1 
directly interacts with Fhl2 (12), promotes cell proliferation 
(12-18), has increased expression in other human cancers 
including GC and functions to regulate autophagy (19-24).  
Nevertheless, if these studies further establish a role for 
Foxk1 as a regulator of GC malignant progression and 
ultimately lead to effective therapeutics then the medical 
impact will be significant. 

In summary, Foxk1 is an important regulator of cell 
proliferation, quiescence and differentiation in stem cell 
populations and cancer. The studies by Wang et al., provide 
an important platform to decipher putative inhibitors of 
Foxk1 with the goal of bending the malignancy outcome 
curve for GC. 
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Figure 1 Foxk1 is an important regulator in stem cell and cancer cell populations. (A) Schematic highlighting the domains of the FOXK1 
protein. The Sin3 interacting domain (SID) physically interacts with Sin3 and its associated complex. The Forkhead-Associated Domain 
(FHD) interacts with phosphothreonine proteins (such as SDS3) and is important in the regulation of cell cycle kinetics. The winged helix 
domain (WHD) binds to DNA and allows FOXK1 to function as a transcriptional regulator. The transcriptional activation domain (TAD) is 
located in the carboxy terminal region of the protein. (B) FOXK1 has been shown to have a number of permissive roles and repressive roles 
in stem cell and cancer cell populations.
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