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Background: Cavernous hemangioma and schwannoma are tumors that both occur in the orbit. Because 
the treatment strategies of these two tumors are different, it is necessary to distinguish them at treatment 
initiation. Magnetic resonance imaging (MRI) is typically used to differentiate these two tumor types; 
however, they present similar features in MRI images which increases the difficulty of differential diagnosis. 
This study aims to devise and develop an artificial intelligence framework to improve the accuracy of 
clinicians’ diagnoses and enable more effective treatment decisions by automatically distinguishing cavernous 
hemangioma from schwannoma.
Methods: Material: As the study materials, we chose MRI images as the study materials that represented 
patients from diverse areas in China who had been referred to our center from more than 45 different 
hospitals. All images were initially acquired on films, which we scanned into digital versions and recut. 
Finally, 11,489 images of cavernous hemangioma (from 33 different hospitals) and 3,478 images of 
schwannoma (from 16 different hospitals) were collected. Labeling: All images were labeled using standard 
anatomical knowledge and pathological diagnosis. Training: Three types of models were trained in sequence 
(a total of 96 models), with each model including a specific improvement. The first two model groups were 
eye- and tumor-positioning models designed to reduce the identification scope, while the third model group 
consisted of classification models trained to make the final diagnosis.
Results: First, internal four-fold cross-validation processes were conducted for all the models. During the 
validation of the first group, the 32 eye-positioning models were able to localize the position of the eyes with 
an average precision of 100%. In the second group, the 28 tumor-positioning models were able to reach an 
average precision above 90%. Subsequently, using the third group, the accuracy of all 32 tumor classification 
models reached nearly 90%. Next, external validation processes of 32 tumor classification models were 
conducted. The results showed that the accuracy of the transverse T1-weighted contrast-enhanced sequence 
reached 91.13%; the accuracy of the remaining models was significantly lower compared with the ground 
truth.
Conclusions: The findings of this retrospective study show that an artificial intelligence framework can 
achieve high accuracy, sensitivity, and specificity in automated differential diagnosis between cavernous 
hemangioma and schwannoma in a real-world setting, which can help doctors determine appropriate 
treatments.
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Introduction

Cavernous hemangioma is one of the most common 
primary tumors that occur in the orbit, accounting for 
3% of all orbital lesions (1-3), while schwannoma is a 
benign orbital tumor with a prevalence of less than 1% 
among all orbital lesions (1). It is necessary to distinguish 
these two tumors at treatment onset because they have 
different treatment strategies (4-6): complete removal is 
the treatment goal for cavernous hemangioma while for 
schwannoma, the goal is to ensure that no capsules remain. 
Moreover, clear differentiation provides useful information 
that fosters better vessel management (2). If the wrong 
surgical regimen is chosen, the tumor will recur, and the 
patient would need to undergo an additional operation.

Similar to the diagnosis of many other tumors, imaging 
techniques are applied as the predominant methods to 
diagnose these two tumors. Magnetic resonance imaging 
(MRI) is the most commonly used approach because 
of its high resolution, which clearly reflects the tissues 
to determine the appropriate surgical approach (5-7). 
However, because it manifests similarly to cavernous 
hemangioma, especially in MRI images, schwannoma 
often evokes an improper diagnosis (2,7,8) even highly 
experienced ophthalmologists or radiologists can make 
inaccurate diagnoses (9).

In recent years, the application of artificial intelligence 
(AI) in medicine has achieved physician-equivalent 
classification accuracy in the diagnosis of many diseases, 
including diabetic retinopathy (10-13), lung diseases (14), 
cardiovascular disease (15), liver disease, skin cancer (16), 
and thyroid cancer (17) and others.

Therefore, the goal of this project was to develop an 
AI framework that uses MRI image sets from 45 hospitals 
in China as input to automate the differentia diagnosis 
between cavernous hemangioma and schwannoma with 
high accuracy, sensitivity and specificity.

Methods

Overall architecture

Considering the current dominance of MRI in the 

differential diagnosis of the two studied tumor types, 
we selected MRI images as the research materials in this 
study. The research framework included of three types 
of functional models. Each type consists of eight groups 
of models with different arrangements and combinations 
of slice orientations (coronal and transverse) as well as 
weighted sequences (T1-weighted, T1-weighted contrast-
enhanced, T2-weighted and T2-weighted fat suppression). 
Each group was sorted into 4 models and trained according 
to the principle of four-fold cross validation. In summary, a 
total of 96 models were obtained (3×8×4=96) (Figure 1).

As mentioned above, we established 3 types of 
functional models to achieve the goal of distinguishing 
cavernous hemangioma from schwannoma. First, to 
reduce interference from unnecessary information, eye-
positioning models were designed to identify the eye area 
from the complete images. Then, to further narrow the 
recognition range, tumor-positioning models were created 
to locate tumors within the identified eye area. Finally, 
tumor classification models were trained to classify the 
tumors. As shown in Figure 2, when an MRI image is 
input, the framework first delineates the eye area from 
the whole image; then it localizes the tumor scope from 
the eye area; and finally, it specifically classifies the tumor. 
The eye-positioning and tumor-positioning models were 
trained using the Faster-RCNN algorithm, while the tumor 
classification models used the ResNet-101 algorithm.

Data set

The data set consisted of digital data scanned from MRI 
films representing patients from all over the country (most 
were from Southern China) who came to Sun Yat-sen 
University Zhongshan Ophthalmic Center (one of the most 
famous ophthalmic hospitals in China) for treatment. For 
all these patients, the diagnostic conclusions were supported 
by pathology and examined by the members of our team.

First, the MRI films brought by the patients from 45 
different hospitals were scanned into a digital format 
and then screened, rotated and cropped. After this step, 
we obtained 6,507 images of cavernous hemangioma 
(from 33 different hospitals, Table 1) and 2,993 images of 
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schwannoma (from 16 different hospitals, Table 2). Then, 
to form training sets and validation sets, we used the image 
processing software named LabelImg [Tzutalin. LabelImg. 
Git code (2015). https://github.com/tzutalin/labelImg] to 
interpret and manually label all the images. The purpose 
of interpretation is to generate coordinates that delineate 
the extent of the ranges of eyes and tumors according to 
anatomical knowledge. The labels include eye, cavernous 
hemangioma and schwannoma supported by pathological 
diagnosis. Next, all these processed data were randomly 
divided into two parts: a training set and a validation 
set. The training set included 6,669 images for the eye-
positioning model, 3,367 images for the tumor-positioning 
model and 3,131 images (2,059 images for cavernous 
hemangioma and 1,072 images for schwannoma) for the 
classification model. The validation set included 468 images 
for cavernous hemangioma and 217 images for schwannoma 

(Table 3).

Experimental settings

The settings of this study were based on Caffe (18), the 
Berkeley Vision and Learning Center deep-learning 
framework (BVLC), and TensorFlow (19). All the models 
were trained in parallel on three NVIDIA Tesla P40 GPUs.

In terms of the classification problem, the key performance 
evaluation metrics were estimated as follows (20):

1
( ) /

k

i
i

Accuracy TP N
=

= ∑ 	 [1]

( ) ( ) ,    /i i i iSensitivity TPR Recall TP TP FN= + 	 [2]

( ) /i i i iSpecificity TN TN FP= + 	 [3]

where N represented the quantity of samples; Pi represented 
the number of correctly classified samples within the 
ith class; k denoted the number of classes in this specific 
classification problem; TPi indicated the number of 
correctly classified samples within the ith class; FPi denoted 
the number of wrongly recognized samples within the ith 
class; FNi denoted the number of wrongly classified samples 
within the jth class, [1, ] /j c i∈ ; and TNi denoted the number of 
samples that were correctly recognized as not belonging to 
the jth class, [1, ] /j c i∈ . All these parameters can be integrated 
into a confusion matrix. Additionally, the receiver operating 
characteristic (ROC) curves (21), which indicated how many 
samples of the ith class were recognized conditioned on a 
specific number of jth class ( [1, ] /j c i∈ ) samples classified as 
the ith class, together with the area under the curve (AUC), 
were adopted to assess the performance. The performance 
evaluation parameters (accuracy, sensitivity, specificity, and 
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Table 1 Data-set sources: MRI images of cavernous hemangioma

Serial number Hospitals MRI images of cavernous hemangioma

1 Renai Hospital of Guangzhou 2,796

2 Guang Kong Hou Qin Hospital 930

3 The First Affiliated Hospital, Sun Yat-sen University 351

4 Guangzhou Panyu Central Hospital 186

5 Jiangmen Central Hospital 153

6 Unknown 147

7 Guangzhou General Hospital of PLA 146

8 Foshan second People’s Hospital 117

9 The 458 PLA Hospital 129

10 Zhongshanyi Town Health Centre 120

11 Tianjin Huaxing Hospital 106

12 The Fifth Affiliated Hospital, Sun Yat-sen University 98

13 Shenzhen People’s Hospital 93

14 Jiangxi Ji’an Central Hospital 89

15 Huizhou City People’s Hospital 85

16 Anhui Yijishan Hospital of Wannan Medical College 77

17 Hainan General Hospital 72

18 Meizhou People’s Hospital 72

19 Jiangmen Wuyi TCM Hospital 71

20 Hengyang Central Hospital 63

21 Liupanshui Mineral Bureau Hospital 62

22 Guangzhou Huaxing Kangfu Hospital 56

23 Affiliated Hospital of Xiangnan University 54

24 The Second Affiliated Hospital of Guangzhou Medical University 50

25 Guangzhou TCM No. 1 Hospital 50

26 Hainan Province Nongken Sanya Hospital 48

27 Jinshazhou Hospital of Guangzhou University of Chinese Medicine 47

28 Dongguan SDBRM Hospital 41

29 Maoming TCM Hospital 39

30 Jiangxi TCM Hospital 36

31 Maoming Nongken Hospital 35

32 Liuzhou City Worker Hospital 34

33 Beijing Boren Hospital 32

34 Armed Police Chengdu Hospital 22

Total 6,507

MRI, magnetic resonance imaging.
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Table 2 Data-set sources: MRI images of schwannoma

Serial number Hospitals MRI images of schwannoma

1 Renai Hospital of Guangzhou 1,609

2 Guang Kong Hou Qin Hospital 225

3 Unknown 148

4 Jiangxi People’s Hospital 144

5 Guangdong Hospital of TCM 99

6 Shenzhen Hengsheng Hospital 95

7 Xinhui People’s Hospital 87

8 Shenzhen Longgang Central Hospital 83

9 Guangdong Second TCM Hospital 80

10 Jiangsu Subei People’s Hospital 79

11 Shenzhen Shekou Hospital 73

12 Foshan Hospital of TCM 72

13 Sanya City People Hospital 56

14 Huizhou Boluo People’s Hospital 53

15 Guangzhou Huaxing Kangfu Hospital 41

16 Hunan Chenzhou First Hospital 30

17 Hainan Province Nongken Sanya Hospital 19

Total 2,993

MRI, magnetic resonance imaging.

Table 3 Components of the training and validation sets

Slice 
orientation

Sequence
Training sets of 
eye positioning 

models

Training sets 
of tumor 

positioning 
models

Training sets of tumor  
classification models

Validation sets of tumor 
classification models

Cavernous 
hemangioma

Schwannoma
Cavernous 

hemangioma
Schwannoma

Coronal T1-weighted 1,224 544 341 176 52 30

T1-weighted  
contrast-enhanced

511 256 129 112 59 30

T2-weighted 238 135 93 41 7 0

T2-weighted fat 
suppression

185 108 57 45 22 0

Transverse T1-weighted 1,276 623 368 203 81 43

T1-weighted  
contrast-enhanced

1,211 612 397 171 86 38

T2-weighted 1,016 530 326 150 79 39

T2-weighted fat 
suppression

1,008 559 348 174 82 37

Total 6,669 3,367 2,059 1,072 468 217
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ROC curve with AUC) were applicable only for binary 
classification problems. The accuracy and confusion matrix 
were applied to evaluate multiclass classification problems.

For the object positioning problem, interpolated average 
precision (AP) was adopted for the performance evaluation (22). 
The interpolated AP is computed from the precision recall (PR) 
curve as shown in Eq. [4].
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where 
~

( )p γ  represents the measured precision at a specific 
recall value 

~
γ .

We adopted four-fold cross  val idat ion for  the 

performance evaluation to assess all the classification and 
positioning problems.

Results

First, we conducted an internal four-fold cross-validation. 
The results showed that all the eye-positioning models 
achieved an AP of 100% and that the AP of the 28 tumor-
positioning models exceeded 90% (Table 4). Similarly, the 
accuracy, sensitivity and specificity of almost all 32 tumor 
classification models were exceeded 90%, as shown in Table 5.

Next, we used the validation set for external validation. 
Considering that the tumor classification model results were 
mostly related to the differential diagnosis of cavernous 

Table 4 AP of the eye-positioning models and tumor-positioning models

Sequence AP of eye positioning models (%) AP of tumor positioning models (%)

T1-weighted 100 100

T1-weighted contrast-enhanced 100 0

T2-weighted 100 100

T2-weighted fat suppression 100 100

T1-weighted 100 100

T1-weighted contrast-enhanced 100 100

T2-weighted 100 91

T2-weighted fat suppression 100 100

AP, average precision.

Table 5 Performances of the tumor classification models

Slice orientation Sequence
Performance of internal validation (%) Performance of external validation (%)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Coronal T1-weighted 89.76 80.49 94.19 69.51 66.67 71.15

T1-weighted  
contrast-enhanced

92.74 91.67 93.75 60.67 93.33 44.07

T2-weighted 94.44 90.91 96.00 – – –

T2-weighted fat 
suppression

96.00 90.91 100.00
– – –

Transverse T1-weighted 93.01 90.20 94.57 69.57 67.44 71.43

T1-weighted  
contrast-enhanced

95.07 88.37 97.98 91.13 86.84 93.02

T2-weighted 94.07 89.19 96.30 77.12 53.85 88.61

T2-weighted fat 
suppression

93.02 79.07 100.00 64.71 86.49 54.88
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hemangioma and schwannoma, the external verification of 
the tumor classification model predominantly represented 
the significance. The results showed that the transverse T1-
weighted contrast-enhanced sequence model reached an 
accuracy of 91.13%, a sensitivity of 86.84%, a specificity of 
93.02%, and an AUC of 0.9535. In contrast, the remaining 
models had significantly reduced performances compared 
with the internal verification results (see Table 5 and Figure 3).

Discussion

Good performance in a real-world setting

Based on clinical experience, T1-weighted contrast-

enhanced sequences can highlight the blood vessels. 
Progress ive  f i l l ing  f rom center  to  per iphery  on 
enhancement is typical of cavernous hemangioma, while 
the enhancement pattern of schwannoma is partial and 
uneven (5,6) (see Figure 4). Therefore, these sequences are 
considered the most significant reference among all types of 
slices in the differential diagnosis of the two studied tumor 
types (23,24). The tumor classification model trained by the 
transverse T1-weighted contrast-enhanced sequence images 
and tested on the external validation sets achieved high 
accuracy, sensitivity, and specificity in automated cavernous 
hemangioma and schwannoma differential diagnosis in a 
real-world setting that is completely consistent with the 
clinical environment.

Our results showed that the performance of the tumor 
classification model trained by transverse T1-weighted 
contrast-enhanced sequence images reached an accuracy of 
91.13%, a sensitivity of 86.84%, a specificity of 93.02% and 
an AUC of 0.9535. These results suggested that this model’s 
performance quality meets the primary need for clinical 
application and that the goal of distinguishing cavernous 
hemangioma from schwannoma is achievable using this type 
of model.

A multicenter data-set

Thanks to the popularity of our ophthalmology center 
in China, patients from all over the country come here 
for treatment; thus, we were able to obtain these valuable 
images. In this study, we included data from more than 
45 different hospitals in China to reach the current data 
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schwannoma in T1-weighted contrast-enhanced sequences.
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amount. Moreover, due to the variety of equipment and 
operators among the different source hospitals, the data 
collection techniques were diverse, which enhances the wide 
generalizability of our diagnostic model.

Applying scanned versions rather than using DICOM

In previous AI studies, researchers have typically preferred 
raw data (11-13,15-17,25,26), such as DICOM format, 
generated directly from the imaging equipment, because 
the DICOM format both preserves all the original data 
and allows convenient collection. However, the scanned 
format was chosen for this study because the resultant AI 
framework needs to be useful for doctors in remote areas. 
The information technology level of hospitals in remote 
areas was limited, and they often lack comprehensive 
medical record management systems (27,28). Because most 
clinicians rely on film images instead of computerized 
interfaces, it made sense that models trained from a film 
version would be more suitable in this type of situation.

Three steps to reach the final goal

In previous studies, researchers commonly input entire MRI 
images for training (25,26). Here, we progressively designed 
three different types of models to achieve the goal of 
distinguishing cavernous hemangioma from schwannoma. 
First, because the eye area occupies only a small proportion 
of the entire MRI image, inputting the entire MRI image 
into the model directly would introduce considerable 
irrelevant information. To reduce the interference from 
such unnecessary information, we constructed an eye-
positioning model that identifies the eye range within the 
full image; then, subsequent process can focus only on this 
range. Second, we established a tumor-positioning model 
to further narrow the scope for the final classifier and 
improve its precision. Third, we built a classification model 
to differentiate the located tumors to achieve the goal of 
automatically differentiating cavernous hemangioma from 
schwannoma.

Further subdividing the training sets instead of combining 
them

According to the traditional wisdom, having sufficient 
data volume is the foundation of training the current AI 
techniques (11-17). The most fundamental and effective way 
to improve the accuracy, sensitivity and specificity of the 

model is to augment the data in the training set. However, 
the MRI images for training had remarkable variations 
in different weighted sequences and slice orientations. If 
these images were blindly combined while ignoring these 
variations, the resultant incompatibilities would inevitably 
confuse the system, and its performance would deviate from 
the original intention. Therefore, we divided all the images 
into eight groups for training based on their different 
weighted sequences and slice orientations. The final result 
supported our conjecture: the performance of the transverse 
T1-weighted contrast-enhanced sequence was outstanding 
compared to that of other models. If all the training sets 
were combined, the accuracy of this model would be well 
below 91.13%.

Web-based automatic diagnostic system

Early in our research, our team built a cloud platform for 
congenital cataract diagnosis (29); we will implement the 
models in this study on that platform at the appropriate time. 
In China, an objective technological gap exists between urban 
and rural areas, and this imbalance is particularly evident with 
regard to medical resources (30-32). The establishment of 
this AI cloud platform for disease diagnosis is an economical 
and practical approach to alleviate the problem of the uneven 
distribution of medical resources.

Proper algorithms

Localization method
Faster-RCNN is a widely used algorithm used to address 
positioning problems because of its practicability and 
efficiency. Evolving from RCNN and Fast-RCNN (33), 
Faster-RCNN generates region proposals quickly by using 
an anchor mechanism rather than by applying a superpixel 
segmentation algorithm. After adopting two-stage training, 
transformations of the bounding box regressor and classifier 
were achieved. In the first stage, Faster-RCNN generated 
region proposals. Then, it judged the authenticity of the 
proposals, and the topmost coordinates of each object were 
regressed. In the second stage, the class of each object was 
evaluated and each object was eventually regressed to obtain 
its coordinates. We adopted a pretrained Zeiler and Fergus 
(ZF) network (34) to reduce the training time.

Convolutional neural network (CNN)
The CNN is the most popular AI model used in medicine. 
In this study, we adopted ResNet, which has a thin CNN 
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architecture that includes numerous cross-layer connections 
and is suitable for rough classification tasks. To fit the 
residual function, the objective function was transformed, 
which resulted in a significant increase in efficacy, and we 
adopted a LogSoftMax loss function with class weights. 
The ResNet selected for this study has 101 layers, which is 
a sufficient depth to address the classification problems (20).

Limitations of our study

The most important deficiency in the study is that we 
simply chose a model that achieved good efficacy rather 
than also considering other models. Although the model 
trained on the group containing the transverse T1-weighted 
contrast-enhanced sequence images achieved particularly 
remarkable performance and is already sufficiently robust 
to help doctors in clinical work, the other seven groups may 
also contain useful information for feature extraction. Thus, 
the diagnostic efficiency of the model should be improvable 
to some extent if we were to make rational use of the other 
seven groups of data. Such an approach requires involving 
multimodal machine learning (35-37), because MRI images 
with different weighted sequences should be processed 
as separate modes. Upon alignment, the models could be 
integrated under the joint representation principle. Our 
team will continue to investigate this aspect of the problem 
in future studies.

Conclusions

The findings of our retrospective study show that the 
designed AI framework tested on external validation sets 
can achieve high accuracy, sensitivity, and specificity for 
differential diagnosis of automated cavernous hemangioma 
and schwannoma in real-world settings, which will 
contribute to the selection of appropriate treatments.

Although a partial accuracy rate of over 90% was 
achieved with the current data volume, AI algorithms 
can never have too much data. Thus, we plan to continue 
collecting additional cases to optimize the model by 
cooperating with hospitals in Shanghai to collect data in the 
eastern part of China, thereby supplementing our training 
set and enhancing model generalizability. Furthermore, 
at the appropriate time, we will design a web-based 
automatic diagnostic system to help solve the problem of 
obtaining advanced medical care in remote areas. In terms 
of algorithms, we will first investigate multimodal machine 
learning to take full advantage of these invaluable data. 

Overall, the results show that further investigation of AI 
approaches are clearly a worthwhile effort that should be 
tested in prospective clinical trials.
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