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Mitochondrial metabolism and cancer metastasis
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Abstract: Metastasis is regarded as the most important cause of cancer-related deaths around the world. 
During the complicated metastatic cascade, altered mitochondrial metabolism adapts to serve distinct 
conditions and microenvironments. In this review, we discuss how cells regulate their mitochondria 
metabolism to adapt to environmental cues during the metastasis, as well as how cancer cells and their tumor 
micro-environment (TME) are metabolically coupled during the metastatic cascade. We place a strong 
emphasis on how mitochondrial proline metabolism and extracellular matrix (ECM) are coupled.
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Introduction

The mitochondrion is critical for oxidative phosphorylation 
(OXPHOS), β-oxidation of fatty acids, tricarboxylic acid 
(TCA) cycle, calcium handling, proline synthesis, and 
heme biosynthesis. Hence, mitochondrial dysfunction, 
particularly in their metabolic activities, is the major cause 
of many diseases such as metabolic diseases, cancer, and 
neurodegenerative diseases, as well as the aging process (1-3).  
Alongside, mitochondria attracted more attention from a 
metabolic perspective based on two findings: mitochondrial 
metabolites can drive oncogenesis (4), and mitochondrial 
metabolic plasticity can adapt to serve bioenergetic or 
anabolic functions through mitochondrial circuitry changes 
(5,6). Thus, mitochondrial metabolism now constitutes a 
promising target for novel anticancer therapy (7).

Metastasis ranks as the first leading cause of cancer 

mortality worldwide. It is a complex process at the cellular 
level—only a few cells detached from a primary tumor can 
inflow into the blood vessels or lymphatic system, then 
successfully colonize a distant area in the body (8). As a 
prominent signal for cancer, mitochondrial dysfunction 
shows a significant correlation with poorer tumor 
progression and increased metastasis (9,10).

In this review, we address recent insights into the 
metabolic plasticity of cancer cells and the metabolic 
coupling between these cells and their tumor micro-
environment (TME) in the process of cancer metastasis, as 
well as a possible mechanism. We also discuss the coupling 
of mitochondrial proline metabolism and extracellular 
matrix (ECM) in metastasis. More importantly, we 
emphasize the crosstalk between mitochondrial proline 
metabolism and ECM, and how mechano-environment, 
such as stiffness, might affect cancer progression. 
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Altered mitochondrial metabolism of cancer cell 
in metastasis

The metastatic cascade is a multi-step process, which 
includes (I) detachment of local tumor cells (resistance to 
anoikis), (II) intravasation (with the potential requirement 
of epithelial-to-mesenchymal transition, EMT), (III) 
survival in the blood circulation, (IV) extravasation from 
the circulation, and (V) colonization at the secondary sites 
(11-13). In all these stages, metastatic cells fine-tune their 
mitochondrial metabolism to better adapt to the ever-
changing environment (13,14). 

Mitochondrial metabolism on resistance to anoikis

During the metastasis, tumor cells are detached from 
the natural matrix niche. The first challenge for cells to 
metastasis is how to skip anoikis, which is programmed cell 
death that occurs in cells sensitive to matrix detachment. 
Unlike these normal cells, tumor cells have attained 
resistance to anoikis since many tumor cells already 
limit oxidative phosphorylation (OXPHOS) and reactive 
oxygen species (ROS) before detachment as a result of 
the Warburg effect (13) (Figure 1). Thus, tumor cells may 
inherently endow a survival advantage when detached from 

the primary tumor. Consistently, antioxidants can reduce 
oxidative stress and contribute to cancer progression in a 
lung cancer mouse model (15).

Mechanistically, pyruvate dehydrogenase kinases (PDKs), 
critical mitochondrial enzymes in glucose metabolism, 
could block OXPHOS and promote the Warburg effect (16). 
High expression of PDKs (such as PDK1) in tumor cells 
can evade excess ROS generated from glucose oxidation, 
which protects tumor cells from ROS-induced anoikis, 
thus promotes metastasis. On the contrary, loss of PDK in 
tumor cells can restore their susceptibility to anoikis owing 
to increased glucose oxidation and ROS production, leading 
to decreased metastatic potential (17). Consistently, Clinical 
analysis of human cancers reveals that PDKs expression in 
tumors has a strong positive correlation with the formation 
of distant metastases and a negative correlation with 
disease-free survival.

Besides, pyruvate kinase M2 (PKM2) is another 
important mitochondrial enzyme in the metabolic pathway 
of glucose (15), inhibition of which can shift glucose into 
pentose phosphate pathway, generating sufficient reducing 
potential for the detoxification of ROS. Meanwhile, 
the oxidative branch of the pentose phosphate pathway 
produces numerous NADPH (18,19), which is a critical 

Figure 1 Altered mitochondrial metabolism of cancer cells in the process of metastasis. Cancer cells undergo specific and multiple metabolic 
alterations from initial cell detachment to final successful colonization at the secondary sites. The upturned arrow represents an increase in 
mitochondrial metabolism, while the downturned arrow means the opposite. OXPHOS, oxidative phosphorylation; ROS, reactive oxygen 
species.
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cofactor for replenishing reduced glutathione (GSH), the 
most important antioxidant. Hence, increased antioxidant 
capacity also helps tumor cells to survive when they detach 
from the local sites. 

Mitochondrial metabolism on EMT

Once tumor cells overcome the risk of anoikis, they activate 
the EMT process to help intravasate the blood or lymphatic 
vessel, inducing a metabolic rewiring (13). Metabolic 
reprogramming of tumor cells could be regulated by the 
EMT process through many molecules, including HIF, 
Snail, p53, and KISS1 (13). Among them, HIF promotes 
metastasis and suppresses oxidative metabolism as well 
as ROS generation. HIF-1 is an important regulator for 
glycolytic enzymes such as lactate dehydrogenase (LDH), 
hexokinase, and monocarboxylate transporter (MCT), hence 
favoring the glycolytic switch (20-22). Furthermore, HIF-1 
also inhibits oxidative metabolism by upregulating PDK, an 
inhibitor of pyruvate dehydrogenase (PDH), which further 
prevent pyruvate from lowing into the TCA cycle (20,21,23). 
Another EMT inducer Snail regulates mitochondrial 
repression and ROS production by suppression of 
cytochrome C oxidase (COX) subunits or loss of fructose-
1,6-bisphosphatase 1 (FBP1) (24). Involved in the first rate-
limiting process of glycolysis, phosphofructokinase platelet 
(PFKP) can also be suppressed by Snail, which would shift 
the glucose flux more to the pentose phosphate pathway, 
leading to more NADPH production (24,25). 

Meanwhile, p53 and KISS1 have been shown to suppress 
the Warburg effect and promote oxidative metabolism, 
resulting in blocking metastasis (26,27). P53 promotes 
the expression of OXPHOS through by upregulating 
of synthesis of cytochrome c oxidase (SCO2), which is a 
member of the COX-2 assembly and involved in oxidative 
metabolism as well as the electron-transport chain (28). 
KISS1 makes a metabolism shift from aerobic glycolysis to 
OXPHOS through stabilization of PGC1α, a key positive 
transcriptional regulator for metabolic genes in the TCA 
cycle and oxidative metabolism (29).

Emerging shreds of evidence suggest that the correlation 
between EMT and metabolism is mutual (14). Metabolic 
dysfunction can also drive EMT in some circumstances (14).  
Several mitochondrial metabolites favor the EMT 
(9,30), in particular, fumarate (31), succinate (32) and 
2-hydroxyglutarate (2HG) (33), which are accumulated 
when mutation or deletion in fumarate hydratase (FH) 
(31,34-36), succinate dehydrogenase (SDH) (37-41), and 

isocitrate dehydrogenases (IDHs) (42-44) occur respectively. 
Mechanistically, Sciacovelli et al. reported that fumarate, 
succinate, and 2HG are responsible for the activation of 
EMT by suppressing the Ten-Eleven Translocation (TET)-
dependent demethylation of miR200 (31), which is a 
known inhibitor of both SNAIL2 (45) and ZEB1 (31,46), 
thus showing anti-metastatic effect in breast cancer (33)  
and colorectal cancer (33,47). In addition, succinate 
accumulation promotes cell migration and invasion by 
activating the TGF-β/SNAIL1 pathway in colorectal  
cancer (48) and ovarian cancer (49); while in lung cancer and 
a human lung xenograft-mouse model, loss of SDH5 (50)  
induces EMT through activating the axis of glycogen-
synthase kinase (GSK-3β)-β-catenin (51). 

Mitochondrial metabolism on cell survival in the 
circulation

In order to survive in the blood or lymphatic vessel, 
mitochondrial circuitry of cancer cells changes for adapting 
to the changing environment. Gene expression profiling 
coupled with bioinformatic analyses by LeBleu et al. reveal 
that circulating cancer cells (CCC) from breast cancer 
primarily rely on OXPHOS and increased ATP production, 
compared to cancer cells from the primary tumors (PCC) 
(Figure 1). Further research reveals that transcription co-
activator PGC-1α was a key factor in enhancing OXPHOS, 
oxygen consumption rate, and mitochondrial biogenesis. 
Overexpression of PGC-1α promotes mitochondrial 
OXPHOS and enhances the invasion of breast cancer 
cells. By contrast, suppression of PGC-1α in these cells 
inhibits their invasive potential and attenuates metastasis. 
Consistently, the expression of PGC-1α in human cancer 
tissue is positively correlated with tumor progression and  
metastasis (52). 

Mitochondrial metabolism on colonization at the secondary 
sites

When the CCC arrive at and proliferate at the secondary 
sites, their mitochondrial metabolisms recover as the 
primary tumors. There are similar gene expression levels on 
OXPHOS and mitochondrial biogenesis between metastatic 
cancer cells (MCC) and CCC, suggesting that expression 
of these genes are recovered as CCC colonize at their 
metastasis sites (52). However, in some MCC, their gene 
expression levels are merely partially recovered compared 
with that in primary cancer cells, potentially as a result of a 
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collective mixture of MCC at different metastatic stages (i.e., 
arrest, extravasation, migration and proliferation stages) (52) 
(Figure 1).

Metabolic coupling of tumor microenvironment 
cells (TME) and cancer cells in metastasis

TME is crucial for tumor progression and metastasis (53),  
which is composed of non-transformed stromal cells 
including fibroblasts, mesenchymal stem cells (MSC), 
endothelial cells, various inflammatory cells as well as 
the ECM. Cancer-associated fibroblasts (CAFs) serve as 
a prominent component of TME, which favors tumor 
metastasis. Several studies reveal that CAFs and cancer cells 
are metabolically coupled in many types of human tumors 
such as breast, prostate (54), and head & neck cancers 
as well as lymphomas. On one hand, cancer cells foster 
oxidative stress in surrounding CAFs, forcing CAFs to 
undergo autophagy/mitophagy as well as aerobic glycolysis. 
On the other hand, anabolic cancer cells that undergo 
oxidative mitochondrial metabolisms are supported by 
recycled nutrients from CAFs, such as lactate, ketones, and 
glutamine (55,56). Moreover, in breast cancer patients, 
these lactate- or ketone-induced gene signatures are 
associated with poor clinical outcomes (including metastasis, 
recurrence and poor overall survival) (57). Last but not 
least, the administration of lactate dramatically enhances 
the lung metastasis rate (>10-fold) in a xenograft model of 
breast cancer (MDA-MB-231 cells) (58).

Mechanistically, HIF1-alpha and NF-κB signaling are 
the master pathways that drive oxidative stress, then induce 
autophagy and senescence in CAFs (59-63). Moreover, 
caveolin-1 (Cav-1) and monocarboxylate transporter 4 
(MCT4) are new biomarkers of this CAF phenotype. Loss 
of Cav-1 can induce high MCT4 expression in the stroma, 
which has been found to promote cancer cell migration and 
metastasis (64,65). A recent study reveals that exosomes play 
important roles in the metabolic coupling between CAFs 
and cancer cells. Exosomes, secreted by patient-derived 
CAFs, can strikingly induce metabolic reprogramming after 
their uptake by cancer cells, which inhibits mitochondrial 
OXPHOS, subsequently increases glycolysis and glutamine-
dependent reductive carboxylation in prostate and 

pancreatic cancers (53).

Coupling of mitochondrial proline metabolism 
and ECM in metastasis

ECM is an intricate structural support network, which 
plays a positive role in the metastasis of cancer cells (66). 
Collagen is one of the most important components in the 
tumor ECM, especially in solid tumors. More importantly, 
collagen provides mechanical strength (67). Proline, a 
critical component of collagen, restricts the rotation of 
the polypeptide collagen chain by cyclic structure, hence 
strengthens the helical characteristic of the molecule (62,63). 
About 99.8% of hydroxyproline in the human body is 
stored in collagen and is an indicator of the total volume of 
collagen. 

A new study reveals that mitochondrial proline 
metabolism and ECM are strongly correlated (68). 
Proline synthesis is strikingly influenced by the mechano-
environment. For example, proline synthesis is decreased 
when cells are plated on soft ECM, while stiffening ECM 
significantly increases proline synthesis. In turn, alteration 
of proline metabolism may affect the collagen synthesis 
as well as ECM remodeling in lung cancer, since ~23% 
of the amino acid of the collagen molecule is comprised 
of proline and hydroxyproline (69-71), which are crucial 
for the biosynthesis, structure, and strength of collagen. 
Mechanistically, as an integrin-associated protein, kindlin-2 
is well-known to localize at focal adhesions (72-79) sites 
where ECM proteins are linked to actin stress fibers (80). 
Interestingly, it is newly found to be translocated into 
mitochondria and interacts with pyrroline-5-carboxylate 
reductase 1 (PYCR1), which is a critical enzyme for proline 
metabolism in organisms. Furthermore, the stiffening of 
ECM promotes the translocation of Kindlin-2 as well as its 
interaction with PYCR1 in mitochondria, increasing the 
PYCR1 protein level, thus promoting proline synthesis and 
cell proliferation (Figure 2).
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Figure 2 Molecular mechanism of coupling of mitochondrial proline metabolism and ECM stiffening. ECM, extracellular matrix.
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