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Background: Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Early 
detection of HCC could largely reduce mortalities. Ultrasonography (US) and serum Alpha Fetoprotein 
(AFP) test are the screening methods that are most frequently applied to high-risk populations. Due to the 
poor performance of AFP testing, and the highly operator-dependent nature of US, a biomarker for HCC 
early diagnosis is highly sought after. We developed a method for HCC screening using a 22-gene expression 
signature. 
Methods: Peripheral whole blood of 98 patients were processed through microarrays for the first round of 
feature selection via two strategies, Minimal Redundancy Maximal Relevance and Least Absolute Shrinkage 
and Selection Operator combined with Support Vector Machine (SVM). Candidate genes were combined for 
further validation through qPCR in an enlarged population with 316 samples with 104 chronic hepatitis, 112 
liver cirrhosis (LC), and 100 HCC. 
Results: A 22-gene signature was established in classifying HCC and non-cancer samples with good 
performance. The area under curve reached 0.94 in all of the samples and 0.93 in the AFP -negative samples.
Conclusions: We have established a blood mRNA signature with high performance for HCC screening. 
Our results show transcriptome of peripheral blood could be valuable source for biomarkers.
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Introduction

Hepatocellular carcinoma (HCC) accounts for 90% of 
liver cancer and is one of the most common and lethal 
malignancies. According to GLOBOCAN 2018, liver 

cancer has the sixth highest incidence rate and the fourth 

highest mortality rate among all cancers worldwide. It also 

ranks third in the causes of mortality in China (1). Liver 

cirrhosis (LC) with any cause, including Hepatitis B Virus 
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(HBV) and Hepatitis C Virus (HCV) chronic infection or 
alcoholic cirrhosis, is the leading cause of HCC. Studies 
have indicated that the annual incidence rate of HCC in 
HBV- and HCV-associated LC patients is around 2–8% 
(2,3). Chronic HBV infection without cirrhosis is also a 
major risk factor for the development of HCC; it has an 
annual incidence rate of 0.5% (2,4). Due to China’s large 
population of individuals with the HBV infection, about half 
of all new liver cancer cases world wide occur in China each 
year (1). This makes liver cancer the fourth most common 
cancer in China, accounting for 9.53% of all cancers.

Liver ultrasonography (US) and the serum Alpha 
fetoprotein (AFP) level test are the most frequently applied 
HCC-monitoring methods in high-risk populations. A 
meta-analysis showed that US had a pooled sensitivity of 
94% but was less effective when detecting early HCC, with 
a sensitivity of 63% (5). However, HCC is highly operative 
dependent and has a relatively low throughput. The AFP 
level is usually reported, but with a poor sensitivity of 
40–73% and a specificity of 53.3–90% (6). Thus, a novel 
biomarker with superior performance in HCC screening is 
highly sought after.

The transcriptome of peripheral blood is a valuable 
source for biomarker studies. Due to its richness in 
information and development of microarray technology, 
many studies  have assessed the peripheral  blood 
transcriptome and its association with various diseases 
or drug responses (7-9). As one of the most effective 
interventions, whole blood transcriptome has been evaluated 
in several studies for its diagnostic potential for cancer in 
its early stages. Donati et al. identified a validated four-gene 
predictor set (ANKRD22, CLEC4D, VNN1, and IRAK3) 
that may prove useful in pancreatic ductal adenocarcinoma 
(PDAC) diagnosis (10). Aarøe et al. identified a diagnostic 
signature with high sensitivity (80.6%) and specificity 
(78.3%) for the early detection of breast cancer (11). In 
previous work in our laboratory, an 18-gene signature 
was identified for colorectal cancer diagnosis with a high 
sensitivity (84%) and specificity (88%). Functional analysis 
showed that most of the genes were associated with immune 
response (12).

In this study, we used an Affymetrix microarray for the 
expression profile of the whole blood transcriptome of 
HCC patients and the patients with high risk to develop 
HCC. Genes with diagnostic potential were selected 
and evaluated via qPCR. A 22-gene signature was finally 
generated with high accuracy in discriminating between the 
HCC group and the non-HCC control group.

Methods

Patients

A total of 316 patients (104 with CH, 112 with LC, and 
100 with HCC) were enrolled at three hospitals (Ruijin 
and Renji Hospital of Shanghai Jiao Tong University 
School of Medicine, and the First Affiliated Hospital of 
Wenzhou Medical University). Approved by the ethics 
committee of above three hospitals, informed consents 
were obtained, and peripheral whole blood samples were 
collected in a PAX gene Blood RNA tube from patients 
with any etiology, including those of viral (e.g., HBV and 
HCV infection) or non-viral (alcohol and auto-immune 
hepatitis) origin. The study protocol conforms to the 
ethical guidelines of the 1975 Declaration of Helsinki 
(6th revision, 2008) as reflected in a priori approval by the 
institution’s human research committee. HCC patients were 
diagnosed using histological findings or based on typical 
imaging characteristics according to liver cancer guidelines. 
Samples were taken from these patients before any 
invasive intervention, including biopsy, surgery, or cancer 
treatments, such as chemotherapy or radiotherapy.

Data analysis and signature identification

Raw intensity data from microarray experiment were 
normalized using the robust multichip average (RMA) 
method and then filtered according to the median 
expression and standard deviation in all of the samples. 
Specifically, genes with a median expression value higher 
than 6 and/or standard deviation less than 0.5 were retained 
for downstream analysis.

After data preprocessing, two feature selection 
algorithms, mRMR and Lasso, were combined with the 
support vector machine (SVM) classification model to 
identify signatures with the best performance in cancer and 
noncancer discrimination.

Genes selected via the two strategies were combined and 
validated using the qPCR method.

Five candidate reference genes (CSNK1G2, PPIB, 
FPGS, DECR1, and CRY2) that were reported to be stably 
expressed in human whole blood were evaluated (13). Four 
statistical approaches were used for the evaluation: geNorm, 
normFinder, bestKeeper, and delta-Ct (dCt). Three genes 
(CSNK1G2, PPIB, and FPGS) were finally selected as 
the reference gene set for data normalization. The Ct 
geometric mean of the three reference genes was used for 
normalization and subtracted by Ct of each gene that was 
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validated.
The same Lasso-SVM algorithm implementation 

was used for the qPCR validation study. A 10-fold cross-
validation accuracy metric was used for model selection.

Differentially expressed genes were identified via 
the significant analysis of microarray (SAM) method. 
Annotation and function analysis were performed via The 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID), which is an online annotation tool for 
transcriptome study.

Results

Patient characteristics

Ninety-eight samples (29 CH, 31 LC, and 38 HCC) were 
processed to a microarray. Of these, 89 (90.82%) were 
infected with the hepatitis B virus, and 3 (3.06%) were 
infected with the hepatitis C virus. Moreover, 36 of the 38 
HCC patients had LC. Patients were stratified according 
to their serological AFP level. A total of 3 (10.34%) CH 
patients, 7 (22.58%) LC patients, and 30 (78.95%) HCC 
patients were AFP-positive ( >20 ng/mL). Their tumor sizes 
were either measured using imaging technology such as an 
US/CT scan or determined after surgery. The longest axis 
of the largest tumor (if there were multiple nodules) was 
defined as the diameter of the nodule. The tumor sizes of 
the 27 HCC patients were recorded: 9 were less than 3 cm, 
10 were between 3 and 5 cm, 3 were between 5 and 10 cm, 
and 5 were larger than 10 cm.

The 316 samples (104 CH, 112 LC, and 100 HCC) were 
processed to qPCR. Of these, 259 (81.96%) were infected 
with the hepatitis B virus, and 21 (6.65%) were infected 
with hepatitis C. In addition, 74 of the 100 HCC patients 
had LC as a background disease. Moreover, 13 (12.5%) CH 
patients, 28 (25.0%) LC patients, and 55 (55.0%) HCC 
patients were AFP-positive (>20 ng/mL). The longest axis 
of the largest tumor (if there were multiple nodules) was 
defined as the diameter of the nodule. The tumor sizes of 
80 HCC patients were recorded; 33 were less than 3 cm, 14 
were between 3 and 5 cm, 17 were between 5 and 10 cm, 
and 16 were larger than 10 cm (Table 1).

Gene selection from microarray data

For genes represented by more than one probe set, the 
probe set with the highest mean value across all of the 
samples was chosen for further analysis. Genes with a 

median expression less than 6 and a standard deviation 
less than 0.5 across all of the samples were removed. 
This preprocessing procedure reduced the number of 
genes to 7,127.

Two strategies were then used for feature selection: (I) 
minimal redundancy maximal relevance (mRMR), which 
was developed in 2005 by Ding and Peng (14). The method 
selects genes with a minimum correlation with each other 
and a maximum relevance with the target phenotype; (II) 
least Absolute Shrinkage and Selection Operator (Lasso), 
proposed by Tibshirani, shrinks some coefficients and sets 
others to 0. Hence, the method aims to retain the good 
features of both subset selection and ridge regression (15). 
The SVM classification model was subsequently used for 
signature identification.

For the mRMR-SVM process, the detailed implementation 
was as follows:

(I)	 The whole process began with an external iterative 
Leave One Out Cross Validation (LOOCV) 
procedure. In each iteration, only one sample was 
left out as an external validation sample, and all 
of the remaining samples were used in a training 
dataset.

(II)	 In each iteration, 30 runs of gene selection and 
model training were performed, each with a 
different number (ranging from 1 to 50) of genes 
to be selected. Each run consisted of two steps: 
mRMR gene selection and SVM model training 
with a 10-fold cross-validation procedure both 
applied on the training set.

(III)	 For gene selection, the mRMR algorithm was 
applied to the external training dataset to search for 
subsets of n genes that had a maximum relevance 
with the clinical status and a minimum redundancy 
within the gene sets. Once gene selection was 
completed, the external training set was further 
split into 10 folds to initiate an internal 10-
fold cross-validation procedure to train an SVM 
classification model using the selected genes as 
input features. The trained SVM model was then 
used to classify the external validation sample.

(IV)	 The external LOOCV procedure was repeated 
in such a way that each sample function was 
an external validation sample only once. The 
performance of the SVM models with certain 
numbers of genes and parameters was reported as 
the external LOOCV validation metric of accuracy, 
which was then used to determine the optimal 
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Table 1 Clinical Characters

Characters

Microarray qPCR

Chronic hepatitis Liver cirrhosis
Hepatocellular 

carcinoma
Chronic 
hepatitis

Liver cirrhosis
Hepatocellular 

carcinoma

n 29 31 38 104 112 100

Age, y

Mean 42.24 48.84 54.26 38.14 47.36 55.87

Range 30–77 32–65 31–81 22–77 25–72 25–81

Gender

M 23 27 32 69 80 80

F 6 4 6 35 32 20

TNM stage

T

T1 – – 15 – – 44

T2 – – 6 – – 20

T3 – – 2 – – 5

T4 – – 12 – – 14

N

N1 – – 33 – – 79

N2 – – 1 – – 3

M

M0 – – 33 – – 79

M1 – – 1 – – 3

AFP >20 3 7 30 13 28 55

AFP ≤20 26 24 8 91 84 45

ALT (IU/L)

Mean 48.24 (n=29) 56.23 (n=31) 92 (n=38) 53.15 (n=78) 51.51 (n=94) 54.25 (n=55)

Range 11–304 12–254 9–766.2 11–304 12–274 9–129.2

AST (IU/L)

Mean 33.07 (n=29) 50.87 (n=31) 101.2 (n=38) 35.54 (n=78) 51.08 (n=94) 62.31 (n=56)

Range 13–129 18–171 14.2–596.9 13–129 17–275 16–399

Bilirubin (μmol/L)

Mean 16.42 (n=28) 21.07 (n=31) 42.49 (n=38) 16.69 (n=78) 34.98 (n=93) 34.92 (n=52)

Range 4.7–39 7.3–51.2 4.9–592.3 4.7–39.2 5–436.4 4.9–530.4

Creatinine (μmol/L)

Mean 80.27 (n=15) 76.1 (n=21) NA 76.83 (n=40) 73.91 (n=56) 66.29 (n=50)

Range 63–104 55–103 NA 47–141 31–181 36–104.7

Table 1 (continued)
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number of gene numbers. The best model was thus 
selected and applied to the whole dataset, and the 
resulting signature was deemed to be the final gene 
signature (Figure 1A).

(V)	 We performed a grid search to get the optimal 
number of genes. Thirty-two genes reached the 
highest accuracy for distinguishing non-cancers 
from cancers. Thirty-two genes were also the 
optimal amount for the sensitivity and specificity.

The procedure of Lasso-SVM followed a slightly different 
principle (Figure 1B). In this procedure, Lasso feature 
selection and SVM classification were sequentially combined 
and trained in a repeated cross-validation process to select 
the best combination of the Lasso parameter, lamda, and the 
SVM parameter, C. Twenty-two genes were finally selected 
as the optimal signature according to the accuracy metric.

Genes were found overlapped between the two 
procedures. Thus, we generated a combined set with 43 
genes for the qPCR study.

qPCR validation and signature identification

For the qPCR validation experiment, 43 target genes and 
five reference genes (CSNK1G2, PPIB, FPGS, DECR1, 
and CRY2) were tested. Three genes (CSNK1G2, PPIB, 
and FPGS) were finally selected to be used as reference 
genes for data normalization according to the algorithms 
described in methods.

The Lasso-SVM procedure was appl ied to the 
normalized qPCR data.  We achieved the optimal 
classification performance when lambda equaled 0.01, which 
corresponded to a signature of 22 genes (Table 2). In the 
end, six genes existed in the results of both model training 
procedures for the microarray; 12 genes were from mRMR-
SVM alone, and 4 genes were from Lasso-SVM (Figure 1C).

Function and pathway analysis of Differential Expressed 
Genes and Diagnostic Signature

Differential Expressed Genes (DEGs) were identified 
using the limma package of R. Probe sets, which fulfilled 
the criteria of LogFC >1 or <–1 and P value lower than 
0.05. They were selected and submitted to DAVID for 
further analysis. Nighty three probe sets representing 64 
genes were found to be up-regulated, and 422 probe sets 
associated with 284 genes were down-regulated in the HCC 
group.

The most significant biological process among the up-
regulated genes was platelet degranulation (10 genes), 
with adjusted P value =2.49E-08 (Benjamini), and blood 
coagulation (7 genes), with adjusted P value =7.9E-3. In the 
KEGG pathway analysis, platelet activation was also listed 
as one of the top most significant pathways, with five genes 
enriched (adjusted P value =0.184).

In the down-regulated genes, the most significantly 
enriched pathways were ribosome (44 genes, with Benjamini 

Table 1 (continued)

Characters

Microarray qPCR

Chronic hepatitis Liver cirrhosis
Hepatocellular 

carcinoma
Chronic 
hepatitis

Liver cirrhosis
Hepatocellular 

carcinoma

Albumin (g/L)

Mean 43.71 (n=28) 40.29 (n=31) 40.17 (n=38) 44.1 (n=76) 39.85 (n=92) 39.17 (n=54)

Range 37–50 27–51 23.3–79.8 36.9–51 26.8–51 24.2–64.2

Etiology

CHB 26 28 35 (27 with LC) 84 93 82 (66 with LC)

CHC 2 0 1 (1 with LC) 15 6 0

AIH 0 0 0 1 3 1 (1 with LC)

Alcohol 0 1 0 0 3 0

Cryptogenic 1 2 2 4 7 17 (7 with LC)

M, male; F, female; CHB, chronic hepatitis B positive; LC, liver cirrhosis; CHC, chronic hepatitis C positive; AIH, autoimmune hepatitis.
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adjusted P value =1.09E-43) and oxidative phosphorylation 
(12 genes, with adjusted P value =5.12E-04). The top-
ranked biological process GO clusters also mainly 
comprised associated genes (Figure 2).

In the 22-gene signature list, 13 genes were up-regulated 
in the HCC group, and 9 genes were down-regulated as a 
result of qPCR. However, after submission to DAVID, no 
biological process or pathways was significantly enriched. 
Five signature genes with logFC >1 or <–1 were also included 
in the DEG list. The up-regulated genes, MPIG6B and 
PF4V1, were associated with the function of the platelet 
FAXDC2, which is related to oxidoreductase activity, as 

described in the Gene Ontology annotation. The down-
regulated gene, RPS21, was a ribosomal protein, and the 
other one was a non-coding RNA with an unclear function.

Signature performance

As classification output, the probability value that a sample 
was HCC was used for the analysis of model performance.

Compared with the serological  AFP level ,  the 
performance of our signature was much better. The AUC 
reached 0.94 (95% CI, 0.908−0.964) when AFP got 0.684 
(95% CI, 0.629−0.735). In the samples with an AFP 

Figure 1 Two strategies for feature selection and model construction. (A) mRMR-SVM process: In each LOOCV iteration, models were 
trained via SVM and based on genes selected by mRMR method. Signature with best performance were selected; (B) lasso-SVM process: 
Lasso feature selection was sequentially combined with SVM method. The optimum number of genes were selected as signature according 
to the model performance in a 10-fold cross validation; (C) qPCR results: genes selected via the two methods were combined for qPCR 
validation. Lasso-SVM procedure was applied on qPCR results to generated a 22-gene signature, including 12 genes selected via mRMR-
SVM alone, 4 genes selected via lasso-SVM alone, and 6 via both processes. 

B Lasso - SVM process

10 fold CV

Training model on training folds
Select genes with Lasso
Classification using linear SVM

Predict for the left fold samples

Calculate 10 fold CV performance

Select optimum number of genes
According to 10 fold CV performance
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CV: cross validation
mRMR: minimal redundancy maximal relevance
SVM: support vector macine
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operator
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Table 2 The 22-gene signature

Probe Set ID Gene symbol Gene title UniGene ID Log fold change Adj. P value

11759232_at MPIG6B Megakaryocyte and Platelet  
Inhibitory Receptor G6b

Hs.247879 1.478274023 2.86E-18

11748570_a_at FAXDC2 Fatty acid hydroxylase domain 
Containing 2

Hs.519694 1.372467571 4.91E-16

11738596_x_at PF4V1 Platelet factor 4 variant 1 Hs.72933 1.33841041 1.58E-12

11733817_s_at FHL1 Four and a half LIM domains 1 Hs.435369 0.899517331 3.48E-06

11754395_a_at BRD4 Bromodomain containing 4 Hs.187763 0.896721633 4.09E-09

11757485_x_at FAM129B Family with sequence similarity 129, 
member B

Hs.522401 0.634247118 1.98E-10

11728289_a_at TBC1D2 TBC1 domain family, member 2 Hs.371016 0.573178366 5.92E-07

11729797_s_at SP2 Sp2 transcription factor Hs.514276 0.485558387 2.31E-07

11756215_x_at UBA52 Ubiquitin A-52 residue ribosomal 
protein fusion product 1

Hs.5308 0.455526734 0.002286894

11729784_a_at CMTM2 CKLF-like MARVEL transmembrane Hs.195685 0.452691469 0.026888906

Domain containing 2

11723822_a_at ZNF862 Zinc finger protein 862 Hs.731923 0.359312518 9.94E-10

11757505_a_at HDLBP High density lipoprotein binding 
protein

Hs.471851 0.246682066 0.018919396

11729610_a_at ELMO1 Engulfment and cell motility 1 Hs.434989 0.178715767 0.099388789

11748635_s_at STAG3L1/2/3 Stromal antigen 3-like 1/2/3 
(pseudogene)

Hs.632310 –0.162123966 0.003566646

Hs.661254

Hs.666638

11760799_x_at HLA_DPB1 Major histocompatibility complex, 
class II, DP beta 1

Hs.485130 –0.23944138 0.129352788

11731523_s_at ZNF592 Zinc finger protein 592 Hs.79347 –0.277762844 0.005197294

11715718_a_at ZNHIT1 Zinc finger, HIT-type containing 1 Hs.211079 –0.362872 9.76E-05

11730824_at COX19 COX19 cytochrome c oxidase 

Assembly factor

Hs.121593 –0.364304295 2.56E-09

11716794_a_at MYL6 Myosin light chain 6 Hs.632717 –0.534250299 6.38E-05

11721695_s_at DUSP2 Dual specificity phosphatase 2 Hs.1183 –0.988291168 3.57E-13

11756740_a_at LRRC75A-AS1 LRRC75A antisense RNA 1 Hs.368934 –1.164800967 7.31E-23

11715357_s_at RPS21 Ribosomal protein S21 Hs.190968 –1.29775912 7.24E-19

T stage subgroups.

Discussion

Peripheral blood is one of the most useful biomarkers for 

various diseases. Its circulating nature provides peripheral 
blood cells the opportunity to communicate and interact 
with diseased organs. Specific molecules released from a 
diseased organ could increase in peripheral blood. Change 
in host immune status with the development of the disease 
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Figure 2 Functional annotation of differentially expressed genes. (A) Biological process: platelet degranulation and blood coagulation were 
significant in up-regulated genes; (B) KEGG pathway: platelet activation was most significant pathway in up-regulated genes. Ribosome was 
most significant in down regulated genes.
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less than 20 ng/mL, the AUC of the signature was 0.93 
(0.888−0.960). At the optimal cutoff, the 22-gene signature 
had an 88% sensitivity and an 88.3% specificity in all of the 
samples; it had a 91.3% sensitivity and an 83.24% specificity 
in the AFP-negative group (Figure 3A,B).

The probability values of the CH, LC, and HCC groups 
with different tumor T stages were plotted (Figure 3C,D). 
As shown in the dot-plot, there was a significant difference 
between the non-HCC and the HCC group, but not 
between the CH and LC groups and not among the tumor 
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Figure 3 Signature performance in diagnosis of HCC. (A) ROC curve for all HCC patients vs. non-cancer patients (CH and LC); (B) ROC 
curve for HCC patients vs. non-cancer patients in the subgroup with AFP levels ≤20 ng/mL; (C) dot plot for probability values of CH, LC, 
and HCC group; (D) table for probability values of CH, LC, and HCC with different tumor size. HCC, hepatocellular carcinoma; CH, 
chronic hepatitis; LC, liver cirrhosis.

CH LC T1 T2 T3 T4 Unknown

Number of values 104 112 44 20 5 14 17

Median 0.09448 0.1156 0.6147 0.6165 0.4952 0.7582 0.6492

25% Percentile 0.03454 0.05232 0.3998 0.4369 0.2643 0.6454 0.4996

75% Percentile 0.1958 0.262 0.7976 0.9175 0.7216 0.861 0.8038

Mean 0.1635 0.2043 0.5851 0.6382 0.4934 0.7031 0.6318

Std. Deviation 0.2006 0.2246 0.2862 0.2769 0.2564 0.2412 0.2442
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is another interesting phenomenon that could be utilized 
as a potential biomarker resource. With the development 
of microarray technology, the transcriptome of peripheral 
whole blood could easily be profiled in an accurate and 
reproducible way. Due to the richness in gene expression 
information, a whole blood transcriptome is an attractive 
field of biomarker study for various diseases, such as 
infectious disease (7,9), neurodegenerative disease (8,16), 
and cancers (17,18).

In the current work, patients with HCC and patients 
under high risk of developing HCC were enrolled. The 
total RNA of the peripheral blood from 98 patients was 
purified and processed to a microarray using a standard 
procedure. Two strategies, mRMR-SVM and Lasso-SVM, 
were applied for feature selection. Selected genes were 
combined for further validation through qPCR. Then, 
qPCR was performed in an enlarged population with 
316 samples and with a combined gene list. Twenty-two 
genes were selected through the Lasso-SVM method and 
generated a good result in discriminating between HCC 
and non-HCC samples. The AUC reached 0.94 in all of 
the samples and 0.93 in AFP-negative samples and the 
small tumor group. The signature generated had a largely 
similar distribution of probability scores among subgroups 
of different tumor sizes, which indicated that the common 
biological behavior in HCC was captured by the genes 
selected in this study.

In the DEG list generated from the microarray, more 
genes were down-regulated. Ribosome and oxidative 
phosphorylation were the two most obviously enriched 
pathways; both were involved with a significant number 
of genes. These genes were more likely associated with 
lymphocytes, according to a previous study that reported 
on their cell-type-specific gene expression profile (19). In 
the up-regulation group, genes associated with platelet 
activation were quite significant in our data. The association 
between platelets and cancer was reported in several 
papers. Over a century ago, thrombocytosis was found to 
be associated with solid tumors. In another study, platelet 
count of peripheral blood was found to be an indicator 
of the existence of occult cancer (20). In ovarian cancer, 
tumor-derived IL6 stimulated thrombopoietin production 
by the liver, thereby stimulating megakaryopoiesis and 
thrombocytosis (21,22).

The final selected signature had quite a different gene 
composition with the DEG list, largely because the de-
redundancy step-through removal of highly correlated 

genes was applied in feature selection. The possible inter-
patient heterogeneity could be another reason for the 
huge difference between the DEGs and the signature. 
More up-regulated genes were enrolled in the signature, 
including MPIG6B, a platelet surface receptor that 
plays an inhibition role in platelet activation (23). Then, 
there was PF4V1, also known as CXCL4L1, which 
has only three amino acids different from CXCL4, is 
released from thrombin-stimulated human platelets, and 
affects angiogenesis (24). Finally, there was FAXDC2, 
a member of the fatty acid hydroxylase superfamily. It 
not only upregulated but also enhanced the process of 
megakaryocytic maturation, which participates in platelet 
production (25). In the down-regulated genes, the 
ribosomal protein S21 was reported to be more associated 
with lymphocytes (19).

Other genes in the signature list were more ubiquitously 
expressed and involved in various complex biological 
function associated to cancer. BRD4 is a transcriptional 
and epigenetic regulator that plays a pivotal role during 
embryogenesis and cancer development (10). UBA52 was 
found participated in the degradation of CCNB1, and 
was critical in cell cycle progression and proliferation of 
NSCLC cell lines (26). CMTM2 expression could predict 
the prognostic outcomes of diffuse gastric cancer (27). 
Downregulation of Elmo1 was found suppressed the 
migration and invasion of TNBC epithelial cells (28). Some 
of these genes underwent a relatively small fold change 
between the HCC and non-HCC group, which represented 
a fine-tuning of the model. 

Conclusions

For this study, we analyzed genes that were differentially 
expressed between HCC patients and patients with a high 
risk of developing HCC (e.g., had CH and LC). Platelet 
activation and a decrease in lymphocyte function were the 
two main biological phenomena observed. Our signature 
was identified through qPCR in an enlarged cohort of 
samples. A good performance was achieved in the AFP-
negative samples and patients with small tumors. More 
validation is necessary to further confirm the performance 
of the signature.
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