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Background: Acute myeloid leukemia (AML) is a heterogeneous clonal disease that prevents normal
myeloid differentiation with its common features. Its incidence increases with age and has a poor prognosis.
Studies have shown that DNA methylation and abnormal gene expression are closely related to AML.
Methods: The methylation array data and mRNA array data are from the Gene Expression Omnibus (GEO)
database. Through the GEO data, we identified differential genes from tumors and normal samples. Then
we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses on
these differential genes. Protein-protein interaction (PPI) network construction and module analysis were
performed to screen the highest-scoring modules. Next, we used SurvExpress software to analyze the genes
in the highest-scoring module and selected potential prognostic genes by univariate and multivariate Cox
analysis. Finally, the three genes screened by SurvExpress software were analyzed using the methylation
analysis site MethSurv to explore AML associated methylation biomarkers.

Results: We found three genes that can be used as independent prognostic factors for AML. These
three genes are the low expression/methylation genes ATP11A and ITGAM, and the high expression/low
methylation gene ZNRF2.

Conclusions: In this study, we performed a comprehensive analysis of DNA methylation and gene
expression to identify key epigenetic genes in AML.
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Introduction

This study aims to analyze acute myeloid leukemia (AML);
a group of genetically heterogeneous malignant clonal
diseases that can block normal myeloid differentiation (1),
as well as AML which is also the most common type of
adult leukemia with the poorest prognosis.

Only in the United States of 2019, there have been
10,920 deaths, and 21,450 new cases of AML diagnosed (2).
At present, induction therapy for AML is based primarily
on cytotoxic drugs that enable complete remission (CR) in
70% of adult patients (3). However, the likelihood of the
recurrence rate in AML patients is still high, especially in
older patients with prognosis of having high-risk factors.
Yet, the long-term cure rate was lower in the absence of
allogeneic hematopoietic stem cell transplantation (Allo-
HCT) in adult AML patients with first complete remission
(CR1) (4.

With the emergence of various molecular targeted
therapies for AML in the last two years, there are now
several new drugs and other clinical trials currently
underway; however, there is not enough data to know
which newly approved drugs should be chosen or in which
order or combination they should be used in (2). New
early diagnostic biomarkers and therapeutic targets are
therefore urgently needed to improve the diagnosis and risk
management of AML in order to reduce the mortality rate
of AML.

Epigenetic modifications include a class of heritable
non-genetic changes in gene expression, usually including
DNA methylation, histone modifications, and chromatin
remodeling (5). In healthy hematopoietic stem cells,
epigenetic processes play a key role in cell differentiation
and hematopoiesis (6). Among them, DNA methylation
affects the function of key genes. It is closely related to
tumors by silencing tumor suppressor genes and activating
oncogenes by high/low methylation (7). Abnormal DNA
methylation is considered a hallmark of AML and is
considered a powerful epigenetic marker in early diagnosis,
prognosis prediction, and treatment decision making (8).

Abnormal gene expression is closely related to tumor
prognosis. Studies have shown that NPM1 (9), FLT3
(10,11), C-KIT (12), AML1-ETO (13), RUNX1 (3,14), TP53
(3,15), CBFB/MYHI1 (13,16), TET2 (17), DNMT3A (18),
JAK-STAT (19), and CXCR4 (20,21) ,HOXA family (22),
NATI10 (23) gene are associated with prognosis of AML. A
few studies have shown altered DNA methylation in cancer,

but the roles of key differentially methylated genes (DMGs)
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and differentially expressed genes (DEGs) in AML remain
unclear.

In this study, we performed a comprehensive analysis
of DNA methylation and gene expression to identify key
epigenetic genes in AML. The methylation genes and
differential genes of AML patients and normal individuals
were downloaded from the GEO database. After data
preprocessing, we identified differential genes between
tumors and normal samples and performed KEGG and
GO analyses on these genes. Protein-protein interaction
(PPI) network construction and module analysis were then
performed, and the highest-scoring modules were screened.
SurvExpress software and analyzed the genes to be assigned
the highest-scoring module with a P value <0.05 were
selected to perform survival analysis and risk assessment
in the cancer dataset. Finally, MethSurv analyzed the
three genes screened by SurvExpress software to explore
methylation biomarkers associated with AML survival.

Methods
Microarray data

We extracted gene expression (GSE114868) and
methylation (GSE63409) profiling data from the Gene
Expression Omnibus (GEO) database at the National
Center for Biotechnology Information.

The AML-associated dataset GSE63409 submitted by
Jung N based on the GPL13534 platform was obtained
from the GEO database and included 15 AML samples and
5 normal samples. The AML-associated dataset GSE114868
submitted by Huang H based on the GPL17586 platform
was obtained from the GEO database and included 194
AML samples and 20 normal samples (Figure I).

Identification of DEGs

GEO provides users with a useful tool called GEO2R that
can be used to analyze microarray data. GRO2R (https://
www.ncbi.nlm.nih.gov/geo/geo2r/) were used to analyze
gene expression in GSE114868 and GSE63409. Gene
expression (GSE114868) and methylation (GSE63409)
data set genes were considered statistically significant as |tl
>2.0 and adj P<0.01. Then, we identified hypomethylated/
upregulated genes via overlapping the hypomethylated and
overexpression gene lists and identified hypermethylated/
downregulated genes via overlapping the hypermethylated
and low-expression gene lists. Finally, Then, we use the
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Figure 1 Graphical abstract.

Venn diagram network tool to draw the Venn diagram.
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

Functional enrichment analyses for module genes

The Kyoto Encyclopedia of Genes and Genomes (KEGGQG)
is a database resource for understanding high-level functions
and utilities of the biological system from molecular-level
information. The Gene Ontology (GO) could be used to
perform enrichment analysis. We used DAVID (https://
david.nciferf.gov/) to make KEGG pathway analysis and
GO enrichment analysis, including Biological Process,
Cellular Component, and Molecular Function for the
hypomethylated/upregulated genes and hypermethylated/
downregulated genes.

PPI network construction and module analysis

PPT analysis is used to search core genes and gene modules
related to carcinogenesis. In this study, the PPI network
analysis of the hypomethylated/upregulated genes and
hypermethylated/downregulated genes were performed
using the search tool for the Retrieval of Interacting Genes
(STRING) database. The interaction score was set at 0.7.

Then, MCODE plugin in Cytoscape is used to find clusters
with the degree cut-off, haircut on, k-core, node score cut-
off, max depth set as 10, 0.2, 2, 0.2 and 100 in PPI network
and the module with the highest score would be picked out
to make survival analyses.

Survival analysis and Cox regression, ROC curve

SurvExpress is a comprehensive gene expression database
and web-based tool that uses biomarker gene lists as
input to provide survival analysis and risk assessment in
cancer data sets (24). We selected genes in the highest-
scoring module of the hypermethylated low expression
and low methylation high expression overlapping genes,
respectively. The univariate Cox model was used to
calculate the association between gene expression levels and
patient overall survival (OS). When the P value was <0.05,
its modular gene was used as an independent prognostic
factor for patient survival. AML samples are divided into
two groups: (I) high-risk group; (II) low-risk group. Survival
analysis was performed by Kaplan-Meier survival plots,
log-rank P value, and hazard ratio (HR, 95% confidence
interval). By comparing the sensitivity and specificity of
risk-based survival predictions, the accuracy of prognostic
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Figure 2 Identification of aberrantly methylated differentially expressed genes in gene expression datasets (GSE114868) and gene

methylation datasets (GSE63409). (A) Hypomethylation and upregulated genes; (B) hypermethylation and downregulated genes.
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Figure 3 Analysis of the top ten pathways of KEGG for aberrant methylation differentially expressed genes in AML. (A) Hypermethylation

and downregulated genes pathway names; (B) hypomethylation and upregulated genes pathway names.

performance was assessed using ROC curves of patients
over time, 10, 30, 50, and 70 months, respectively.

DNA methylation data in MethSurv

MethSurv is used to explore methylation biomarkers
associated with the survival of various human cancers (25).
MethSurv is freely available at https://biit.cs.ut.ee/methsurv.
Through the MethSurv website, we will analyze the DNA
methylation analysis of the selected AML-related genes in
the TCGA database.

Results
Identification of DEGs and DMGs in AML

After obtaining DEGs and DMGs, 6,039 upregulated genes
and 4,730 low-expression genes in GSE114868 were found
from the gene expression microarray analysis. There were
1,644 hypermethylated genes and 1,304 hypomethylated
genes in GSE63409 identified by the gene methylation
microarray analysis. Further analysis of overlapping genes

© Annals of Translational Medicine. All rights reserved.

revealed 273 hypomethylated/upregulated genes and 381
hypermethylated/downregulated genes (Figure 2A,B).

KEGG pathway analysis

KEGG analysis was performed with hypomethylated/
high-expression genes and hypermethylated/low-
expression genes, and the first ten pathways were selected.
Hypermethylated/low-expression genes were enriched
in Thl and Th2 cell differentiation, Epstein-Barr
virus infection, Endocytosis, Th17 cell differentiation,
Chemokine signaling pathway, Phagosome, Human
immunodeficiency virus 1 infection, Toxoplasmosis, Human
T-cell leukemia virus 1 infection, Human cytomegalovirus
infection (Figure 3A4). The hypomethylated/high-expression
genes were significantly enriched in the thermogenesis,
retrograde endocannabinoid signaling, oocyte meiosis,
transcriptional misregulation in cancer, pathways in cancer,
parathyroid hormone synthesis, secretion and action,
glycine, serine and threonine metabolism, cholinergic

synapse, Cushing syndrome, basal transcription factors
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(Figure 3B).

GO term analysis

GO analysis was performed with hypomethylated/high-
expression genes and hypermethylated/low-expression
genes, and the first ten pathways were selected. Regarding
the biological processes (BP), the hypomethylated/
upregulated genes were significantly enriched in regulation
of methylation-dependent chromatin silencing, positive
regulation of histone methylation, regulation of histone
H3-K9 methylation, negative regulation of gene expression,
epigenetic, L-serine metabolic process, regulation of
intracellular steroid hormone receptor signaling pathway,
negative regulation of small GTPase mediated signal
transduction, regulation of Ras protein signal transduction,
negative regulation of gene expression, glial cell
development (Figure 44). In the molecular function (MF),
the hypomethylated/high-expression genes were enriched in
helicase activity, proton-transporting ATP synthase activity,
rotational mechanism, protein kinase binding, divalent
inorganic cation transmembrane transporter activity,
transcription coactivator activity, phosphatidylethanolamine
binding, hyaluronoglucosaminidase activity, damaged
DNA binding, S-adenosylmethionine-dependent
methyltransferase activity, RNA binding (Figure 4B). In
the cellular component (CC), the analysis revealed that
enrichment mainly occurred at intrinsic component of the
cytoplasmic side of the plasma membrane, nuclear speck,
mitochondrial proton-transporting ATP synthase complex,
mitochondrial matrix, mitochondrial proton-transporting
ATP synthase complex, coupling factor F(o), cytoplasmic
vesicle membrane, cytoplasmic ribonucleoprotein granule,
cytoplasmic vesicle, nuclear body, Cul4A-RING E3
ubiquitin ligase complex (Figure 4C).

The BP enriched by the hypermethylated/low-
expression genes included cytokine-mediated signaling
pathway, protein phosphorylation, positive regulation of
myeloid leukocyte mediated immunity, phosphorylation,
N-acetylneuraminate metabolic process, positive regulation
of NF-kappaB transcription factor activity, positive
regulation of leukocyte degranulation, regulation of
interleukin-12 production, regulation of apoptotic process,
interferon-gamma-mediated signaling pathway (Figure 4D).
In the MF, the hypomethylated/high-expression genes
were enriched in protein kinase activity, actin filament
binding, non-membrane spanning protein tyrosine kinase
activity, actin-binding, Toll-like receptor binding, protein

© Annals of Translational Medicine. All rights reserved.
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tyrosine kinase activity, PDZ domain binding, protein
kinase binding, protein kinase A catalytic subunit binding,
protein phosphatase binding (Figure 4E). In the CC, the
hypermethylated/low-expression genes were enriched
in the phagocytic vesicle, phagocytic vesicle membrane,
tertiary granule membrane, is an integral component of
endoplasmic reticulum membrane, specific granule, actin
cytoskeleton, which is integral component of lumenal side
of endoplasmic reticulum membrane, early endosome,
tertiary granule, Golgi membrane (Figure 4F).

PPI network construction and module choice

PPI network analysis was performed through the STRING
database and Cytoscape software. We obtained a PPI
network map of hypomethylation/upregulation genes and
hypermethylation/downregulation genes. The PPI network
map of the hypomethylated/upregulated gene has 256 nodes
and 176 edges (Figure 5), and the PPI network map of the
hypermethylated/downregulated gene has 373 nodes and
309 edges (Figure 6). The above two PPI network diagrams
were respectively imported into the Cytoscape software to
construct a module through the MCODE plug-in, in which
the hypomethylation/upregulation gene was constructed
into 9 modules, and the hypermethylation/downregulation
gene was constructed into 12 modules. We selected the
highest scoring modules (Figure 7A,B).

Survival analysis of genes

To assess whether the identified prognostic markers are
valuable for predicting patient survival, we focused on the
genes in the highest-scoring modules. We used SurvExpress
software to analyze hypomethylated/upregulated, and
hypermethylated/downregulated genes for univariate
and multivariate Cox regression analysis. AML samples
were divided into two groups: (I) high-risk group; (II)
low-risk group. First, we performed the univariate Cox
regression analysis of the highest-scoring module gene. The
hypermethylation/downregulation gene module 1 has 20
genes, and the hypomethylation/upregulation gene module
1 contains 7 genes (Table 1). We screened for genes with
P values <0.05 (ATPI11A, ITGAM, ZNRF2). These three
genes were then subjected to multivariate Cox regression
analysis and found to have P values <0.05 (7able 2). The
three genes were independent prognostic factors, and
then we use three genes to establish a prognostic model
(Figure 84,B). The ROC curves assessed the accuracy of the

Ann Transl Med 2019;7(23):737 | http://dx.doi.org/10.21037/atm.2019.11.122
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Table 1 The highest scoring module gene
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regression analysis

Table 2 Three survival-related genes based on multivariate Cox

Genes HR 95% ClI P value
ATP11A 0.599 0.441-0.813 0.001
ITGAM 1.305 1.144-1.488 <0.001
ZNRF2 0.579 0.408-0.822 0.002

Figure 7 The highest scoring module. (A) Hypermethylation/downregulation gene module 1; (B) hypomethylation/upregulation gene module 1.
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Figure 8 Multivariate Cox Regression analysis of three genes. (A) Kaplan-Meier survival curves for overall survival outcomes according to
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key genes; (D) Box plot of three key genes expression by risk groups.

prognostic model at 10, 30, 50, and 70 months (Figure 8C).
These three genes were used to evaluate the prognosis
of AML cytogenetic risk typing and cell morphological
typing and found that these three genes differed in the
intermediate/Normal and M2 prognostic analysis (1able 3).
Finally, we show the expression levels and risk assessment of
three key genes (Figure 8D).

© Annals of Translational Medicine. All rights reserved.

DNA methylation data in MethSurv

MethSurv is used to explore methylation biomarkers
associated with the survival of various human cancers.
MethSurv analyzed DNA methylation in TCGA. We
performed methylation analysis of three genes (ATP114,
ITGAM, ZNRF?2) that can be used as independent
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Table 3 Cytogenetic risk typing and morphological cell typing of these three genes based on multivariate Cox regression analysis in AML

Class HR 95% Cl P value
CYTO-RISK-Favorable 2.750 0.570-13.300 0.190
CYTO-RISK-Intermediate/normal 1.750 1.050-2.900 0.029
CYTO-RISK-Poor 1.360 0.570-3.250 0.475
MORPHO-CODE-MO0 undifferentiated 1.090 0.300-3.910 0.895
MORPHO-CODE-M1 1.750 0.740-4.100 0.195
MORPHO-CODE-M2 2.850 1.220-6.660 0.010
MORPHO-CODE-M3 3.990 0.410-38.940 0.198
MORPHO-CODE-M4 1.530 0.680-2.440 0.295
MORPHO-CODE-M5 0.880 0.240-3.200 0.849
AML, acute myeloid leukemia.

Table 4 The significant prognostic value of CpG in three key genes

Gene-CpG HR LR test P value
ATP11A-Body-Open_Sea-cg00990020 2.207 <0.001
ATP11A-Body-N_Shelf-cg04656015 2.273 <0.001
ATP11A-Body-N_Shelf-cg24199463 2.224 0.001
ATP11A-Body-S_Shelf-cg04229372 2.130 <0.001
ATP11A-Body-Open_Sea-cg00717219 1.837 0.001
ATP11A-Body-Open_Sea-cg25347801 1.826 0.002
ATP11A-Body-Open_Sea-cg21649349 1.975 0.004
ATP11A-Body-N_Shelf-cg03353885 1.881 0.002
ATP11A-Body-S_Shelf-cg09804528 1.866 0.002
ATP11A-Body-Open_Sea-cg17218041 1.884 0.008
ITGAM-Body-Island-cg05625471 1.558 0.036
ITGAM-Body-Island-cg02256631 1.523 0.045
ZNRF2-Body-Open_Sea-cg07510230 0.581 0.014
ZNRF2-Body-Open_Sea-cg07568841 0.655 0.023
ZNRF2-TSS1500-N_Shore-cg21557180 1.556 0.046

prognostic factors for AML in SurvExpress software.
In the MethSurv software, we found that the P value of
73 CpG sites in the hypermethylated/down-regulated
ATPI11A in AML was <0.05, which we considered
statistically significant. The top ten sites were shown in
Table 4. Similarly, the hypermethylation/downregulation gene
ITGAM has two CpG sites with a P value of <0.05, and the
hypomethylation/upregulation gene ZNRF?2 has three CpG

© Annals of Translational Medicine. All rights reserved.

sites with a P value of <0.05, which is statistically significant
(Table 4). We found that the difference in DNA methylation
between cg00990020 of ATPI11A, cg05625471 of ITGAM, and
cg07510230 of ZNRF2 was most pronounced (Figure 94,B,C).

Discussion

AML is the most common acute leukemia in adults and is

Ann Transl Med 2019;7(23):737 | http://dx.doi.org/10.21037/atm.2019.11.122
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a highly heterogeneous and fatal (1). DNA methylation is
the most studied epigenetic modification and is essential
in the promotion of many important BP (7). Abnormal
DNA methylation can lead to a variety of pathological
conditions, including carcinogenesis. (8) Certain DNA
methylation engages in the initial stages of carcinogenesis,
such as RASSF1A in ovarian cancer (26). In addition,
DNA methylation is stable over some time and can be
detected non-invasively in the blood (27). Therefore, DNA
methylation has the exciting potential to become an early
diagnostic biomarker for cancer. Multiple studies have
shown that gene expression abnormalities are closely related
to AML (10). Identification of novel biomarkers will aid in
early diagnosis and improved prognosis. In this study, we
performed a comprehensive analysis of DNA methylation
and gene expression to identify key epigenetic genes in
AML.

This study is the first to report bioinformatics studies
and its association between gene methylation of AML
and the corresponding mRNA expression. Through
our research, we found three genes that can be used as
independent prognostic factors for AML. These three
genes are the low expression/methylation genes ATP11A4
and ITGAM, and the high expression/low methylation
gene ZNRF2. ATP11A is an adenosine triphosphate
binding cassette (ABC) transporter homolog gene and
belongs to an extended family of ABC transporters that
confer multidrug resistance to cancer cells. For example,
in lymphocytic leukemia, cancer cells are resistant by
increasing ATPI11A expression (28). In previous studies,
it was found that the expression level of ATP11A gene in
colorectal cancer tumor tissues was significantly higher
than that in corresponding normal tissues, and it was
important for the prognosis evaluation of colorectal
cancer (29). Studies have shown that the ATP11A gene is a
methylation biomarker for prostate cancer and is expressed
in patients with metastatic and lethal PCA (30). ITGAM
is a major non-human leukocyte antigen associated with
the pathogenesis of autoimmune diseases such as systemic
lupus erythematosus (SLE) and IgA nephropathy (31).
Recent reports that SNP rs4597342 in ITGAM 3'UTR
affect miR-21 binding may be considered a risk factor for
psoriasis development (32). However, the above two genes
have not been reported in AML. ZNRF?2 is a ubiquitin
ligase of the RING superfamily. It has been shown that
membrane-associated E3 ubiquitin ligase ZNRF2 is
involved in mTor activation and regulation through protein
interactions, and ZNRF2 depletion reduces cell size and
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cell proliferation (33). ZNRF2 also plays a crucial role in
tumorigenesis. For example, ZNRF2 enhances the mTor
and its downstream targets CyclinD1 and CDK in NSCLC
cells, and the negative correlation between ZNRF2 and
miR-100 in osteosarcoma specimens, low miR-100 is
associated with poor prognosis in OS patients (34,35).
To date, the role of the ZNRF2 gene in AML and how it
regulates AML through aberrant methylation is unclear.
These three genes may be good indicators for assessing the
prognosis of AML. We used these three genes to set up an
independent prognostic model with high accuracy, which
can be used to assess the prognosis of patients with AML
and as a good target for AML treatment.

This study had several limitations: (I) the small number
of cases evaluated; (II) the results of the study have not been
validated on clinical samples.

In summary, our research identified many aberrantly
expressed genes and pathways that can be regulated by
aberrant methylation in AML through a comprehensive
analysis of gene expression and methylation microarrays.
We identified some new markers and pathways through
multi-database analysis that could be an accurate diagnosis
and treatment for AML; however, determining the role of
these identified genes in the AML process requires more
research.

Acknowledgments

Funding: This study was supported by grants from the
National Natural Science Foundation of China (81874049,
81602179, 81570198); the National Science and Technology
Major Project for New Drug (No. 20172X301033); the
Co-construction of Provincial and Department Project
(WKJ-Z]J-1919); the Zhejiang Provincial Natural Science
Foundation of China (LY19H160036). This study was
supported by the Key Laboratory of Tumor Molecular
Diagnosis and Individualized Medicine of Zhejiang
Province, Zhejiang Provincial People’s Hospital (People’s
Hospital of Hangzhou Medical College). Hangzhou Health
Science and Technology Project (No. Y201869156).

Footnote
Conflicts of Interest: The authors have no conflicts of interest

to declare.

Ethical Statement: The authors are accountable for all aspects
of the work, and the questions related to the accuracy

Ann Transl Med 2019;7(23):737 | http://dx.doi.org/10.21037/atm.2019.11.122



Page 14 of 15

or integrity of any part of the work are appropriately
investigated and resolved.

References

1.

10.

11.

12.

13.

14.

© Annals of Translational Medicine. All rights reserved.

Nagler E, Xavier MF, Frey N. Updates in
immunotherapy for acute myeloid leukemia. Transl
Cancer Res 2017;6:86-92.

Lai C, Doucette K, Norsworthy K. Recent drug approvals
for acute myeloid leukemia. ] Hematol Oncol 2019;12:100.
Xu P, Wang M, Jiang Y, et al. The association between
expression of hypoxia inducible factor-1a and multi-drug
resistance of acute myeloid leukemia. Transl Cancer Res
2017;6:198-205.

Vasu S, Kohlschmidt J, Mrézek K, et al. Ten-year outcome
of patients with acute myeloid leukemia not treated with
allogeneic transplantation in first complete remission.
Blood Adv 2018;2:1645-50.

Koutsi A, Vervesou EC. Diagnostic molecular techniques
in haematology: recent advances. Ann Transl Med
2018;6:242.

Kramer A, Challen GA. The epigenetic basis of
hematopoietic stem cell aging. Semin Hematol
2017;54:19-24.

Kulis M, Esteller M. DNA methylation and cancer. Adv
Genet 2010;70:27-56.

Yang X, Wong MPM, Ng RK. Aberrant DNA Methylation
in Acute Myeloid Leukemia and Its Clinical Implications.
Int J Mol Sci 2019. doi: 10.3390/ijms20184576.

Heath EM, Chan SM, Minden MD, et al. Biological

and clinical consequences of NPM1 mutations in AML.
Leukemia 2017;31:798-807.

Ferrara F, Palmieri S, Leoni F. Clinically useful prognostic
factors in acute myeloid leukemia. Crit Rev Oncol
Hematol 2008;66:181-93.

Hillert LK, Bettermann-Bethge K, Nimmagadda SC, et al.
Targeting RIPK1 in AML cells carrying FUT3-ITD. Int J
Cancer 2019;145:1558-69.

Chen PY, Chen YT, Gao WY, et al. Nobiletin Down-
Regulates c-KIT Gene Expression and Exerts
Antileukemic Effects on Human Acute Myeloid Leukemia
Cells. J Agric Food Chem 2018;66:13423-34.

Singh AA, Mandoli A, Prange KH, et al. AML associated
oncofusion proteins PML-RARA, AMLI-ETO and
CBFB-MYHI11 target RUNX/ETS-factor binding sites

to modulate H3ac levels and drive leukemogenesis.
Oncotarget 2017;8:12855-65.

Mill CP, Fiskus W, DiNardo CD, et al. RUNX1-targeted

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Hu et al. Prognostic markers of AML methylation genes

therapy for AML expressing somatic or germline mutation
in RUNXI1. Blood 2019;134:59-73.

Hunter AM, Sallman DA. Current status and new
treatment approaches in TP53 mutated AML. Best Pract
Res Clin Haematol 2019;32:134-44.

Monma F, Nishii K, Shiga ], et al. Detection of the CBFB/
MYHI11 fusion gene in de novo acute myeloid leukemia
(AML): a single-institution study of 224 Japanese AML
patients. Leuk Res 2007;31:471-6.

Mohamed AM, Balsat M, Koering C, et al. TET?2 exon

2 skipping is an independent favorable prognostic factor
for cytogenetically normal acute myelogenous leukemia
(AML): TET?2 exon 2 skipping in AML. Leuk Res
2017;56:21-8.

Spencer DH, Russler-Germain DA, Ketkar S, et al. CpG
Island Hypermethylation Mediated by DNMT3A Is a
Consequence of AML Progression. Cell 2017;168:801-
816.e13.

Faderl S, Ferrajoli A, Harris D, et al. WP-1034, a novel
JAK-STAT inhibitor, with proapoptotic and antileukemic
activity in acute myeloid leukemia (AML). Anticancer Res
2005;25:1841-50.

Du W, Lu C, Zhu X, et al. Prognostic significance of
CXCR#4 expression in acute myeloid leukemia. Cancer
Med 2019;8:6595-603.

Shah MV, Barochia A, Loughran TP. Impact of genetic
targets on cancer therapy in acute myelogenous leukemia.
Adv Exp Med Biol 2013;779:405-37.

Chen SL, Qin ZY, Hu F, et al. The Role of the HOXA
Gene Family in Acute Myeloid Leukemia. Genes 2019.
doi: 10.3390/genes10080621.

Liang P, Hu R, Liu Z, et al. NAT'10 upregulation indicates
a poor prognosis in acute myeloid leukemia. Curr Probl
Cancer 2019. [Epub ahead of print].

Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma
E, et al. SurvExpress: an online biomarker validation tool
and database for cancer gene expression data using survival
analysis. PLoS One 2013;8:¢74250.

Modhukur V, Iljasenko T, Metsalu T, et al. MethSurv: a
web tool to perform multivariable survival analysis using
DNA methylation data. Epigenomics 2018;10:277-88.
SiJG, SuYY, Han YH, et al. Role of RASSFI1A promoter
methylation in the pathogenesis of ovarian cancer: a meta-
analysis. Genet Test Mol Biomarkers 2014;18:394-402.
Laird PW. The power and the promise of DNA
methylation markers. Nat Rev Cancer 2003;3:253-66.
Zhang B, Groffen J, Heisterkamp N. Resistance to
farnesyltransferase inhibitors in Ber/Abl-positive

Ann Transl Med 2019;7(23):737 | http://dx.doi.org/10.21037/atm.2019.11.122



Annals of Translational Medicine, Vol 7, No 23 December 2019

29.

30.

31.

lymphoblastic leukemia by increased expression of

a novel ABC transporter homolog ATP11a. Blood
2005;106:1355-61.

Miyoshi N, Ishii H, Mimori K, et al. ATP11A is a

novel predictive marker for metachronous metastasis of
colorectal cancer. Oncol Rep 2010;23:505-10.

Zhao S, Geybels MS, Leonardson A, et al. Epigenome-
Wide Tumor DNA Methylation Profiling Identifies Novel
Prognostic Biomarkers of Metastatic-Lethal Progression
in Men Diagnosed with Clinically Localized Prostate
Cancer. Clin Cancer Res 2017;23:311-9.

Fan'Y, Li LH, Pan HF, et al. Association of ITGAM
polymorphism with systemic lupus erythematosus: a meta-
analysis. ] Eur Acad Dermatol Venereol 2011;25:271-5.

Cite this article as: Hu L, Gao Y, Shi Z, Liu Y, Zhao J, Xiao
Z, Lou J, Xu Q, Tong X. DNA methylation-based prognostic
biomarkers of acute myeloid leukemia patients. Ann Transl
Med 2019;7(23):737. doi: 10.21037/atm.2019.11.122

© Annals of Translational Medicine. All rights reserved.

32.

33.

35.

Page 15 of 15

Hruska P, Kuruczova D, Vasku V, et al. MiR-21 binding
site SNP within ITGAM associated with psoriasis
susceptibility in women. Plos One 2019;14:¢0218323.
Hoxhaj G, Caddye E, Najafov A, et al. The E3 ubiquitin
ligase ZNREF?2 is a substrate of mMTORCI and regulates
its activation by amino acids. Elife 2016. doi: 10.7554/
elife.12278.

Xiao Q, Yang Y, An Q, et al. MicroRNA-100 suppresses
human osteosarcoma cell proliferation and chemo-
resistance via ZNRF2. Oncotarget 2017;8:34678-86.
Zhang XF, Guo ZQ, Zhao CC, et al. The role of ZNRF2
in the growth of non-small cell lung cancer. Eur Rev Med
Pharmacol Sci 2016;20:4011-7.

Ann Transl Med 2019;7(23):737 | http://dx.doi.org/10.21037/atm.2019.11.122



