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Background: Depression is an independent risk factor for atherosclerosis (AS), which can increase the risk 
of death and disability from AS. However, the mechanism of AS comorbidity with depression is complex.
Methods: ApoE−/− and C57BL/6J mice were fed with a high-fat diet (model group, N=12 ♂ ) and a 
normal diet (control group, N=12 ♂). During the 15-week experimental period, the following tests were 
performed: coat color score, body weight, and sucrose preference tests (every 2 weeks); open-field test (1st, 
7th, and 15th weeks); and light/dark and tail suspension tests (15th week). Oil Red O and hematoxylin and 
eosin (HE) stainings were used to assess the area of atherosclerotic status. The levels of triglyceride and 
total and low-density lipoprotein cholesterol in the serum and secretion of pro-inflammatory cytokines were 
determined using the enzyme-linked immunosorbent assay. The differentially expressed genes (DEGs) in the 
hippocampus and prefrontal cortex were screened by RNA-sequencing (RNA-seq) and analyzed using the 
Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations.
Results: Our findings showed that compared with C57 mice in the control group, ApoE−/− mice in 
the model group gradually developed depression-like behavioral changes with elevated blood lipid 
concentrations, serum inflammatory factor levels, and atherosclerotic plaque formation in the thoracic aorta. 
Consequently, in the RNA-seq and bioinformatics analysis, the high expression of inflammatory chemokine 
genes was found in the hippocampus and prefrontal cortex area. The regulation of movement, feeding, and 
reproduction of the gene expression decreased.
Conclusions: These results indicate that when ApoE−/− mice were fed a high-fat diet for 15 weeks, 
depression-like behavioral changes occurred with the formation of atherosclerotic lesions. The RNA-
seq, combined with bioinformatics analysis, showed that this AS comorbidity with depressive behavior was 
associated with the high expression of inflammation-related genes and pathways in the hippocampus and 
prefrontal cortex.
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Introduction

Atherosclerosis (AS) is a chronic pathological condition 
involving various processes including vascular endothelial 
dysfunction, inflammatory cell infiltration, abnormal 
vascular smooth muscle proliferation and migration, lipid 
peroxide deposition, and vascular matrix changes (1). 
According to the World Health Organization, diseases with 
AS as the main pathological feature, such as coronary heart 
disease (CHD) and ischemic stroke, are high in severity on 
the disease spectrum (2). Depression is a devastating disease 
characterized by persistent low mood, lack of pleasure, 
exhaustion, and has high rates of morbidity, disability, high 
costs, and even suicide. Moreover, epidemiological studies 
have confirmed the remarkably high comorbidity between 
AS and depression (3-5).

Current research suggests that the underlying causes 
of CHD and depression may be vascular endothelial 
dysfunct ion,  inf lammation,  abnormal  autonomic 
nervous system regulation, neuroendocrine-immune 
network disorder, along with other factors (6). However, 
inflammation is the main driver of these pathological 
processes. Patients with CHD and comorbid depression 
have elevated levels of pro-inflammatory cytokines in the 
circulating blood, including interleukin (IL)-1β, IL-6, and 
tumor necrosis factor (TNF)-α (7). Peripheral innate and 
adaptive immune molecule activation can interact with the 
central nervous, immune system (8). Toll-like receptors 
(TLRs) on macrophage-like cells in the choroid plexus may 
also produce pro-inflammatory cytokines to activate the 
microglial cells in the central nervous system to respond to 
the pro-inflammatory cytokines derived from peripheral 
circulation (9). Despite the above research, the mechanism 
of coronary atherosclerotic heart disease comorbidity with 
depression is still poorly understood.

An ApoE−/− mouse is a widely used animal model of  
AS (10). In this study, the self-state and behavioral changes 
of ApoE−/− mice were observed and compared with their 
wild-type mice to determine whether they had depression-
like behavioral changes. Furthermore, the RNA-seq method 
was used to detect the differentially expressed genes (DEGs) 
in the hippocampus and prefrontal cortex in mice. The 
function of DEGs was analyzed by Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
annotations to identify the significant regulatory genes and 
signal pathways potentially related to the pathogenesis of AS 
comorbidity with depression. We hope to lay a foundation 
that can elucidate the pathogenesis of AS comorbidity with 

depression.

Methods

Animals

Twelve C57BL/6 mice (8±20 g, male, SPF grade) and 
twelve ApoE−/− mice (8 weeks old, 20±2 g, male, SPF) 
were purchased from Nanjing Qingzilan Technology Co., 
Ltd. [animal license number: SCXK (Su) 2016-0010] and 
the Experimental Animal Center of the Fourth Military 
Medical University [animal license number: SCXK (Army) 
2012-0007], respectively. They were bred in a clean level 
environment (22±1 ℃) with a humidity of 55%±5%, had 
feed and water provided ad libitum under a daily 12-h 
light/dark cycle. After one 1 week of adaptive diet feeding, 
they were weighed and divided into cages according to the 
statistical random grouping principle. The groups were 
defined as follows: control group, C57 mouse + ordinary 
diet, and AS model group, ApoE−/− mouse + high-fat 
diet. All animals were kept in strict accordance with the 
National Laboratory Animal Management Regulations and 
guidelines of the Animal Feeding and Ethics Committees 
of the Experimental Animal Center of Nanjing University 
of Chinese Medicine (Laboratory Animal Ethics No.: 
ACU171104).

Experimental design

Bodyweight and coat state score
The mice were weighed every 2 weeks, and the coat state 
was assessed every 2 weeks as a marker of the progression 
of the depressive syndrome. Specifically, the scoring 
sites included the head, neck, back, abdomen, and back 
claw (n=5). The possible scores were 0 or 1. A 0 score 
meant the hair of the mouse was clean, neat, and smooth, 
whereas a 1 score meant it was messy, fluffy, and greasy. 
Two experimenters assigned the total score of each mouse 
according to the scoring criteria. The grader did not know 
the grouping and drug administration of the mice (11).

Sucrose preference test
A bottle of 1% sucrose water and a bottle of pure water 
were made freely available to the mice for 24  h. The 
position of the two bottles was changed every 12 h, and 
the food intake was not restricted when adapting. Then, 
the amounts of water and sucrose solution consumed in 
each group were weighed. The formula for calculating the 
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sugar preference was as follows: sugar preference ratio (%)  
= sucrose consumption/(sucrose consumption + pure water 
consumption) ×100% (12,13).

Open-field test
This test was performed in a manner similar to that 
described previously (14) and repeated 3 times (1st, 7th, and 
15th weeks) to test the changes in the activity pattern with 
increasing experimental time (15). To study spontaneous 
locomotion, the mice were placed in an open rectangular 
plastic apparatus (25×25×35 cm3) with 4 squares. The 
spontaneous activities of the mice were observed and 
recorded for 5 min using the TopScan system. Then, the 
horizontal spontaneous motion distances (total movement 
distance, central area distance, central area time/total time) 
of the mice were systematically analyzed using a small 
animal behavior trajectory analysis system.

Light/dark test
The light/darkfield device consisted of 2 boxes of plexiglass 
(20×20×14 cm3). One of the boxes was darkened. The lamp 
from the desk lamp, about 10 cm above the other box, 
provided illumination for the room. An opaque plastic 
tunnel (5×7×10 cm3) separated the black box from the 
lighting box. At the beginning of the experiment, the mouse 
was placed in the illuminated box, facing the tunnel. The 
device was equipped with an infrared beam and sensor to 
measure the relevant parameters for 5 min (12).

Tail suspension test
The mice were hung upside down in a white plastic box 
(25×25×35 cm3). The nose tip of each mouse was held 
50 cm above the floor. The mice were suspended from 
their tails 1 cm from the end using a medical adhesive tape. 
Each mouse was monitored for the duration of 6 min, 
which comprised an initial 2 min and a subsequent 4 min 
of acclimatization and testing periods, respectively (16). 
During the test, the mice were completely separated from 
each other to avoid possible visual and auditory interference

Enzyme-linked immunosorbent assays in the levels of 
the pro-inflammatory factors and plasma lipids
At the end of the behavioral experiment, fasting was 
performed for 8 h, and 5% sucrose water was given to 
supply energy. The blood was taken from the posterior 
venous vein and placed in a 1.5-mL Eppendorf (EP) tube. 
After standing in a refrigerator at 4 ℃ for 1 h, the plasma 
samples were obtained after centrifugation at 3,000 rpm 

at 4 ℃ for 15 min. The levels of the pro-inflammatory 
factors (including IL-1β, IL-6, and TNF-α) and lipids [total 
cholesterol (TC), triglycerides (TG), and LDL-cholesterol 
(LDL-C)] were detected using the enzyme-linked 
immunosorbent assay kits mentioned earlier according to 
the manufacturers’ instructions.

Oil Red O and hematoxylin and eosin (HE) staining
After anesthesia with pentobarbital sodium, the mice were 
fixed on the dissection table, and the chest cavity was fully 
exposed. They were perfused through the left ventricle with 
cold PBS (pH, 7.2), and then, after being infused with cold 
4% paraformaldehyde, the base of the ascending aorta was 
carefully separated to the brachial artery. Subsequently, 
the entire aortas of each group were stained with oil red O 
for the lipid accumulation analysis. The lesion areas were 
analyzed by Image-J Software.

HE staining of the pathological sections of the aortic 
root tissue was performed according to the manufacturer’s 
instructions. Furthermore, the morphological changes of 
the endothelium, smooth muscle cells, and foam cells on 
the aortic arch tissues were observed by light microscopy.

Total RNA extraction

Using the method of cervical dislocation, all the mice were 
sacrificed; the hippocampus and prefrontal cortex tissues 
obtained from the sacrificed mice were rapidly separated 
using ice. Further, the tissues were frozen using liquid 
nitrogen and stored at a temperature of −84 ℃.

From the frozen tissues, total RNA was extracted using 
Trizol (Invitrogen, Carlsbad, CA, USA). The extraction was 
performed according to the instruction manual. Next, using 
a 2-mL tube and liquid nitrogen, nearly 30 mg of the tissues 
were ground into powder. The obtained powder was then 
homogenized for 2 min and rested horizontally for 5 min 
thereafter. The contents were subjected to centrifugation 
at 12,000 ×g and 4 ℃ for 5 min; also, the supernatant was 
taken into an EP tube and mixed with 0.3 mL chloroform/
isoamyl alcohol (24:1); the contents were vigorously shaken 
for 15 s, followed by centrifugation at 12,000 ×g and 4 ℃  
for 10 min; after this step, the upper aqueous phase 
containing RNA was transferred into a new tube, and an 
equal volume of supernatant of isopropyl alcohol was mixed 
with the aqueous phase. The contents were then centrifuged 
at 13,600  rpm and 4 ℃ for 20 min. The supernatant 
obtained after the centrifugation was discarded, and the 
RNA pellet was washed with 1-mL 75% ethanol twice; the 
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resulting contents were then centrifuged at 13,600 rpm 
and 4 ℃ for 3 min, and the residual ethanol was separated. 
The remaining pellet was air-dried in a biosafety cabinet 
for 5–10 min. To dissolve the RNA, nearly 25–100 µL of 
diethylpyrocarbonate (DEPC)-treated water was added to 
the dried pellet. The resulting total RNA was qualified and 
quantified using a NanoDrop and Agilent 2100 bioanalyzer 
(Thermo Fisher Scientific, MA, USA).

mRNA library construction

Double- and single-stranded DNA in the total RNA was 
digested using DNase I. This led to the production of 
magnetic beads that were further purified for recovering 
the reaction products. To remove the RNA, RNase H 
or Ribo-Zero method (human, mouse, plants) (Illumina, 
USA) was employed. Consequently, purified mRNA was 
obtained and eventually fragmented into small pieces using 
a fragment buffer at a suitable temperature. Later, First-
Strand Reaction System, along with polymerase chain 
reaction (PCR), was used for producing first- and second-
strand cDNA. The magnetic beads were then utilized for 
purification of the reaction product. A-Tailing Mix and 
RNA Index Adapters were added by incubation to carry out 
end repair. Further, on PCR, the cDNA fragments with 
adapters were amplified, and the products obtained were 
then purified using Ampure XP Beads. For quality control 
purposes, the cDNA Library was validated on the Agilent 
Technologies 2100 bioanalyzer. The aforementioned 
double-stranded PCR products were subjected to heat 
denaturation, followed by circularization using the splint 
oligo sequence. The final cDNA library was constructed by 
formatting the single-strand circular DNA (ssCir DNA) and 
amplified with phi29 (Thermo Fisher Scientific, MA, USA) 
for generating DNA nanoballs (DNBs) that comprised 
more than 300 copies of one molecule. These DNBs were 
transferred into the patterned nanoarray. Finally, using the 
BGISEQ500 platform (BGI-Shenzhen, China), single-end 
50 bases reads were successfully generated.

Differential expression gene analysis

The RNA-seq method is based on the Poisson distribution. 
In this study, the gene expression levels were evaluated using 
R software package-based MA-plot, which is a statistical 
analysis tool used widely for the detection and visualization 
of the intensity-dependent ratio of microarray data. M is 
defined as (log2C1 − log2C2), whereas A is defined as (log2C1 

+ log2C2)/2 (17). For the aforementioned methods, P values 
were calculated and adjusted for each gene. Genes with a 
false discovery rate threshold of >2 and a Q-value  of ≤0.001 
were screened as significant DEGs (18,19).

Functional annotation of DEGs

A classification and enrichment analysis of the GO function 
was performed for DEGs on the basis of the results of 
the DEGs. GO was divided into three major functional 
categories: molecular function, cellular component, and 
biological process. We further classified and enriched the 
three functional categories of DEGs separately.

The KEGG is a knowledge base for systematic analysis 
of gene function, linking genomic information and 
functional information (http://www.genome.jp/kegg/). The 
pathway is based on the relevant knowledge to determine 
the connections of the components of the path in a specific 
language format. Based on the results of DEGs, we 
performed KEGG biological pathway classification and 
enrichment analysis.

Statistical analysis

The results were expressed as mean ± standard error of 
means (SEM). The analysis was completed using SPSS 22 
software (IBM Corp., USA). In addition, the comparisons 
between the control and model groups were analyzed using 
Student’s t-test, whereas the body weight, coat score, sugar 
preference, and the open-field tests were analyzed by the 
two-way analysis of variance (ANOVA) tests, followed by 
Tukey’s post hoc test when significant differences were 
detected. P values <0.05 were considered statistically 
significant.

Results

ApoE−/− mice fed with High-fat diet gradually developed 
depression-like behavioral changes

We evaluated the depression-like behavior in high-fat-fed 
ApoE−/− mice using the body weight, coat color score, sugar 
preference, tail suspension, and open-field tests. As shown 
in Figure 1A, the body weights of the model and control 
groups increased with the prolonged feeding time, but the 
bodyweight of the model group increased more rapidly. 
From the 11th week onward, the bodyweight of the model 
group was significantly different from that of the control 
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group.
The coat state of the mice was observed continuously 

every 2 weeks , as shown in Figure 1B. The results showed 
that the coat color scores of the model and control groups 
increased with the feeding time, and the coat color score 
increased faster in the model group, starting from the 3rd 
week. Moreover, a significant difference in the coat color 
score between the model and control groups was noted. The 
back-hair condition of the model group was significantly 
worse than that of the control group, the combing behavior 
was significantly reduced, and the coat color score was 
higher than that of the control group.

The sugar preference test by the ratio of sugar water 
consumption was used to evaluate whether the euphoria of 
the experimental mice was missing. As shown in Figure 1C, 
the saccharide consumption ratio of the model group was 
lower than that of the control group from the 9th week, and 
a significant difference was noted.

The open-field experiment judged the state of depression 
by evaluating the spontaneous movement of the mice. 
As shown in Figure 1D, during the experiment, the 1st, 
7th, and 15th weeks were selected to compare the central 
zone distance of the two groups of mice, central zone 
residence time, and spontaneous movement index of the 
total distance. Consequently, no significant difference was 
noted in the spontaneous exercise index between the two 
groups in the first week. In the 7th week, no difference in 
the distance was identified between the model and control  
groups except the central area (P<0.05). Also, no significant 
difference was noted between the other total distances 
and the central time. At the end of the 15th week of the 
experiment, compared with the blank, the central time, 
central distance, and total distance of the model group 
movement were reduced relative to the control, and the 
difference was statistically significant (P<0.05).

In the light-dark test (Figure 1E), we found that mice 
in the model group spent less time in the lightbox than 
those in the control group, showing significant differences 
(P<0.01). As expected, mice in the model group displayed 
less latency behavior in the dark box than those in the 
control group (P<0.05).

The tail suspension experiment responded to depression 
by detecting the inactivity time of the inverted mouse. As 
shown in Figure 1F, experiments were performed at the 
15th week of the experimental endpoint. The immobility 
time of the model group was significantly higher than that 
of the control group, and the difference was statistically 
significant.

Based on the above experimental results, it can be seen 
that with the prolongation of high-fat feeding time, ApoE−/− 
mice gradually showed depression-like behavior, while the 
control group mice showed no depression-like behavioral 
changes.

Blood lipids, inflammatory factors, and atherosclerotic 
plaque formation in ApoE−/− mice fed with a high-fat diet 
for 15 weeks

As shown in Figure 2A, the levels of the blood lipids 
TC, TG, and LDL-C were significantly increased in the 
model group compared with the control group, and the 
inflammatory factors IL-1β, IL-6, and TNF-α in the serum 
were also significantly increased (Figure 2B). The mouse 
thoracic aorta oil red O staining (Figure 2C,D) and HE 
staining (×100, 100-fold; ×400, 400-fold, Figure 2E) indicate 
that ApoE−/− mice fed with a high-fat diet had significant 
atherosclerotic plaque formation after 15 weeks.

An overview of the RNA-SEQ data

A total of 12 samples were tested using the BGISEQ-500 
platform, 6 from the control group, and 6 from the model 
group, with an average yield of 23.97 M data per sample. 
The average alignment rate of each sample and ratio of 
the pair of genes was 95.31% and 69.96%, respectively. 
The raw data of the sequencing was filtered. Based on the 
gene expression levels of each sample, we detected DEGs 
between the mouse hippocampus and the prefrontal cortex 
(sample group). This project used the RNA-seq method for 
differential detection, expressing the calorimetry for each 
group of DEGs, displaying the distribution of DEGs using 
a volcano plot, and performing GO and pathway function 
analyses on DEGs.

Analyses of DEGs in the hippocampus and prefrontal 
cortex

To find the DEGs in the hippocampus of the control and 
model groups, DEG screening was conducted, and a total 
of 17,717 genes were detected. Moreover, 291 genes were 
upregulated, and 90 genes were downregulated. Similarly, 
to find DEGs in the prefrontal cortex of the control and 
model groups, a total of 17,208 genes were detected. 
Among them, 324 genes in the model were compared with 
the control group, and 208 genes were downregulated. The 
expression calorimetry maps of DEGs in the hippocampus 
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Figure 1 Observations of general health and depression-like behavioral changes in mice. (A) Measurements of body weight. (B) Coat status 
test. (C) Sucrose preference test. The ratio of sucrose consumption was used as an index to evaluate the loss of anhedonia. (D) Open-field 
test, including the center zone time, central zone distance, and total distance. (E) Light/dark test, including the percentage of brightfield 
dwell time, number of shuttles, darkfield latency, and travel distance. (F) Immobility time of the tail suspension experiment. Data are 
expressed as mean ± SEM (n=9), compared with the control group, #, P<0.05; ##, P<0.01; ###, P<0.005; ####, P<0.001; with the first week in 
comparison, *, P<0.05; ***, P<0.005.
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Figure 2 Assessment of the atherosclerotic status in mice. (A) Mouse plasma lipid levels, including total cholesterol (TC), triglyceride (TG), 
and low-density lipoprotein cholesterol (LDL-C). (B) Plasma inflammatory factors, including IL-1β, IL-6, and TNF-α. (C) Aortic Oil Red 
O staining. (D) Aortic plaque area statistics. (E) HE stains of aortic coronal section (×100, 100-fold; ×400, 400-fold). Data for (A,B) are 
expressed as mean ± SEM (n=9), ###, P<0.005; #####, P<0.001. Data for (C,D,E) are expressed as mean ± SEM (n=3), #####, P<0.001.
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and prefrontal cortex can be seen in Figure 3A,B. A 
volcano plot was used to display the distribution of DEGs 
in the hippocampus and prefrontal cortex, as shown in  
Figure 3C,D respectively.

GO function analysis of DEGS in the hippocampus and 
prefrontal cortex

To characterize the functional distribution of genes 
on a macro-level, the GO classification and functional 
enrichment analysis were performed to determine the 
DEG function in the hippocampal and prefrontal cortex 
samples of the model and control groups. The GO 
function classification results of the hippocampus and 
prefrontal cortex tissues are shown in Figure 4A,B, and the 
upregulations of DEGs corresponding to GO function 
are shown in Figure 4C,D. According to the results of 
GO annotation, the results of DEG detected in the 
hippocampus, and prefrontal cortex was similar in terms 
of molecular function, cellular components, and biological 
processes.

For biological process, the “cell process” (234 DEGs for 
the hippocampus and 314 DEGs for the prefrontal cortex) 
was the most highly represented GO term, followed by 
“biological regulation” (202 DEGs for the hippocampus 
and 259 DEGs for the forehead cortex), and the “behavior” 
team had 28 DEGs for the hippocampus and 19 DEGs for 
the prefrontal cortex.

For the cellular component, the highest numbers of 
DEGs were “cell” and “cell part” for the hippocampus (244 
DEGs); however, the highest number of DEGs for the 
prefrontal cortex was “cell” (336 DEGs), followed by “cell 
part” term (335 DEGs).

For molecular function, “binding” (221 DEGs for the 
for 285 DEGs for the hippocampus and prefrontal cortex) 
was the most highly represented the GO term, followed by 
“catalytic activity” (76 DEGs for the hippocampus and 113 
DEGs and for the prefrontal cortex).

As shown in Figure 4C, the number of upregulated 
genes in the hippocampus was higher than that in the 
downregulated genes. As shown in Figure 4D, the DEGs 
in the prefrontal cortical tissue had more reduction of 
GO term than the upper one. For instance, in DEGs of 
behavior in the biological process, the up-regulated genes 
were higher in the hippocampus than in the down-regulated 
genes, while the down-regulated genes were higher in the 
prefrontal cortex than in the up-regulated genes.

KEGG functional annotation of DEGs in the hippocampus 
and prefrontal cortex

According to the results of differential gene detection in 
the hippocampus and prefrontal cortex, we performed the 
KEGG biological pathway classification and enrichment 
analysis for the DEGs. The results of pathway classification 
are shown in Figure 5A,B .  The results of pathway 
enrichment are also shown in Figure 6A,B, and the statistics 
of pathway enrichment of DEGs are shown in Figure 6C,D.

Whether it was for the hippocampus or for the prefrontal 
cortex, the immune system and signal transduction pathways 
had the greatest representation of DEGs. The immune 
system is an organismal system, and signal transduction is 
part of environmental information processing.

Only 1 DEG was mapped to the metabolism of the 
terpenoids and polyketides pathway in the hippocampus. 
For the prefrontal cortex, there was only 1 DEG mapped 
to transcription, metabolism of terpenoids, and nucleotide 
metabolism.

As shown in Figure 6C,D, the largest value of a richer 
factor for the hippocampus was the phosphatidylinositol 
signaling system, while for the prefrontal cortex, the largest 
value of a richer factor was for histidine metabolism.

The smallest value of Q value for the hippocampus was 
also the phosphatidylinositol signaling system, while for the 
prefrontal cortex, the smallest value of Q value was for the 
chemokine signaling pathway.

As shown in Figure 6A,C,  for the DEGs of the 
hippocampus, the pathway with the most upregulated gene 
expressions is neuroactive ligand-receptor interaction. The 
NF-kappa B signaling, Th17 cell differentiation, and Th1 
and Th2 cell differentiation pathways only had upregulated 
gene expression with no downregulated expression of genes.

For the DEGs of the prefrontal cortical DEGs, the 
pathway with the most upregulated gene expression was the 
cytokine–cytokine receptor interaction pathway. The DEGs 
associated with the NF-kappa B signaling pathway was 
mainly upregulated.

Discussion

The relationship between AS and depression is fairly well 
acknowledged. Still, the current understanding of the 
mechanism linking AS and depressive disorder is in need of 
more extensive clarification. While research relevant to this 
issue has been undertaken, the majority of these studies are 
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Figure 3 Results of the RNA-seq detection in the hippocampus and the prefrontal cortex in mice before and after AS modeling. (A) DEG 
expression heat map of the hippocampus; (B) DEG expression heat map of the prefrontal cortex; the X-axis represents different samples, 
and the Y-axis represents the difference gene; the darker the color, the higher the expression level, and the lighter the color, the lower the 
expression level. (C) The volcanic product distribution map of the DEG from the hippocampus; (D) the volcanic product distribution map 
of the DEG from the prefrontal cortex; the X-axis represents the difference in the log 2 conversion, the Y-axis represents the significant 
difference after the log 10 conversion, the blue represents the downregulated DEG, the red represents the upregulated DEG, and the gray is 
the non-DEG.

Volcano plot for KHgroup-VS-MHgroup.DEGseq_Method

300

250

200

150

100

50

0

−5	 0	 5	 10
log2 (fold change)

lo
g1

0 
(q

-v
al

ue
)

Up: 291
FoldChange ≥2 qValue≤0.001

Down: 90
FoldChange ≤-2 qValue≤0.001

no-DEGs: 17336
abs(FoldChange) <2 or qValue >0.001

C

Pheatmap for KHgroup&MHgroup

Group

Up_Down

KHgroup
MHgroup

3

2

1

0

−1

−2

−3

−4

M
H

7

M
H

6

M
H

8

K
H

2

K
H

1

K
H

3

Up
Down

A

Volcano plot for KPgroup-VS-MPgroup.DEGseq_Method

−5	 0	 5
log2 (fold change)

Up: 324
FoldChange ≥2 qValue≤0.001

Down: 208
FoldChange ≤-2 qValue≤0.001

no-DEGs: 17208
abs(FoldChange) <2 or qValue >0.001

300

250

200

150

100

50

0

lo
g1

0 
(q

-v
al

ue
)

D

Pheatmap for KPgroup&MPgroup

K
P

2

K
P

3

K
P

1

M
P

7

M
P

6

M
P

8

Group

Up_Down

KPgroup
MPgroup

3

2

1

0

−1

−2

−3

−4

Up
Down

B

based on clinical observations, and no experimental animal 
model exploring the link between AS and depression has 
been explored. In this experiment, ApoE−/− mice, which 
are gene-deficient mice used for classic AS models, were 
fed with a high-fat diet to induce the pathological changes 
of AS, and subsequently evaluated for depressive behavior. 
The findings of this experiment revealed that AS model 
mice had depression-like behavioral changes.

The changes were characterized by a gradual increase 
in body weight and a decrease in skin gloss and cleanliness 

in AS-compressed mice. In the open-field experiment, the 
horizontal movement distance and central area residence 
time were reduced. Furthermore, the sucrose consumption 
rate of the model group was higher than that of the control 
group, and it was also lower than the fluctuation rate of 
the sucrose consumption rate of the control group as the 
experimental time increased. Furthermore, in the sucrose 
preference test, the sucrose consumption rate in both the 
model group and the control group showed fluctuation. 
Compared with the control group, the sucrose consumption 
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Figure 4 GO annotation the DEG from the hippocampus and the prefrontal cortex in mice. (A) The differential gene GO function classification map of 
the hippocampus; (B) the differential gene GO function classification map of the prefrontal cortex; the X-axis represents DEG numbers, and the Y-axis 
represents the GO function classification; (C) differential gene up and down GO function classification map of the hippocampus; (D) differential gene up 
and down GO function classification map of prefrontal cortex; the X-axis represents the GO function classification, and the Y-axis represents the GO term 
up-and-down regulation gene number. AS, atherosclerosis; DEG, differentially expressed gene; GO, Gene Ontology.
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Figure 5 KEGG classification on the DEG from the hippocampus and the prefrontal cortex in mice. (A) Pathway classification map 
of differential genes from the hippocampus; (B) pathway classification map of differential genes from the prefrontal cortex; the X-axis 
represents the proportion of genes, and the Y-axis represents the KEGG functional classification. DEG, differentially expressed gene; 
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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rate of the model group decreased. In the light/dark box 
experiment, the number of shuttles in model group was 
reduced, the dwell time in the dark field of the model group 
was longer, and the moving distance was lower than that 
in the control group. The tail suspension experiment was 
performed at the end of the study. Consequently, the model 
group had significantly more immobility time than the 
control group.

Compared with the blank group, the levels of TG, TC, 
and LDL-C in the circulating blood of the mice in the 
model group were significantly increased, and the classical 
inflammatory factors IL-1β, IL-6, and TNF-α were also 
higher than those in the blank group.

The gross aortic red O staining and plaque area statistics 
of the aorta showed a significant pathological change in 
AS in the aorta of the model group. HE staining results 
also supported the conclusion of atherosclerotic lesions 
being present in the arteries of mice, and that eosinophil 
infiltration occurred in plaque lesions.

Based on the aforementioned results, the present 
experiment demonstrated that ApoE-/- mice fed a high-
fat diet for 15 weeks, showed higher blood lipids, elevated 
chronic inflammatory factors in circulating blood, and 
obvious pathological changes in aortic AS compared with 
those in the control group (C57 mice).

AS is a common chronic pathological condition in 
mammals (20), and long-term physical illness can easily 
lead to depression and mood disorders (21). To clarify the 
pathogenesis of AS comorbidity with depressive behavior in 
ApoE−/− mice, RNA-seq and bioinformatics were used for 
the analysis and annotation of DEGs.

For the DEGs from the hippocampus area, the GO 
annotation analysis showed that the cellular components of 
the DEGs mainly focused on various membrane structures. 
(including the plasma membrane part, external side of the 
plasma membrane, an intrinsic component of the plasma 
membrane, cell periphery, plasma membrane, cell surface, 
an integral component of the plasma membrane, side of the 
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Figure 6 Statistics of pathway enrichment of DEG from the hippocampus and the prefrontal cortex in mice. (A) Enrichment pathway differential gene 
up-and-down map of the hippocampus; (B) enrichment pathway differential gene up-and-down map of the prefrontal cortex; the Y-axis represents the 
pathway entry, and the X-axis represents the number of up-and-down genes corresponding to the pathway entry. (C) Statistics of pathway enrichment 
of DEGs map of the hippocampus; (D) statistics of pathway enrichment of DEG map of the prefrontal cortex; the X-axis represents the enrichment 
factor, the Y-axis represents the pathway name, and color represents Q value; the smaller the value, the more significant the enrichment result is; the 
size of the point represents the number of DEG. DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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membrane, plasma membrane region, basolateral plasma 
membrane).

The GO annotation of DEGs from the hippocampus 
tissue showed that G-protein-coupled receptor binding, 
CCR7 chemokine receptor binding, receptor binding, 
CCR chemokine receptor binding, chemokine activity, 
neuropeptide hormone activity, calcium ion binding, 
chemokine receptor binding, transporter activity, and 
neuropeptide receptor binding were the main molecular 
functions.

The biological processes of DEGs were mainly 
related to the neuroimmune system (response to external 
stimulus, positive regulation of ERK1 and ERK2 cascade, 
neuropeptide signaling pathway, positive regulation 
of synaptic transmission, cholinergic), especially the 
immune-inflammatory signaling pathway (the regulation 
of neutrophil chemotaxis, the monocyte chemotaxis, 
lymphocyte chemotaxis. and myeloid dendritic cell 
chemotaxis). This difference in biological processes was also 
reflected in the effects on feeding behavior and regulation 
of saliva secretion.

The KEGG annotation results demonstrated that 
the signaling pathway involved in DEGs was the 
phosphatidylinositol signaling system, which primarily 
regulated the environmental information processing and 
signal transduction. Calmodulin-dependent kinase II, a 
protein of the brain neuron synapses in the mammalian 
hippocampus, is abundant and involved in memory 
formation. The results of the present study indicate that 
gene mutations in ApoE−/− mice that regulate this protein 
had a significant decrease in memory function. In addition, 
genes that regulate neuronal ligand-receptor interactions 
and signaling pathways for protein digestion and absorption 
were the results of KEGG-annotated DEGs.

The results of functional annotation of DEGs revealed 
that from the prefrontal cortex area, the downregulated 
DEGs were mainly enriched in the biological process 
terms associated with behavior, localization, locomotion, 
and reproductive process and pathways associated with the 
regulation of neuron projection development, homophilic 
cell adhesion via plasma membrane adhesion molecule, 
calcium ion-regulated exocytosis of neurotransmitter, 
cerebral cortex GABAergic interneuron fate commitment, 
central nervous system vasculogenesis, chemoattraction 
of dopaminergic neuron axon, neuron projection 
morphogenesis, and neuron development and metabolism.

The upregulated DEGs were mainly enriched in 
the BP terms associated with immune system process, 

the presynaptic process involved in chemical synaptic 
transmission, rhythmic process, and pathways associated 
with TLR-4 binding, NF-kappa B signaling pathway, 
cellular response to TNF-α, cytokine-cytokine receptor 
interaction, CCR7 chemokine receptor binding, and 
cytokine activity.

Most of the evidence from preclinical and clinical studies 
suggest that psychiatric illnesses, particularly depression 
or major depressive disorder (MDD), are associated with 
inflammatory processes (22). Some scholars believe that 
depression is a microglia disease of the central nervous  
system (23). When the activation of the peripheral immune 
system continues unabated, as in cancer or AS (24,25), 
the ensuing immune signaling to the brain can lead to an 
exacerbation of sickness and the development of symptoms 
of depression in vulnerable individuals. The brain monitors 
the peripheral innate immune responses (26), while locally 
produced cytokines activate primary afferent nerves, such as 
the vagus nerve during AS and visceral infection, and transmit 
inflammatory immune signals from the periphery to the  
brain (27). In the present research, most of the upregulated 
DEGs from both the hippocampus and prefrontal cortex 
were of the cytokine-cytokine receptor interaction, 
chemokine receptor binding and cytokine activity, and NF-
kappa B signaling pathway. The high expression of these 
inflammatory pathway genes may lead to the inhibition of 
synaptic signal transduction (28), inhibition of hippocampal 
neuronal regeneration (29), decreased secretion of 
neurotrophic factors (30), and inhibition of dopaminergic 
signaling pathway (31).

In summary, in ApoE−/− mice fed with a high-fat diet, 
in addition to the basic signs of AS, the RNA-seq and 
bioinformatics analysis revealed the high expression of 
inflammatory chemokine genes in the hippocampus and 
prefrontal cortex areas. These areas also showed a reduction 
in the regulation of movement, feeding, and reproduction 
of gene expression, which could reasonably explain the gene 
regulation mechanism of depression-like behavioral changes 
in ApoE−/− mice. The results of this experiment support the 
notion that ApoE−/− mice can be used as an animal model of 
AS with depression-like changes.

Although bioinformatics technologies have the potential 
to identify and validate candidate agents for critical diseases, 
certain limitations remain in this study. Firstly, the sample 
size for microarray analysis was small, which might have 
caused a high rate of false-positive results. Secondly, this 
study lacked real-time RNA or Western blot experiment 
verification. Further genetic and experimental studies with a 
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larger sample size are still required in the future to confirm 
the results.

Despite these limitations, the data of the present 
study provide a comprehensive bioinformatics analysis 
of the DEGs and pathways that may be involved in AS 
comorbidity with depressive behavior in ApoE−/− mice 
fed with a high-fat diet. The findings of the present 
study may contribute to the development of a new 
model mouse useful for further understanding the 
underlying molecular mechanisms of AS comorbidity with  
depression.

Conclusions

These results indicate that when ApoE−/− mice were fed 
with high-fat diets continuously for 15 weeks, depression-
like behavioral changes occurred in the mouse model of 
atherosclerotic pathology. The RNA-seq, combined with 
bioinformatics analysis, showed that this AS comorbidity 
with depressive behavior was associated with the high 
expression of inflammation-related genes and pathways in 
the hippocampus and prefrontal cortex.
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