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Background: A suitable multivariate predictor for predicting mortality following percutaneous coronary 
intervention (PCI) remains undetermined. We used a nationwide database to construct mortality prediction 
models to find the appropriate model.
Methods: Data were analyzed from the Taiwan National Health Insurance Research Database (NHIRD) 
covering the period from 2004 to 2013. The study cohort was composed of 3,421 patients with acute 
myocardial infarction (AMI) diagnosis undergoing PCI. The dataset of enrolled patients was used to 
construct multivariate prediction models. Of these, 3,079 and 342 patients were included in the training 
and test groups, respectively. Each patient had 22 input features and 2 output features that represented 
mortality. This study implemented an artificial neural network model (ANN), a decision tree (DT), a linear 
discriminant analysis classifier (LDA), a logistic regression model (LR), a naïve Bayes classifier (NB), and a 
support vector machine (SVM) to predict post-PCI patient mortality. 
Results: The DT model was found to be the most suitable in terms of performance and real-world 
applicability. The DT model achieved an area under receiving operating characteristic of 0.895 (95% 
confidence interval: 0.865–0.925), F1 of 0.969, precision of 0.971, and recall of 0.974.
Conclusions: The DT model constructed using data from the NHIRD exhibited effective 30-day 
mortality prediction for patients with AMI following PCI. 
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Introduction

Coronary heart disease is a major public health concern, 
especially in developed countries (1). Consequently, 
percutaneous coronary intervention (PCI) is one of the 
most extensively and increasingly used procedures (2), and 
it is indicated as the primary treatment for ST-elevation 
myocardial infarction (STEMI) and also for non-STEMI, 
atypical chest pain, stable angina, unstable angina, and 
positive stress tests (3). With advances in technology, 
periprocedural complications of PCI have declined and 
patients often achieve favorable outcomes (4). However, 
mortality risk following PCI continues to be a major 
concern. A risk model for predicting mortality following 
PCI could assist clinicians in better timed and more 
appropriate care delivery, as well as greater awareness of 
high-risk groups (5,6). 

Many PCI mortality risk models have been proposed  
(7-15). Studies have shown that incorporating angiographic 
features and multiple biomarkers enhances prediction power 
(15,16-18). Because 50% of the mortality following PCI is 
due to non-cardiac reasons, creating a model that accounts 
for general complications post PCI appears optimal for 
predicting in-hospital mortality (9). 

In recent years, multivariate prediction models including 
artificial neural network models (ANN), decision trees 
(DT), linear discriminant analysis classifiers (LDA), logistic 
regression models (LR), naïve Bayes classifiers (NB), and 
support vector machines (SVM) have been used in medicine 
(19-22). Being used a nonlinear statistical model to identify 
variable patterns, ANNs are the most commonly used 
method among these methods (23-26). However, Freeman 
et al. used ANN to predict in-hospital deaths following 
percutaneous transluminal coronary angiography (27). In 
their study, they did not find ANN to be superior to the 
LR model. With the widely used and advancing techniques 
of percutaneous catheterization intervention, conducting 
a nationally representative population study to determine 
an appropriate prediction model for short-time mortality 
following PCI is of vital importance. 

The Taiwan National Health Insurance Research 
Database (NHIRD), with >99% coverage, includes 
longitudinal medical and procedure information of all 
insured participants (28) in a database. We aimed to 
find the best prediction model in predicting predict  
30-day risk of mortality from the pre-PCI and post-PCI 
data of patients with acute myocardial infarction (AMI) who 
underwent PCI.

Methods

Data source

Taiwan’s National Health Insurance (NHI) program began 
in March 1995 and now offers comprehensive medical 
coverage to all residents in Taiwan (29). The study cohort 
was selected from the Longitudinal Health Insurance 
Database 2000 (LHID2000) of the NHI program. The 
LHID2000 comprises 1,000,000 randomly sampled people 
enrolled in the NHI program, and it collected all medical 
records of these individuals from 2004 to 2013. Disease 
diagnoses were identified and coded using the International 
Classif ication of Diseases,  9th Revision, Clinical 
Modification (ICD-9-CM). 

Ethics statement

The NHIRD encrypts each patient’s personal information 
to protect privacy and provides researchers with anonymous 
identification numbers associated with relevant claims 
information, including sex, date of birth, medical services 
received, and prescriptions. Therefore, patient consent 
is not required to access the NHIRD. This study was 
approved to fulfill the condition for exemption by the 
Institutional Review Board (IRB) of China Medical 
University (CMUH104-REC2-115-CR4). The IRB also 
specifically waived the consent requirement.

Sampled participants

We identified patients with AMI (ICD-9-CM code 410) 
aged >18 years who underwent PCI intervention between 
January 1, 2000, and December 31, 2013. The date of the 
PCI intervention was assigned as the index date. A total of 
3,421 patients who underwent PCI intervention including 
culprit lesion and multivessel PCI were enrolled in our 
study.

Predictive factors

Postoperative complications were defined as diagnosis or 
mortality occurring within 30 days after the date of PCI 
intervention. Complications included upper gastrointestinal 
bleeding, acute kidney injury that required dialysis, 
new onset of arrhythmia, and ICU admission. Baseline 
comorbidities and surgeries associated with mortality before 
the index date included hyperlipidemia, hypertension, 
diabetes mellitus, chronic obstructive pulmonary disease, 
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heart failure, stroke, atrial fibrillation, obesity, chronic 
kidney disease/end-stage renal disease, peripheral arterial 
occlusion disease, history of PCI, coronary artery bypass 
graft (CABG), and intra-aortic balloon bump (IABP). 
Long-term medications used at baseline were also 
considered, including aspirin, warfarin, and clopidogrel. 
The aforementioned baseline comorbidities, previous 
interventions, previous surgeries, and 30-day postoperative 
complications were confirmed on the basis of ICD-9-CM 
codes. Each one of these predictive factors comprise the 22 
features used later in the prediction models. 

Statistical analysis

Chi-square test was employed to compare the differences 
in the distribution of PCI type, age, sex, comorbidities, and 
30-day postoperative complication between patients with 
and without 30-day postoperative mortality. In addition, 
the t-test was used to compare the differences of mean ages 
between the two groups.

 

Data construction

This study comprised 3,421 patients who underwent PCI, 
each of whom is represented by a data point. There are 
22 features per data point; the features comprised of the 
patients’ sex, comorbidities, medications taken, and 30-day  
postoperative complications. To accurately determine the 
performance of prediction models, the patients were split 
into training and test sets at a ratio of approximately 9:1. 
Of all 3,421 patients undergoing PCI procedure, 3,079 
patients were included in train set and 342 patients were 

included in the test set. The use of 10% of the dataset 
for the test set was modeled after several research papers 
in the field, including research done by Avati et al. (29). 
Instead of splitting the data into training, validation, and 
test subsets and performing holdout cross-validation on the 
validation set, we decided to split the data into training and 
test sets and perform k-fold cross-validation, which is an 
improvement over the traditional train-validation-test split 
cross-validation method (30). The k-fold cross validation 
(k=10) weighted accuracy is stated in Table 1. 

The output data is unbalanced with a bias toward 30-day 
survival. To ensure that the prediction models did not skew 
toward the dominant class, weighting was applied to the 
data set prior to training. Since the ratio of 30-day death 
to 30-day survival was 1:26.368, each 30-day survival data 
point was weighted approximately 26 times greater than 
each 30-day death data point.

Algorithms and training

To select the hyperparameters that yield the best 
performance for each prediction model, we used k-fold 
cross-validation with a k value of 10. Owing to the limited 
data, k-fold cross-validation was used instead of holdout 
cross-validation. 

ANN 
We used a fully-connected multilayer perceptron (MLP) 
feedforward network to train the data. Our model consisted 
of one input layer of 22 dimensions, a hidden layer of 11 
dimensions, and an output layer of 2 dimensions. During 
the model selection process, we also experimented with a 
different number of layers and more complicated ANNs 
such as convolutional neural networks and recurrent neural 
networks. However, we find that neither other types of 
neural networks nor ANNs with more layers exceed the 
performance of an MLP with three layers. Therefore, we 
chose the simplest model with the best performance.

The network was trained using stochastic gradient 
descent and optimized with Adam with default parameters 
outlined by Kingma et al. (30). Each layer used the scaled 
exponential linear unit activation function (31) except the 
output layer, which used the softmax activation function. 
A dropout of 20% was applied for the input layer and 
50% for the output layer (32). Because the problem was a 
binary classification task, the categorical cross entropy error 
function was used as the loss function. The network was 

Table 1 The k-fold cross validation (k=10) weighted accuracy of all 
prediction models

Model Weighted accuracy

ANN 0.963

DT 0.949

LDA 0.944

LR 0.795

NB 0.420

SVM 0.831

ANN, artificial neural network; DT, decision tree; LDA, linear  
discriminant analysis classifier; LR, logistic regression; NB, naïve 
Bayes classifier; SVM, support vector machine.
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train for 1,600 epochs. The ANN model was implemented 
with the TensorFlow library (version 1.9.0) (33). 

DT
The DT model used Gini impurity to measure the quality 
of split. The minimum samples per leaf was set to 1, while 
the minimum number of samples required to split a node 
was set to 2. The maximum depth was set to 7. While DTs 
with a larger maximum depth could be used, we found 
out that having a depth greater than 7 resulted in DTs 
that tended to overfit the train set. The DT model was 
implemented with the scikit-learn framework (version 
0.19.1) (34).

LDA 
The LDA used a singular value decomposition (SVD) 
solver to create a linear decision boundary. A SVD solver 
was used instead of an eigenvalue decomposition solver 
because calculating a covariance matrix with eigenvalue 
decomposition is slow with a large number of features (22). 
The LDA model was implemented with the scikit-learn 
framework (version 0.19.1) (34).

LR 
The LR model used a L2 regularization penalty with primal 
formulation. Primal formulation was used because there 
are more samples than features. Stochastic average gradient 
descent was used as the optimizer. The one-vs-rest scheme 
was used as the loss function. The regularization strength 
was set to 1.0, and the model was trained for 100 iterations 
before convergence. The LR model was implemented 
using the scikit-learn library (version 0.19.1) (34) and the 
LIBLINEAR library (version 3.21) (35). 

NB 
The NB classifier is a multinomial NB. A multinomial 
model was used instead of a Gaussian model because all of 
the features, except age, are discrete. The NB software was 
implemented using the scikit-learn library (version 0.19.1) (34). 

SVM 
The SVM model is a C-support vector classification 
(C-SVC) model that used a radial basis function (RBF) as its 
kernel. We also evaluated a nu-support vector classification 
(nu-SVC) model, but we found a C-SVC model to have 
a better classification performance. In order to compare 
the performance of the SVM model to all other models, 
probability estimates were enabled to plot the ROC curve. 

The shrinking heuristic was enabled to save training time 
by bounding the optimal solution. The SVM model was 
implemented using the LIBSVM library (version 3.21) (36). 

Evaluation of prediction model performance

Because the data distribution was heavily skewed toward 
the positive class, the accuracy could not reliably measure 
prediction model performance (37). Instead, the weighted 
averaged F1, precision, and recall values were used to 
measure prediction model performance. These three 
confusion matrix metrics were calculated across all data, the 
train set, and the test set for each model.

Additionally, the receiving operating characteristic (ROC) 
curve was also used as a metric to measure prediction model 
performance. The Area Under ROC (AUROC) of each 
model was compared with each other, and then the AUROC 
of the prediction models were compared with the AUROC 
of comorbidities with clinical relevance or association with 
PCI. This is done to demonstrate the necessity of using 
multivariate prediction models in this study. IBM SPSS 24.0 
(SPSS, Inc., Chicago, IL, USA) was used to calculate the 
ROC and AUROC.

Results

Demographic features

The majority of the patients underwent culprit lesion (83.2% 
vs. 80.9%) and were aged ≥65 years (72.0% vs. 49.2%). The 
mean ages of the death group and non-death groups were 
72.2 and 64.5 years, respectively, and most of the patients 
were men. Compared with the non-death group, the death 
group tended to have more comorbidities, surgeries, and 30-
day postoperative complications, including stroke, history 
of CABG and IABP, dialysis-requiring acute kidney injury, 
arrhythmia, and ICU admission. By contrast, compared 
with the death group, the non-death group was more likely 
to have hyperlipidemia and history of PCI, as well as to 
require clopidogrel medication. The characteristics of the 
data set are shown in Table 2.

Evaluation of prediction models

The weighted k-fold cross validation (k=10) weighted 
accuracy of all prediction models are listed in Table 1. The 
models with the highest weighted accuracies are the ANN 
model (0.963), DT model (0.949), and LDA model (0.944), 
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Table 2 Characteristics of acute myocardial infarction patients undergoing PCI intervention with 30-day postoperative mortality

Variable

Death

P valueNo (N=3,296) Yes (N=125)

n (%) n (%)

PCI 0.52

Culprit lesion 2,666 80.9 104 83.2

Multi-vessel PCI 630 19.1 21 16.8

Age, mean (SD) (year)* 64.5 (13.6) 72.2 (13.0) <0.001

Gender 0.03

Women 783 23.8 40 32.0

Men 2,513 76.2 85 68.0

Comorbidity

Hyperlipidemia 2,044 62.0 64 51.2 0.01

Hypertension 2,496 75.7 100 80.0 0.27

Diabetes mellitus 1,085 32.9 42 33.6 0.87

Chronic obstructive pulmonary disease 774 23.5 30 24.0 0.89

Heart failure 707 21.5 26 20.8 0.86

Stroke 1,203 36.5 63 50.4 0.002

Atrial fibrillation 158 4.8 8 6.4 0.41

Obesity 60 1.8 1 0.8 0.24

Chronic kidney disease/ESRD 364 11.0 19 15.2 0.15

PAOD 372 11.3 19 15.2 0.18

History of PCI 2,628 79.7 88 70.4 0.01

History of CABG 95 2.9 17 13.6 <0.001

History of IABP 223 6.8 50 40.0 <0.001

Medications

Aspirin 3,278 99.5 124 99.2 0.71

Warfarin 212 6.4 9 7.2 0.73

Clopidogrel 3,243 98.4 113 90.4 <0.001

30-day postoperative complication

Upper gastrointestinal bleeding 94 2.9 1 0.8 0.17

Acute kidney injury 78 2.4 22 17.6 0.01

Arrhythmia 512 15.5 28 22.4 0.04

Admitted to ICU 124 3.8 10 8.0 0.02

Chi-square test, *, t-test comparing subjects with and without death. PCI, percutaneous coronary intervention; ESRD, end stage renal 
disease; PAOD, peripheral arterial occlusive disease; CABG, coronary artery bypass graft; IABP, intra-aortic balloon bump.
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while the model with the lowest weighted accuracy is the 
NB model (0.420).

The F1, precision, and recall values of all prediction 
models are listed in Table 3. The DT model has the highest 
overall F1, precision, and recall values compared to all other 
models. For both the LR and ANN models, the precision 
values are significantly higher than the recall values. Since 
precision represents the positive predictive value and the 
recall represents the negative predictive value, the LR and 
ANN models may be overfitting the data. This hypothesis 
is supported by the fact that the F1 values for the ANN and 
LR models are the lowest of all predictors.

The ROC of all prediction models across all data is 
outlined in Table 4. The model with the highest AUROC is 

the DT model (0.895, 95% CI: 0.865–0.925), followed by 
the SVM model (0.882, 95% CI: 0.855–0.909) and the LR 
model (0.855, 95% CI: 0.827–0.883). The ROC curve is 
shown in Figure 1.

Comparison to relevant variables

The AUROC of the prediction models were compared 
with the AUROC of the following variables due to their 

Table 3 The F1, precision, and recall values for all prediction models used in this study

Dataset Metric ANN DT LDA LR NB SVM

All (n=3,421) F1 0.841 0.969 0.948 0.848 0.906 0.903

Precision 0.955 0.971 0.948 0.957 0.947 0.957

Recall 0.770 0.974 0.948 0.780 0.875 0.867

Train (n=3,079) F1 0.843 0.960 0.948 0.852 0.906 0.906

Precision 0.956 0.956 0.947 0.956 0.946 0.960

Recall 0.772 0.965 0.949 0.786 0.875 0.870

Test (n=342) F1 0.829 0.968 0.946 0.815 0.911 0.875

Precision 0.950 0.969 0.950 0.960 0.954 0.921

Recall 0.754 0.973 0.941 0.730 0.880 0.842

ANN, artificial neural network; DT, decision tree; LDA, linear discriminant analysis classifier; LR, logistic regression; NB, naïve Bayes  
classifier; SVM, support vector machine.

Table 4 The receiving operating characteristic of all prediction 
models used in this study across all data

Model AUROC AUROC SE AUROC 95% CI

ANN 0.828 0.019 0.790–0.866

DT 0.895 0.015 0.865–0.925

LDA 0.841 0.017 0.807–0.875

LR 0.855 0.014 0.827–0.883

NB 0.810 0.018 0.775–0.846

SVM 0.882 0.014 0.855–0.909

AUC, area under ROC curve; SE, standard error; CI, confidence 
interval; ANN, artificial neural network; DT, decision tree; LDA, 
linear discriminant analysis classifier; LR, logistic regression; 
NB, naïve Bayes classifier; SVM, support vector machine. Figure 1 Comparison of receiver operating characteristic curve 

among artificial neural network, decision tree, linear discriminant 
analysis, logistic regression, naïve Bayes classifier, and support 
vector machine. ANN, artificial neural network; DT, decision tree; 
LDA, linear discriminant analysis classifier; LR, logistic regression; 
NB, naïve Bayes classifier; SVM, support vector machine.
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clinical relevance or association to PCI: hyperlipidemia, 
hypertension, diabetes mellitus, heart failure, stroke, and 
chronic kidney disease (CKD)/ESRD. The comorbidity 
with the highest AUROC is stroke (0.570, 95% CI: 0.518–
0.621), while the comorbidity with the lowest AUROC is 
hyperlipidemia (0.446, 95% CI: 0.394–0.498) (Table 5). All 
of the variables are close to the null hypothesis true area of 
0.5. The ROC curve is shown in Figure 2. Supplementary 
DT showed calculating probabilities of features for patients 
undergoing PCI (Figure S1).

Discussion

Using the NHIRD, this pilot study demonstrated that 
a variety of multivariate prediction models can predict  
30-day mortality following PCI, with the DT model having 

the most optimal performance and scalability. Although 
numerous studies have explored for prediction model 
of mortality and morbidity after PCI (16,27,38-43), two 
unique pilot points of our study could be addressed in 
enhancing the predictive accuracy of prediction model. 

First, we added both pre-PCI and post-PCI comorbidity 
and complications as variables. In the study of Freeman  
et al. they found that the predictive accuracy of ANNs can 
be increased with variable selection but is not superior 
to traditional modeling (27). Their study suggests the 
importance of variable selection. Thus the pre-procedure 
variables chosen in this study were based on previous PCI-
related studies (16,44-46). Further, we used diseases as 
proxies tightly linked with high cardiovascular risk after 
PCI (47-49). In the study of Ellis et al., the predictors they 
chosen included detailed angiographic findings and culprits 
vessels and baseline angiographic finding about ejection 
fraction of left ventricle and number of diseased (≥50% 
diameter stenosis) and treated vessels (46). Compared with 
the model of Ellis et al. (46), our model constructed based 
on the disease variables could be more easily assessed in this 
risk calculation. To increase the practical value, we decided 
to choose gastrointestinal bleeding, arrhythmia, and transfer 
to ICU care as post-procedure variables. It is interesting to 
note while we compare each feature, PCI patients had past 
stroke had highest risk of post-PCI mortality. This result 
would be clinically valuable in providing information for 
post-PCI care setting of these extremely high risk patients. 

Second, we attempted to find the fitting model for 
prediction post-PCI mortality among current prediction 
models. We used confusion matrix and ROC metrics used 
to measure the prediction model performances in NHIRD 
database. We found that the model with the highest 
AUROC is the DT model (0.895, 95% CI: 0.865–0.925), 
followed by the SVM model (0.882, 95% CI: 0.855–
0.909) and the LR model (0.855, 95% CI: 0.827–0.883). 
Therefore, we find DT model achieves a fitting prediction 
mode in our study. Evaluating the LR and ANN models, 
the precision values are significantly higher than the recall 
values, which means the LR and ANN models may be 
overfitting the data and might not be appropriate models 
in this study. In another aspect, we found that Multinomial 
naïve Bayes models allows for partial fitting of incomplete 
datasets. Our findings mean that NB models could be useful 
for a web-based classification system where datasets arrive 
one-by-one as opposed to all at the same time. Thus, in the 
NHIRD database, multinomial naïve Bayes models may be 
better than SVMs in terms of efficiency and scalability. 

Table 5 The receiving operating characteristic of comorbidities 
with significant difference between 30-day survival and death across 
all data

Comorbidity AUROC AUROC SE AUROC 95% CI

Hyperlipidemia 0.446 0.027 0.394–0.498

Hypertension 0.521 0.026 0.471–0.572

Diabetes mellitus 0.503 0.026 0.452–0.555

Heart failure 0.497 0.026 0.445–0.548

Stroke 0.570 0.026 0.518–0.621

CKD/ESRD 0.521 0.027 0.468–0.574

AUC, area under ROC curve; SE, standard error; CI, confidence  
interval; CKD, chronic kidney disease; ESRD, end stage renal disease.

Figure 2 Comparison of receiver operating characteristic curve 
among associated features.
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Ellis et al. used LR to calculate the operator-specific 
mortality prediction in patients following PCI (46). The 
area under curve of mortality is 0.85, which is comparable 
to our results (46). Our LR model improves upon their 
methodology by enabling dynamic prediction since we 
have incorporated the post-procedure variables. While 
LDA classification models are relatively uncommon in the 
medical field, DT models have been widely implemented 
in applications where a white-box classification is 
necessary (50). The decision path of any given data point 
can be determined for DTs, which makes it suitable for 
applications where such a decision path is necessary, such as 
in clinical pathology. LR models are also suitable for such 
applications since one can also draw statistical inferences 
from prediction model outputs (19). 

This study had several advantages. First, because DT 
models are advantageous in dynamical prediction based on 
variable selection, we included both baseline demographics 
and in-hospital newly occurred complications of each 
patient. Thus, our model can be employed for predicting 
pre- and post-PCI mortality risk during hospitalization. This 
model could assist clinicians in their awareness of potential 
mortality risks when new events occur among post-PCI 
patients staying in hospital. Second, the NHIRD is a national 
database in Taiwan; therefore, the possibility of selection 
bias such as in a single-center database was alleviated when 
constructing the PCI mortality model. Third, we selected 
patients with AMI as our study group. Peterson et al. found 
that PCI in-hospital mortality was 1.27%, ranging from 
0.65% in elective PCI to 4.81% in STEMI patients (16). 
Because mortality following PCI differed among patients 
with different PCI indications, patients with AMI were 
selected as the study cohort to effectively fulfill the critical 
need for interventional cardiology.

Severa l  l imitat ions  must  be  ment ioned.  Firs t , 
information regarding body mass index, HbA1C, levels 
of high-density and low-density lipoproteins, dietary 
preference, exercise, family history of heart diseases, 
smoking, electrocardiogram, blood pressure upon AMI, 
left ventricular end-diastolic pressure, ejection fraction, 
and culprit vessels were unavailable through the NHIRD. 
Furthermore, information about angiographic features and 
biomarkers of each patient is unobtainable in NHIRD, 
thus we could not corporate these data as the study 
features. Those missing information might have impacts on 
formation of prediction models. However, although we did 
not have such detailed information, our model achieved an 
AUC of 0.895 and a precision of 0.971 for the DT model 

on the basis of diagnostic and procedure codes. Our study 
demonstrated the advantages of simplicity and flexibility in 
assessing the mortality risk of patients with PCI. Second, 
although we used a validation set, it was extracted from 
the same database. External validation with larger data 
sets encompassing 20-year durations of the NHIRD are 
required to validate our findings. It would be useful to use 
the observations from 2004 to 2008 and do testing by using 
the observations from 2009 to 2013. However, the number 
of patients would be not large enough in each divided set. 
Third, the majority of those insured by the NHI program 
are Taiwanese; thus, our model which is constructed 
on single-country data might not be generalizable to 
other countries. Finally, using post-PCI complications as 
predictors might limit the usability of the algorithm to post-
PCI settings, which should also be mentioned here. 

Conclusions

This study reported that DT models can be applied to the 
NHIRD in order to predict 30-day mortality following PCI 
in patients with AMI. We hope work could provide insights 
for further studies about applying prediction model on 
ICD-coded database. This model may enable more dynamic 
and timely predictions of mortality during hospitalization. 
Additional studies are necessary for external validation and 
to test the applicability of this model in patients undergoing 
PCI without AMI.
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