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Abstract: The number of Parkinson’s disease (PD) patients increases with aging, which brings heavy
burden to families and society. The emergence of patient-derived induced pluripotent stem cells (iPSCs)
has brought hope to the current situation of lacking new breakthroughs in diagnosis and treatment of PD.
In this article, we reviewed and analyzed the current researches related to PD patient-derived iPSCs, in
order to provide solid theoretical basis for future study of PD. In 2008, successful iPSCs derived from PD
patients were reported. The current iPSCs research in PD mostly focused on the establishment of specific
iPSCs models of PD patients carrying susceptible genes. The main source of PD patient-derived iPSCs is
skin fibroblasts and the mainstream reprogramming methodology is the mature “four-factor” method, which
introduces four totipotent correlation factors Oct4, Sox2, Klf4 and c-Myc into somatic cells. The main
sources of iPSCs are patients with non-pedigrees and there have been no studies involving both PD patients
and unaffected carriers within the same family. Most of the existing studies of PD patient-derived iPSCs
started with the induction method for obtaining dopaminergic neurons in the first instance, but therapeutic
applications are being increased. Although it is not the ultimate panacea, and there are still some unsolved
problems (e.g., whether the mutated genes should be corrected or not), a better understanding of iPSCs may

be a good gift for both PD patients and doctors due to their advantages in diagnosis and treatment of PD.
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Introduction next only to Alzheimer’s disease (AD). PD typically starts
As one of the most common chronic progressive with neuromelanin-rich dopaminergic neurons (DANs)
degenerative diseases of the nervous system in middle degeneration in the substantia nigra pars compacta of the
and old age, the incidence of Parkinson’s disease (PD) is midbrain and dopamine (DA) deficiency in the striatum (1),
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and when DANSs in the substantia nigra are reduced by more
than 50% and DA content is reduced by more than 70%, PD
patients will experience resting tremor, motor retardation,
myotonia and abnormal posture and gait (2). Of course, it
will also gradually spread throughout the brain causing a
more generalized neuronal dysfunction and affecting other
neurotransmitter systems, which is considered as the reason
for most non-motor manifestations of the disease, such as
depression, psychosis, cognitive decline, and dementia (3).
The incidence of PD increases with age. Due to an increase
in the aging population, the number of PD patients has
increased year by year, and the long-term treatment and care
of PD patients has led to a considerable economic and mental
burden to families and society (4). Although the diagnosis of
PD can be made according to characteristic clinical symptoms
and the response to medications, at present, the treatment
of PD mainly relies on levodopa-based drug therapy and
deep brain stimulation-based surgical intervention, which
only partially control clinical symptoms and do not achieve
complete relief. In fact, the major problem in treating PD
is the lack of disease-modifying therapies that would halt or
decelerate progression. The average course of PD is only 6.9
years (5). According to the meta-analysis made by Pringsheim
et al. (6) the survival rate of PD patients decreases by about
5% each year, and the mortality risk in younger patients is
higher than that in elderly patients. Over the 200 years since
the discovery of PD, scientists have made significant efforts
to study the diagnosis and treatment of PD. Unfortunately,
novel and significant breakthroughs are rarely reported.
Therefore, further in-depth innovative research on the
pathogenesis of PD is needed urgently in order to identify
more effective intervention and prevention methods.

Induced pluripotent stem cells (iPSCs) and PD

It is known that research on central nervous system diseases
is mainly carried out on three levels, individual level, tissue/
organ level and the cellular level. Firstly, the study of PD
on the individual level mainly involves animal models
such as the mouse model, which cannot fully reflect the
phenotypic characteristics of human DANs. Secondly,
tissue/organ level studies of PD are still mainly carried out
via postmortem neuropathology. Although neuropathology
plays an important or even critical role in the identification
of diseases and their neurological impairment, it usually has
poor predictive value and represents only the end of the
disease or a certain disease stage. Thirdly, the brain cells
required for cytological studies are difficult to obtain from
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living PD patients. Thus, all of these factors limit hinder
the development progress of in PD-related research more
or less. To address these limitations, the development of
new methods for obtaining PD patients’ own specific cells
that can demonstrate the different stages of PD and that
are available in large quantities, and the use of these cells to
study PD-related mechanisms and identify new treatments
are profoundly significant. The discovery of iPSCs and the
development of iPSCs-related technologies have provided
new insights (7,8) into the research on PD as iPSCs can
not only show disease-related pathophysiological changes
of PD, but also served as a source of seed cells for cell
transplantation in PD patients (Figure I).

Cellular reprogramming to acquire PD-specific
iPSCs

iPSCs are generated by introducing pluripotent genes such
as Oct4, Sox2, Kif4 and ¢-Myc into mature somatic cells, so
that they are reprogrammed and restored to the cell state
with the characteristics of embryonic stem cells that can
differentiate into multiple lineage cell types (9). In recent
years, research into establishing a PD-specific iPSCs model
by reprogramming PD patients’ somatic cells have gradually
increased. In 2008 (8) and 2009 (10), successful examples
of iPSCs derived from PD patients were reported. Since
then, successful acquisition of PD-specific iPSC has been
increasingly reported, see Table 1. Table 1 shows that the
main source of PD patient-derived iPSCs is skin fibroblasts.
The main reprogramming methodology is the mature
“four-factor” method, which introduces the 4 totipotent
correlation factors Oct4, Sox2, KIf4 and ¢-Myc into somatic
cells. With the identification and cloning of disease-related
genes, the role of genetic factors in PD has attracted more
and more attention. As shown in Table 1, the current hot
topics in iPSCs research in PD mostly focused on the
establishment of specific iPSCs models of PD patients
carrying susceptible genes such as LRRK2, PARKIN, SNCA,
GBA, PINKI and others. Among them, the most frequently
reported is PD-specific iPSCs from patients carrying gene
mutations of LRRK?2 (Figure 2). As is known, PD patients
with gene mutations of LRRK? have the typical clinical
manifestations of PD, which may be familial or sporadic,
and have the age-dependent pathogenic characteristics.
Thus, it may be an ideal model to study the interaction
of multiple factors such as genetic, environmental and
natural aging factors in PD in the future (77). We also
found that the PD-specific iPSCs are mainly derived from
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Figure 1 The use of iPSCs is bringing hope to PD patient. iPSC, induced pluripotent stem cell; PD, Parkinson’s disease.

different pedigrees, but no studies have involved both PD
patients and unaffected carriers within the same pedigree.
Therefore, it will be of great importance to acquire a PD
family with the same genetic mutant background and to use
their iPSCs and related technologies to further study the
pathogenesis of PD, and then develop relevant prevention
and control strategies, especially when there are both PD
patients and unaffected carriers in the family.

Showing disease-related pathophysiological
changes of PD

As a type of cells in vitro, iPSCs can not demonstrate the
disease-related behaviors of PD like living animals, but it can
show pathophysiological changes of PD (28,78,79). Thus,
more and more researchers (67,80) believe that disease-
related phenotypes analyses using PD-specific iPSCs are
useful in recapitulating the PD phenotypes (7able 2), which
will help elucidate novel therapeutic targets. But sometimes,
it should continue to be used in concert with other in vitro
and animal models.

© Annals of Translational Medicine. All rights reserved.

Screening drugs for the treatment of PD

Jang et al. (73) and Schiile e 4l. (81) suggested that disease-
specific iPSCs may be a platform for human disease
modeling and drug discovery, but there are still a few
limitations. The application of CRISPR/Cas9 (82) and
a single cell high content assay (14) may provide new
technologies to solve these limitations. In addition, other
researchers (83) also believe that better regulation of the
signal transduction pathways of FGF8, SHH, WN'T and
BMP is the key to ensure that iPSCs are used for drug
screening. It can be concluded that the basis for the use of
iPSCs in drug screening ultimately lies in the establishment
of PD disease models (84). And most of cellular models of
PD were established by PD patient-derived iPSCs with
gene mutations (85). Furthermore, some drugs such as
Coenzyme Q10, Rapamycin and GW5074 (a LRRK2 kinase
inhibitor) have been screened using the related models (86).

Interestingly, Ryan et 4/. (87) found that MEF2C-PGCla
pathway may be a novel therapeutic target to combat
PD under gene-environmental interactions using small-
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PLA2G6 1
ATP13A2 1
PINK1 7
GBA 10
SNCA 12
No mutation or Not mentioned 16
PARKIN 17

LRRK2 27

0 10 20 30

Figure 2 The number of studies reporting PD-specific iPSCs with different gene mutations. Note: one study may report two or more gene
mutations of PD-specific iPSCs. iPSC, induced pluripotent stem cell; PD, Parkinson’s disease.

Table 2 List of disease-related phenotypes reported in PD patient-derived iPSCs [modified and expanded after Jacobs BM (78)]

The type of PD patient Gain- or loss-of-function Disease-related phenotypes

Idiopathic - Morphological abnormalities
Defective autophagy (and/or mitophagy)
LRRK2 mutation Gain-of-function * a-synuclein protein
Morphological abnormalities
Defective autophagy (and/or mitophagy)
Mitochondrial dysfunction
T Oxidative Stress & Vulnerability to cellular stressors
Nuclear abnormalities
SNCA triplication/ Gain-of-function T a-synuclein protein
SNCA ASST mutation T Oxidative Stress & vulnerability to cellular stressors
Defective synaptic connectivity and abnormal axonal neuropathology
GBA mutation Loss-of-function * a-synuclein protein
PINK1 mutation Loss-of-function Defective autophagy (and/or mitophagy)
Mitochondrial dysfunction
T Oxidative Stress & Vulnerability to cellular stressors
Parkin mutation Loss-of-function Synaptic dysfunction
Defective autophagy (and/or mitophagy)
Mitochondrial dysfunction

T Oxidative Stress & Vulnerability to cellular stressors

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(22):685 | http://dx.doi.org/10.21037/atm.2019.11.16
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molecule high-throughput screening on a cellular model of
PD established by PD patient-derived iPSCs.

Using for cell transplantation in PD

Most of the studies listed in 7zble 1 focused on the
induction method for obtaining DANSs at the beginning,
but now the focus has been shifted to the application of PD
patient-derived iPSCs application in the disease treatment.
iPSCs overcome the lack of sources and ethical disputes
of embryonic stem cells in terms of choosing seed cells for
cell transplantation, as well as the difficulties in obtaining
endogenous neural stem cells. Therefore, iPSCs are ideal
seed cells for cell transplantation in PD patients (88).
However, due to the introduction of exogenous genes
and the instability of iz vive differentiation, iPSCs are not
suitable for direct use in cell transplantation in patients with
PD. Stable and efficient directional differentiation of iPSCs
into DANs in vitro is a precondition and one of the most
difficult problems and hot topics in cell transplantation for
PD patients.

The efficient differentiation of pluripotent stem
cells into DANs iz vitro requires compliance with the
physiological process of neural development. The nervous
system of vertebrates consists of a variety of cell types that
develop along the fixed position of the dorsal-ventral (D-V)
axis and the anterior-posterior (A-P) axis of the neural
canal. The mechanism for controlling this process is not
fully understood. At present, it is believed that the signal
center controlling the operation of these two main axes has
established an epigenetic Cartesian coordinate “grid”. As
neural primordial cells have different positions in this grid,
their different cell fates are determined. The epithelium,
roof, floor plate and notochord of the dorsal ectoderm
determine the fate of cells according to the D-V axis. The
paraxonic mesoderm of the prechordal plate, midbrain/
hindbrain junction (isthmus) and anterior nerve ridge
(ANR) determine the fate of descendant cells along the
A-P axis of the neural canal (89). In 2009, Chambers (90)
transformed a high proportion of hES and hiPS into
PAXG6-positive A-P axonal precursor cells by adding two
inhibitors of the SMAD signaling pathway (SB43542 and
Noggin) in a monolayer adherent cell culture. The ratio
of resultant DANs during the process of differentiation
into lower-grade neurocytes from these cells was quite
low. In 2011, Kriks et /. (91) added recombinant SHH
and FGF8 into Chamber’s induction protocol, and added
the GSK/3B inhibitor CHIR99021 on day 3 of induction

© Annals of Translational Medicine. All rights reserved.
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to activate the canonical Wnt signaling pathway, which
efficiently induced the differentiation of pluripotent stem
cells into FOXA2/LMXI1A-positive floor plate-derived
neural precursor cells, and induced their differentiation
into a high proportion of TH-positive DANs. However,
the underlying mechanism was not investigated. The
canonical Wnt/B-catenin signaling pathway plays an
important role in biological development, cell transport,
tumorigenesis and cell fate, as well as in roof plate and
floor plate functions (92), and development of DANs in
the central nervous system. In addition, Wnt can promote
the neurogenesis of mesencephalic floor plate cells by
antagonizing the SHH (93). Therefore, following the
natural law of neural differentiation of human embryonic
stem cells to induce PD patient-derived iPSCs to
differentiate into DANs is the route that researchers must
take. The protocol came from Nolbrant ez /. (94) have
suggested generation of precisely patterned neural cells
from human pluripotent stem cells (hPSCs) is instrumental
in developing disease models and stem cell therapies, but it
must also follow the “law”. Furthermore, DANs obtained
by the above technique is a key step in establishing a PD
disease model and in carrying out cell replacement therapy
in the treatment of PD.

Encouragingly, a study on MPTP-PD monkey
model of cell transplantation with human iPSCs-derived
DANSs carried out by Japanese scientists showed that
the transplanted cells survived for at least two years
and formed connections with the host monkey brains
cells, but did not form any tumours. What is more, an
increase in spontaneous movement of the monkeys after
transplantation was witnessed (26). Immediately after the
successful animal experiments the Japanese scientists started
human research, and they implanted ‘reprogrammed’ stem
cells into the brain of a patient with PD for the first time in
2018 October (as NEWS _Reported by Nature https://www.
nature.com/articles/d41586-018-07407-9), which is the
best gift for the Timeline: PD Patient-Derived iPSCs -The
First Decade. But we can’t be happy too soon. According to
a recent study, control-derived grafts appeared to integrate
better than PD [the p.AS53T a-synuclein (aSyn) mutation]
grafts within the host tissue extending projections that
formed more contacts with host striatal neurons (95), which
could be ascribed to intrinsic properties of the iPSCsl-
derived DANSs that critically affected survival and proper
neurite extension in the striatum after implantation (96). So,
we always ought to keep calm down and ponder over each
result of cell transplant with patient-derived iPSCs in PD!

Ann Transl Med 2019;7(22):685 | http://dx.doi.org/10.21037/atm.2019.11.16
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Conclusions, problems and prospects

PD patient-derived iPSCs have been studied for almost
10 years, and their reprogramming technology has
become very mature. At present, in addition to the “four-
factor method” with routine use of skin fibroblasts, other
programming methods are also gradually being optimized.
The “only OCT4 factor” has already been used in the study
of other iPSCs. The original source of mature somatic
cells can also include blood, urine, teeth and other tissues.
Furthermore, as mentioned above because of the exogenous
gene introduction, more researchers have adopted
alternative strategies to generate iPSCs, such as the non-
integration method (97,98) and protein or peptide-based
reprogramming (99). In conclusion, it is not difficult to
obtain iPSCs from PD patients. However, it is still difficult
to efficiently induce and obtain clinically available DANs
for cell transplantation in PD. Furthermore, it is more
difficult to make these DANSs transplanted into PD patients
reach the target site, achieve a long-term survival and play a
therapeutic role (26).

In addition, although the disease model established by
PD patient-derived iPSCs is an important and effective
platform for studying the pathogenesis of PD, for
establishing a drug screening platform for PD treatment
and for early diagnosis, it is not the ultimate panacea, and
still has some limitations. Since PD-specific iPSCs could
carry susceptible genes, is the mutation or deletion still
detectable in the further induction? And whether or not
gene correction required when abnormal gene mutation
occurs? All of these need to be further investigated (64,79).

Nevertheless, we should not ignore the critical studies
(100-102) in which some authors think that organoid,
especially brain organoid, may be better than the cultured
cells for the treatment of nervous system diseases. Even
as iPSCs-based models for neurodegenerative diseases,
including PD, have been repeatedly criticized because
iPSCs-derived neurons are considered “young”. Remarkably
though, using such models a number of disease-associated
phenotypes have been unraveled, suggesting that PD
starts a lot earlier than initially thought, far earlier than
the appearance of disease symptoms in patients and
malfunctions can certainly be demonstrated in iPSC-
derived neurons. Not surprisingly, a recent report indicating
aberrant mitochondrial morphology and functionality in
iPSCs-derived neural precursors from PD patients (103).
In summary, substantial efforts have been made in the
application of PD patient-derived iPSCs (104). “Sometimes
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it might be better to leap before looking (105)”, so it is
most important to put the experimental results into clinical
applications.
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