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Abstract: The number of Parkinson’s disease (PD) patients increases with aging, which brings heavy 
burden to families and society. The emergence of patient-derived induced pluripotent stem cells (iPSCs) 
has brought hope to the current situation of lacking new breakthroughs in diagnosis and treatment of PD. 
In this article, we reviewed and analyzed the current researches related to PD patient-derived iPSCs, in 
order to provide solid theoretical basis for future study of PD. In 2008, successful iPSCs derived from PD 
patients were reported. The current iPSCs research in PD mostly focused on the establishment of specific 
iPSCs models of PD patients carrying susceptible genes. The main source of PD patient-derived iPSCs is 
skin fibroblasts and the mainstream reprogramming methodology is the mature “four-factor” method, which 
introduces four totipotent correlation factors Oct4, Sox2, Klf4 and c-Myc into somatic cells. The main 
sources of iPSCs are patients with non-pedigrees and there have been no studies involving both PD patients 
and unaffected carriers within the same family. Most of the existing studies of PD patient-derived iPSCs 
started with the induction method for obtaining dopaminergic neurons in the first instance, but therapeutic 
applications are being increased. Although it is not the ultimate panacea, and there are still some unsolved 
problems (e.g., whether the mutated genes should be corrected or not), a better understanding of iPSCs may 
be a good gift for both PD patients and doctors due to their advantages in diagnosis and treatment of PD.

Keywords: Parkinson’s disease (PD); induced pluripotent stem cells (iPSCs); differentiation; dopaminergic 

neurons (DANs); cell transplantation

Submitted Jul 09, 2019. Accepted for publication Oct 10, 2019.

doi: 10.21037/atm.2019.11.16

View this article at: http://dx.doi.org/10.21037/atm.2019.11.16

Introduction

As one of  the most  common chronic progressive 
degenerative diseases of the nervous system in middle 
and old age, the incidence of Parkinson’s disease (PD) is 

next only to Alzheimer’s disease (AD). PD typically starts 

with neuromelanin-rich dopaminergic neurons (DANs) 

degeneration in the substantia nigra pars compacta of the 

midbrain and dopamine (DA) deficiency in the striatum (1), 
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and when DANs in the substantia nigra are reduced by more 
than 50% and DA content is reduced by more than 70%, PD 
patients will experience resting tremor, motor retardation, 
myotonia and abnormal posture and gait (2). Of course, it 
will also gradually spread throughout the brain causing a 
more generalized neuronal dysfunction and affecting other 
neurotransmitter systems, which is considered as the reason 
for most non-motor manifestations of the disease, such as 
depression, psychosis, cognitive decline, and dementia (3). 
The incidence of PD increases with age. Due to an increase 
in the aging population, the number of PD patients has 
increased year by year, and the long-term treatment and care 
of PD patients has led to a considerable economic and mental 
burden to families and society (4). Although the diagnosis of 
PD can be made according to characteristic clinical symptoms 
and the response to medications, at present, the treatment 
of PD mainly relies on levodopa-based drug therapy and 
deep brain stimulation-based surgical intervention, which 
only partially control clinical symptoms and do not achieve 
complete relief. In fact, the major problem in treating PD 
is the lack of disease-modifying therapies that would halt or 
decelerate progression. The average course of PD is only 6.9 
years (5). According to the meta-analysis made by Pringsheim 
et al. (6) the survival rate of PD patients decreases by about 
5% each year, and the mortality risk in younger patients is 
higher than that in elderly patients. Over the 200 years since 
the discovery of PD, scientists have made significant efforts 
to study the diagnosis and treatment of PD. Unfortunately, 
novel and significant breakthroughs are rarely reported. 
Therefore, further in-depth innovative research on the 
pathogenesis of PD is needed urgently in order to identify 
more effective intervention and prevention methods.

Induced pluripotent stem cells (iPSCs) and PD

It is known that research on central nervous system diseases 
is mainly carried out on three levels, individual level, tissue/
organ level and the cellular level. Firstly, the study of PD 
on the individual level mainly involves animal models 
such as the mouse model, which cannot fully reflect the 
phenotypic characteristics of human DANs. Secondly, 
tissue/organ level studies of PD are still mainly carried out 
via postmortem neuropathology. Although neuropathology 
plays an important or even critical role in the identification 
of diseases and their neurological impairment, it usually has 
poor predictive value and represents only the end of the 
disease or a certain disease stage. Thirdly, the brain cells 
required for cytological studies are difficult to obtain from 

living PD patients. Thus, all of these factors limit hinder 
the development progress of in PD-related research more 
or less. To address these limitations, the development of 
new methods for obtaining PD patients’ own specific cells 
that can demonstrate the different stages of PD and that 
are available in large quantities, and the use of these cells to 
study PD-related mechanisms and identify new treatments 
are profoundly significant. The discovery of iPSCs and the 
development of iPSCs-related technologies have provided 
new insights (7,8) into the research on PD as iPSCs can 
not only show disease-related pathophysiological changes 
of PD, but also served as a source of seed cells for cell 
transplantation in PD patients (Figure 1).

Cellular reprogramming to acquire PD-specific 
iPSCs

iPSCs are generated by introducing pluripotent genes such 
as Oct4, Sox2, Klf4 and c-Myc into mature somatic cells, so 
that they are reprogrammed and restored to the cell state 
with the characteristics of embryonic stem cells that can 
differentiate into multiple lineage cell types (9). In recent 
years, research into establishing a PD-specific iPSCs model 
by reprogramming PD patients’ somatic cells have gradually 
increased. In 2008 (8) and 2009 (10), successful examples 
of iPSCs derived from PD patients were reported. Since 
then, successful acquisition of PD-specific iPSC has been 
increasingly reported, see Table 1. Table 1 shows that the 
main source of PD patient-derived iPSCs is skin fibroblasts. 
The main reprogramming methodology is the mature 
“four-factor” method, which introduces the 4 totipotent 
correlation factors Oct4, Sox2, Klf4 and c-Myc into somatic 
cells. With the identification and cloning of disease-related 
genes, the role of genetic factors in PD has attracted more 
and more attention. As shown in Table 1, the current hot 
topics in iPSCs research in PD mostly focused on the 
establishment of specific iPSCs models of PD patients 
carrying susceptible genes such as LRRK2, PARKIN, SNCA, 
GBA, PINK1 and others. Among them, the most frequently 
reported is PD-specific iPSCs from patients carrying gene 
mutations of LRRK2 (Figure 2). As is known, PD patients 
with gene mutations of LRRK2 have the typical clinical 
manifestations of PD, which may be familial or sporadic, 
and have the age-dependent pathogenic characteristics. 
Thus, it may be an ideal model to study the interaction 
of multiple factors such as genetic, environmental and 
natural aging factors in PD in the future (77). We also 
found that the PD-specific iPSCs are mainly derived from 
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different pedigrees, but no studies have involved both PD 
patients and unaffected carriers within the same pedigree. 
Therefore, it will be of great importance to acquire a PD 
family with the same genetic mutant background and to use 
their iPSCs and related technologies to further study the 
pathogenesis of PD, and then develop relevant prevention 
and control strategies, especially when there are both PD 
patients and unaffected carriers in the family. 

Showing disease-related pathophysiological 
changes of PD

As a type of cells in vitro, iPSCs can not demonstrate the 
disease-related behaviors of PD like living animals, but it can 
show pathophysiological changes of PD (28,78,79). Thus, 
more and more researchers (67,80) believe that disease-
related phenotypes analyses using PD-specific iPSCs are 
useful in recapitulating the PD phenotypes (Table 2), which 
will help elucidate novel therapeutic targets. But sometimes, 
it should continue to be used in concert with other in vitro 
and animal models.

Screening drugs for the treatment of PD

Jang et al. (73) and Schüle et al. (81) suggested that disease-
specific iPSCs may be a platform for human disease 
modeling and drug discovery, but there are still a few 
limitations. The application of CRISPR/Cas9 (82) and 
a single cell high content assay (14) may provide new 
technologies to solve these limitations. In addition, other 
researchers (83) also believe that better regulation of the 
signal transduction pathways of FGF8, SHH, WNT and 
BMP is the key to ensure that iPSCs are used for drug 
screening. It can be concluded that the basis for the use of 
iPSCs in drug screening ultimately lies in the establishment 
of PD disease models (84). And most of cellular models of 
PD were established by PD patient-derived iPSCs with 
gene mutations (85). Furthermore, some drugs such as 
Coenzyme Q10, Rapamycin and GW5074 (a LRRK2 kinase 
inhibitor) have been screened using the related models (86).

Interestingly, Ryan et al. (87) found that MEF2C-PGC1α 
pathway may be a novel therapeutic target to combat 
PD under gene-environmental interactions using small-

Figure 1 The use of iPSCs is bringing hope to PD patient. iPSC, induced pluripotent stem cell; PD, Parkinson’s disease.
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Figure 2 The number of studies reporting PD-specific iPSCs with different gene mutations. Note: one study may report two or more gene 
mutations of PD-specific iPSCs. iPSC, induced pluripotent stem cell; PD, Parkinson’s disease.
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Table 2 List of disease-related phenotypes reported in PD patient-derived iPSCs [modified and expanded after Jacobs BM (78)]

The type of PD patient Gain- or loss-of-function Disease-related phenotypes

Idiopathic – Morphological abnormalities

Defective autophagy (and/or mitophagy)

LRRK2 mutation Gain-of-function ↑ α-synuclein protein

Morphological abnormalities

Defective autophagy (and/or mitophagy)

Mitochondrial dysfunction

↑ Oxidative Stress & Vulnerability to cellular stressors

Nuclear abnormalities

SNCA triplication/  
SNCA A53T mutation

Gain-of-function ↑ α-synuclein protein

↑ Oxidative Stress & vulnerability to cellular stressors

Defective synaptic connectivity and abnormal axonal neuropathology

GBA mutation Loss-of-function ↑ α-synuclein protein

PINK1 mutation Loss-of-function Defective autophagy (and/or mitophagy)

Mitochondrial dysfunction

↑ Oxidative Stress & Vulnerability to cellular stressors

Parkin mutation Loss-of-function Synaptic dysfunction

Defective autophagy (and/or mitophagy)

Mitochondrial dysfunction

↑ Oxidative Stress & Vulnerability to cellular stressors
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molecule high-throughput screening on a cellular model of 
PD established by PD patient-derived iPSCs.

Using for cell transplantation in PD

Most of the studies listed in Table 1 focused on the 
induction method for obtaining DANs at the beginning, 
but now the focus has been shifted to the application of PD 
patient-derived iPSCs application in the disease treatment. 
iPSCs overcome the lack of sources and ethical disputes 
of embryonic stem cells in terms of choosing seed cells for 
cell transplantation, as well as the difficulties in obtaining 
endogenous neural stem cells. Therefore, iPSCs are ideal 
seed cells for cell transplantation in PD patients (88).  
However, due to the introduction of exogenous genes 
and the instability of in vivo differentiation, iPSCs are not 
suitable for direct use in cell transplantation in patients with 
PD. Stable and efficient directional differentiation of iPSCs 
into DANs in vitro is a precondition and one of the most 
difficult problems and hot topics in cell transplantation for 
PD patients. 

The efficient differentiation of pluripotent stem 
cells into DANs in vitro requires compliance with the 
physiological process of neural development. The nervous 
system of vertebrates consists of a variety of cell types that 
develop along the fixed position of the dorsal-ventral (D-V)  
axis and the anterior-posterior (A-P) axis of the neural 
canal. The mechanism for controlling this process is not 
fully understood. At present, it is believed that the signal 
center controlling the operation of these two main axes has 
established an epigenetic Cartesian coordinate “grid”. As 
neural primordial cells have different positions in this grid, 
their different cell fates are determined. The epithelium, 
roof, floor plate and notochord of the dorsal ectoderm 
determine the fate of cells according to the D-V axis. The 
paraxonic mesoderm of the prechordal plate, midbrain/
hindbrain junction (isthmus) and anterior nerve ridge 
(ANR) determine the fate of descendant cells along the 
A-P axis of the neural canal (89). In 2009, Chambers (90)  
transformed a high proportion of hES and hiPS into 
PAX6-positive A-P axonal precursor cells by adding two 
inhibitors of the SMAD signaling pathway (SB43542 and 
Noggin) in a monolayer adherent cell culture. The ratio 
of resultant DANs during the process of differentiation 
into lower-grade neurocytes from these cells was quite 
low. In 2011, Kriks et al. (91) added recombinant SHH 
and FGF8 into Chamber’s induction protocol, and added 
the GSK/3β inhibitor CHIR99021 on day 3 of induction 

to activate the canonical Wnt signaling pathway, which 
efficiently induced the differentiation of pluripotent stem 
cells into FOXA2/LMX1A-positive floor plate-derived 
neural precursor cells, and induced their differentiation 
into a high proportion of TH-positive DANs. However, 
the underlying mechanism was not investigated. The 
canonical Wnt/β-catenin signaling pathway plays an 
important role in biological development, cell transport, 
tumorigenesis and cell fate, as well as in roof plate and 
floor plate functions (92), and development of DANs in 
the central nervous system. In addition, Wnt can promote 
the neurogenesis of mesencephalic floor plate cells by 
antagonizing the SHH (93). Therefore, following the 
natural law of neural differentiation of human embryonic 
stem cells to induce PD patient-derived iPSCs to 
differentiate into DANs is the route that researchers must 
take. The protocol came from Nolbrant et al. (94) have 
suggested generation of precisely patterned neural cells 
from human pluripotent stem cells (hPSCs) is instrumental 
in developing disease models and stem cell therapies, but it 
must also follow the “law”. Furthermore, DANs obtained 
by the above technique is a key step in establishing a PD 
disease model and in carrying out cell replacement therapy 
in the treatment of PD. 

Encouragingly,  a  s tudy on MPTP-PD monkey 
model of cell transplantation with human iPSCs-derived 
DANs carried out by Japanese scientists showed that 
the transplanted cells survived for at least two years 
and formed connections with the host monkey brains 
cells, but did not form any tumours. What is more, an 
increase in spontaneous movement of the monkeys after 
transplantation was witnessed (26). Immediately after the 
successful animal experiments the Japanese scientists started 
human research, and they implanted ‘reprogrammed’ stem 
cells into the brain of a patient with PD for the first time in 
2018 October (as NEWS Reported by Nature https://www.
nature.com/articles/d41586-018-07407-9), which is the 
best gift for the Timeline: PD Patient-Derived iPSCs -The 
First Decade. But we can’t be happy too soon. According to 
a recent study, control-derived grafts appeared to integrate 
better than PD [the p.A53T α-synuclein (αSyn) mutation] 
grafts within the host tissue extending projections that 
formed more contacts with host striatal neurons (95), which 
could be ascribed to intrinsic properties of the iPSCsl-
derived DANs that critically affected survival and proper 
neurite extension in the striatum after implantation (96). So, 
we always ought to keep calm down and ponder over each 
result of cell transplant with patient-derived iPSCs in PD!
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Conclusions, problems and prospects

PD patient-derived iPSCs have been studied for almost 
10 years, and their reprogramming technology has 
become very mature. At present, in addition to the “four-
factor method” with routine use of skin fibroblasts, other 
programming methods are also gradually being optimized. 
The “only OCT4 factor” has already been used in the study 
of other iPSCs. The original source of mature somatic 
cells can also include blood, urine, teeth and other tissues. 
Furthermore, as mentioned above because of the exogenous 
gene introduction, more researchers have adopted 
alternative strategies to generate iPSCs, such as the non-
integration method (97,98) and protein or peptide-based 
reprogramming (99). In conclusion, it is not difficult to 
obtain iPSCs from PD patients. However, it is still difficult 
to efficiently induce and obtain clinically available DANs 
for cell transplantation in PD. Furthermore, it is more 
difficult to make these DANs transplanted into PD patients 
reach the target site, achieve a long-term survival and play a 
therapeutic role (26). 

In addition, although the disease model established by 
PD patient-derived iPSCs is an important and effective 
platform for studying the pathogenesis of PD, for 
establishing a drug screening platform for PD treatment 
and for early diagnosis, it is not the ultimate panacea, and 
still has some limitations. Since PD-specific iPSCs could 
carry susceptible genes, is the mutation or deletion still 
detectable in the further induction? And whether or not 
gene correction required when abnormal gene mutation 
occurs? All of these need to be further investigated (64,79). 

Nevertheless, we should not ignore the critical studies 
(100-102) in which some authors think that organoid, 
especially brain organoid, may be better than the cultured 
cells for the treatment of nervous system diseases. Even 
as iPSCs-based models for neurodegenerative diseases, 
including PD, have been repeatedly criticized because 
iPSCs-derived neurons are considered “young”. Remarkably 
though, using such models a number of disease-associated 
phenotypes have been unraveled, suggesting that PD 
starts a lot earlier than initially thought, far earlier than 
the appearance of disease symptoms in patients and 
malfunctions can certainly be demonstrated in iPSC-
derived neurons. Not surprisingly, a recent report indicating 
aberrant mitochondrial morphology and functionality in 
iPSCs-derived neural precursors from PD patients (103). 
In summary, substantial efforts have been made in the 
application of PD patient-derived iPSCs (104). “Sometimes 

it might be better to leap before looking (105)”, so it is 
most important to put the experimental results into clinical 
applications. 
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