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Background: Prolonged exposure to stress triggers depression, threatening human health. Thus, to 
thoroughly understand the underlying pathophysiologic mechanism of chronic unpredictable mild stress 
(CUMS)-induced depression is urgently needed. Ultra-high-performance liquid chromatography-mass 
spectroscopy (UPLC-MS)-based lipidomic and metabolomic approaches has been used for discovering 
metabolite biomarkers to develop new diagnostic and therapeutic means. Thus, our study aimed to conduct 
integrated metabolomics and lipidomics to identify metabolites and lipids biomarkers in the hippocampus in 
rat models of CUMS-induced depression. 
Methods: Twelve eight-week-old male Sprague-Dawley rats (weight 210±30 g) were randomly distributed 
to one of the following two groups (n=6): control or CUMS. Established UPLC-MS-based lipidomic and 
metabolomic approaches were used to determine the metabolites and lipids in the hippocampus of rats. 
SICMA-P and GraphPad software were performed to discover potential metabolites and lipids biomarkers in 
the hippocampus of rats between the two groups. 
Results: A total of 35 potential metabolites and 171 lipids were identified and found to be mainly related 
to amino acid and lipid metabolism. These metabolites were involved in different metabolic pathways and 
connected to each other, which might participate in the occurrence and development of depression. 
Conclusions: Our findings underlined the metabolites, lipids and metabolic pathways that were changed 
in the hippocampus in CUMS compared to the controls, providing novel insights in the metabolism in the 
hippocampus of rats and revealing the new lipid-related targets.
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Introduction

An increasing body of evidence has revealed that long-term 
exposure to stress can have harmful effects on the structure 
and function of the brain, thereby leading to depression. 
Animals that are chronically stressed demonstrate functional 
and morphological damage in different brain regions 
such as the prefrontal cortex (PFC), the hippocampus, 
and the amygdala (1). The effects of these stress-induced 
changes are many, such as impacting learning, memory, 
and emotional responses. Stress has been associated with 
pathological processes of depression (2). Therefore, to 
thoroughly understand the potential pathophysiology 
of chronic unpredictable mild stress (CUMS)-induced 
depressive-like behavior is urgently needed. 

CUMS is a well-accepted and the most validated animal 
model of depressive-like behavior (3). Following prolonged 
exposure to stress, the depressive behavior of rats is reflected 
in reduced preference for sweet solutions (evaluated with 
the sucrose preference test), and increased immobility in the 
forced swimming test.

Metabolomics and lipidomics have been used to analysis 
the extensive metabolites and lipids that exist in the 
periphery (e.g., serum and urine) and the central nervous 
system (e.g., PFC, the hippocampus and the amygdala) (4,5). 
The hippocampus is a vital limbic structure that is associated 
with mood and cognition, additionally, the hippocampus 
could regulate the hypothalamus-pituitary-adrenal (HPA) 
axis, making it more vulnerable to stress and depression. As 
a result, the hippocampus is often selected for depression 
studies (6,7). CUMS is known to decrease hippocampal 
neurogenesis, and various studies have suggested that brain-
derived neurotrophic factor (BDNF) expression decreases in 
both the hippocampus of animals and the serum of humans 
in depression (8-10). Thus, studying the hippocampus of 
the rat with CUMS-induced depressive-like behavior may 
provide a deeper understanding.

Liquid chromatography (LC) with mass spectrometry 
(MS) is the preferred technique for metabolomics and 
lipidomics because of high separation efficiency, sensitivity, 
selectivity and throughput (4,11). Advancements in 
analytical technology and data processing have allowed 
for thousands of molecular species to be profiled and 
for a comparison of the composition between control 
and diseased groups, or diseased and treatment groups. 
More and more clinical research centers have been used 
MS-based metabolomics and lipidomics to study the 
transformation of neuropsychiatric disorders and the 

discovery of biomarkers (12,13).
In our paper, we describe a workflow (14) for conducting 

integrated lipidomic and metabolomic analyses of frozen 
hippocampal samples from CUMS-induced depressive 
and control rats (Figure 1). First, the CUMS rat model was 
established to obtain hippocampal samples. Second, we 
described the methods used for the extraction of lipids using 
the liquid-liquid extraction procedure and metabolites by 
protein precipitation from the hippocampal samples. Finally, 
we processed the data of lipidomic and metabolomic and 
identified the potential metabolites biomarkers by mapping 
them into metabolic pathways. We aimed to employ an 
integrated metabolomic and lipidomic approach coupled 
with principal component analysis (PCA), partial least 
squares-discriminate analysis (PLS-DA), and orthogonal 
partial least-squares discriminant analysis (OPLS-DA) 
to determine the potential metabolites and lipids in the 
hippocampus of the CUMS-induced rats compared to 
control. The discovery of metabolites and lipids biomarkers 
might aid researchers in understanding the underlying 
stress-related pathophysiological mechanisms of depression 
and provides a promising opportunity to generate novel 
potential targets for tentative antidepressants.

Methods

Materials and instruments 

DL-o-Chlorophenylalanine, as an internal standard (IS), 
was from GL Biochem (Shanghai) Ltd. Formic acid was 
obtained from CNW, Shanghai, China. Chromatographic 
grade acetonitrile and methanol were purchased from the 
Merck Company, Darmstadt, Germany. Waters AcquityTM 
UPLC system combined with the use of Waters XevoTM 
Q-TOF mass analyzer (Waters Corporation, Milford, 
MA, USA) and Waters Acquity UPLC HSS T3 column 
(2.1 mm × 100 mm, 1.8 μm, Waters Corporation, Milford, 
MA, USA) were used to perform metabolomic analysis. 
Ultimate 3000 (Dionex, Sunnyvale, CA, USA) was coupled 
to a Thermo Orbitrap Elite with a heated electrospray ion 
source (HESI-II) (Thermo Fisher Scientific, Waltham, MA, 
USA) and Kinetex C18 column (100 mm × 2.1 mm, 1.9 μm, 
Dionex, Sunnyvale, CA, USA) were used to do lipidomic 
analysis. 

Study animals

Eight-week-old male Sprague-Dawley rats (weight 
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210±30 g) were provided by Jining Medical University 
and distributed to control or CUMS the two groups 
with six animals each. All rats were kept under standard 
laboratory conditions and were allowed to acclimate to the 
environment for five days. All animal procedures followed 
the Regulations of Experimental Animal Administration 
issued by the State Committee of Science and Technology 
of the People’s Republic of China. In addition, our study 
was approved by the Medical Ethics Committee of Jining 
First People’s Hospital, Jining Medical University, and the 
ethical number was 20170016.

CUMS procedure

CUMS was induced based on our earlier study (15). Briefly, 
the CUMS treatment was performed according to the 
following conditions for four weeks: (I) food and water 
deprivation for 24 h, (II) cage tilting (45°) for 24 h, (III) 
crowded housing for 24 h, (IV) kept in an empty water 
bottle (Wahaha, Hangzhou, Zhejiang, China) for 4 h, (V) 
one minute of tail clamping, (VI) 20 min of noise, (VII) 
forced swimming for 10 min, and (VIII) day/night reversal 
(12 h/12 h). To ensure that the rats received unpredictable 
stress, these above procedures were randomly scheduled 
(one per day).

Behavioral tests—the sucrose preference test (SPT) and 
forced swim test (FST) were conducted to assess depressive-
like states of the rats. Results from the behavioral tests 

were presented as means ± SD and GraphPad version 6.0 
software was used to performed t-test.

Sucrose preference test (SPT) 

The SPT was described in our previous study (15). All 
rats were placed separately and habituated to taste a 1% 
sucrose solution for 48 h in two bottles on each side before 
the SPT test. After 14 h of water deprivation, two pre-
weighed bottles, one containing tap water and another 
containing a 1% sucrose solution, were placed in each cage 
to rat. The side (left and right) that the bottles were placed 
on was randomly selected to avoid spatial bias. Two bottles 
were weighed again after 1h, and the weight difference was 
used as the rat intake from each bottle. Sucrose preference 
was measured as 1% sucrose solution intake /total liquid 
consumption.

Forced swim test (FST)

The FST was performed following our previous study with 
minor modifications (15). Briefly, all rats were separately 
placed in a Plexiglas cylinder (45 cm height, 15 cm 
diameter) containing with water (25±2 ℃) up to 35 cm deep 
for a 15 min swim test. Then, all rats were dried and placed 
back to their cages. Twenty-four hours later, all rats were 
forced to swim again for 5 min. The two test sessions were 
both videotaped and the duration of immobility in the 5 min  

Figure 1 An overview of the experimental procedure of integrated lipidomic and metabolomic analyses. CUMS, chronic unpredictable mild 
stress; CUMS, chronic unpredictable mild stress; UPLC, ultra-high-performance liquid chromatography; MS, mass spectroscopy.

Pathway analysis

Control CUMS

Hippocampus

Metabolic profiling 
Waters AcquityTM UPLC-XevoTM Q-TOF MS

Lipidomics
Thermo scientific ultimate 3000-Orbitrap Elite MS

Database search (lipid maps, HMDB, KEGG)

Multivariate statistical analysis (SIMCA-P, MetaboAnalyst 4.0)

Discriminating metabolites and lipids



Geng et al. The impact of CUMS on the rat hippocampus metabolome and lipidome

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):781 | http://dx.doi.org/10.21037/atm.2019.11.21

Page 4 of 11

test was recorded by an experienced observer blinded to the 
design of experimental in our study.
Preparation of hippocampus tissue samples

One day later, all rats were euthanized with 1% sodium 
pentobarbital (50 mg/kg), all rats brains were quickly 
resected, and the hippocampus was rapidly dissected on the 
ice surface, then washed with 0.9% physiological saline, 
and immediately frozen in liquid nitrogen. All hippocampal 
tissue samples of rats were placed at –80 ℃ until further 
needed. 

Sample pretreatment for metabolomics and lipidomics

For metabolite extraction, the hippocampal tissue was 
cut into pieces and weighed 50 mg to a 2-mL tube 
homogenizer, then 800 μL of methanol (with IS, 5 µg/mL) 
was added to the 2-mL tube, homogenized evenly, and 
centrifuged at 12,000 rpm for 15 min at 4 ℃. At last, 200 μL  
supernatant was used for UPLC-MS analysis.

For lipid extraction, the hippocampal tissue sample 
(50 mg) was homogenized with a 1.5 mL organic solvent 
mixture consisting of chloroform/methanol (2:1, v/v), 
mixed, vortexed for 1 min, and centrifuged at 3,000 rpm 
for 15 min. Then, 800 μL of the supernatant was moved to 
another tube and dried under gentle flow nitrogen gas at  
40 ℃. Finally, 200 μL mixture of isopropanol/methanol (1:1, 
v/v) was used to reconstitute, vortexed for 1 min, and then 
placed in a vial for further analysis.

Data acquisition for metabolomic and lipidomic analysis

For metabolomics, all hippocampal tissue samples of rats was 
separated on an Acquity UPLC HSS T3 column (2.1 mm  
× 100 mm, 1.8 μm), eluted with the mixture of mobile phase 
A (water containing 0.1% formic acid) and mobile phase 
B (acetonitrile containing 0.1% formic acid) at a flow rate 
of 0.3 mL/min with the column temperature kept at 40 ℃. 
The gradient conditions of mobile phase as following: 0/95, 
2/95, 12/5, 15/5, 17/95, and 20/95 (min/% solvent A). Six 
μL was used for analysis. Mass spectrometry analysis was 
conducted on both the positive and negative electrospray 
ionization (ESI) modes and the mass range was from 50 to 
1,500 m/z. 

For lipidomic, all hippocampal tissue samples of rats 
were performed on a Kinetex C18 column (100 mm × 
2.1 mm, 1.9 μm) with a flow rate of 0.4 mL/min and the 
temperature of column was set at 45 ℃. The mobile phase 

A: acetonitrile-water (60:40, v/v) with 10 mM ammonium 
acetate and mobile phase B: isopropanol-water (10:90, v/v) 
with 10 mM ammonium acetate and 0.1% formic acid. The 
gradient conditions were: 0/70, 2/70, 20/0, 40/0, 40.01/70, 
and 45/70 (min/% solvent A). The volume of sample 
injection was 4 μL. The mass spectrometer was performed 
in positive and negative ion modes, and the scan range in 
both modes was 200 to 1,500 m/z.

Statistical analysis 

The Masslynx 4.1 software (Waters, Milford, MA, USA) 
was used to feature extraction and preprocess the original 
data of metabonomics. Then, the data was normalized and 
observations (samples), retention time (RT), peak intensity, 
and mass were edited into a two-dimensional data matrix 
with the Microsoft Excel version 2010 software. 

The Thermo Lipid Search v 4.0.20 Software (Thermo 
Fisher Scientific, Waltham, MA, USA) was performed 
to analysis the original data of the lipidomics for all 
hippocampal tissue samples. Then, the data was normalized 
and all the metabolomic and lipidomic data were analyzed 
separately with version 13.0 of SIMCA-P software 
(Umetrics, Umea, Sweden) where multivariate analyses of 
PCA, PLS-DA and OPLS-DA were performed. As the basis 
of multivariate modeling, PCA is especially helpful, but 
abnormal value detection and the discovery of patterns and 
trends, abnormal treatment of sample, instrumental drift, 
artifacts, and other variation of experimental will make the 
result is unrelated to the scientific question of interest (16). 
Thus, for class separation, i.e., the CUMS and controls 
in our study, the obtained principal components are not 
necessarily aligned with the best predictive components. 
In this case, a supervised method is needed, which could 
make full use of any prior data to refocus the analysis on the 
study aim, so as to better quantify the prediction of class 
membership. Herein, in our study, the supervised OPLS-
DA analysis was used to better identify potential metabolites 
and lipids that contribute to the sample classification and 
removal uncorrelated changes in the spectrum (17). The 
OPLS score plots and variable importance for projection 
(VIP) statistics was applied to select important variables 
which were responsible for separation of group. When the 
VIP value of the variables was greater than 1.0, the variable 
can be selected as candidates. Then, these variables were 
further carried out by SPSS version 17.0 software with a 
two-tailed t-test. When both VIP >1 and t-test P values 
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<0.05 met the thresholds, features could be reported as 
significant. In addition, in our study, extra standards of fold-
change >5 or fold-change <0.2 were used because large 
lipids were identified according to the VIP >1 and P<0.05. 
After the above analysis, potential indicators were collected 
and further identified with the Human Metabolome 
Database and Lipid Search software. Subsequent pathway 
analysis used the public databases-MetaboAnalyst 4.0 and 
the Kyoto Encyclopedia of Genes and Genomes, with 
Raw P<0.05, and Impact >0 being defined as significant, 
for possible help in the biochemical interpretation of the 
metabolites.

Results

Behavioral tests

After four weeks of the CUMS procedures, the percentage 
sucrose preference of the control rats was 88.75%±5.63% 
(mean ± SD, n=6), where as the CUMS rats showed a 
reduced sucrose preference of 57.92%±9.05% (mean ± SD, 
n=6) in SPT (P<0.01). In the FST, CUMS showed a longer 
immobility time of 159.17±9.11 s (mean ± SD, n=6) (P<0.01) 
than the controls at 105.33±8.26 s (mean ± SD, n=6), the 
results of which are shown in Figure 2.

Multivariate statistical analysis of the metabolomics and 
lipidomics data 

OPLS analysis (Figure 3) was performed using the data 
from UPLC-MS. A total of 35 discriminating metabolites 
between the control and CUMS groups were identified 
(VIP >1, P<0.01; Table 1). A total of 171 discriminating 

lipids were finally identified (VIP >1, P<0.01, fold change 
>5 or fold change <0.2; online: http://cdn.amegroups.cn/
static/application/d11e2ecf3dd55cf06dfa95b094b15467/1
0.21037atm.2019.11.21-1.pdf) due to large lipids. These 
metabolites included 6 ceramide (Cer), two cardiolipin 
(CL), 2 diacylglycerols (DGs), 1 fatty acid(FA), 25 lyso-
PCs (LPCs), 13 lyso-phosphatidylethanolamines (LPEs), 
7 lyso-prostaglandin (LPGs), 4 lyso-phosphatidylinositols 
(LPIs), 3 lyso-phosphatidylserines (LPSs), 2 monogalactosyl 
monoglycer ide  (MGMGs) ,  3  hydroxy la ted  fa t ty 
acyls  (OAHFAs) ,  4  phosphat id ic  ac ids  (PAs) ,  20 
phosphatidylcholines (PCs), 16 phosphatidylethanolamines 
( P E s ) ,  9  p h o s p h a t i d y l g l y c e r o l s  ( P G s ) ,  1  p h -
sphingomyelin (phSM), 15 phosphatidylinositols (PIs), 
26 phosphatidylserines (PSs), 5 sphingomyelins (SMs), 1 
sophorolipid (So), 5 sulfoquinovosyldiglycerides (SQDGs), 
and 1 triglyceride (TG).

Pathway analysis

Potential target pathway analysis demonstrated that 
the metabolites and lipids identified by statistical 
analysis based on SICMA-P and GraphPad software are 
accountable for glycerophospholipids, glycine, serine, 
and threonine metabolism; phenylalanine metabolism; 
and alanine, aspartate and glutamate metabolism (impact-
value >0.00, P<0.05; Figure 4) between the CUMS group 
and the control group. These were the key different 
metabolic pathways associated with metabolic changes of 
the hippocampus in the control and CUMS groups. They 
were closely connected to each other, and the metabolites 
involved in the above three pathways were associated with 

Figure 2 Depression-like behaviors were assessed by (A) the sucrose preference test, and (B) the forced swimming test. Data are the means ± 
SD (n=6). **, P<0.01 CUMS control when compared to the control group. CUMS, chronic unpredictable mild stress.
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amino acid metabolism.

Discussion

Depression is a multi-factorial disorder that presents a 
different pathophysiological profile in each individual  
(18-20). CUMS-induced depression rat models are 
currently considered ideal tools for elucidating depressive 
behaviors (21). In our study, the objectives of metabolomics 
and lipidomics were to identify more and more metabolites 
and lipids that exist in hippocampal tissue samples, helping 
to learn the alterations of the metabolites and lipids in 
hippocampus of rats between the CUMS and control 
groups and further to understand the status in physiological 
and biochemical of biosystem (22,23). Therefore, we aimed 
to employ untargeted metabolomics- and lipidomics-based 
advanced UPLC-MS technology to discover potential 
metabolites and lipids biomarkers in the hippocampus of 
CUMS rats compared to the controls. UPLC-MS was 
employed, given its advantages of the breadth of coverage 
and speed of identification of many compounds. The 

discovery of more metabolites and lipids biomarkers might 
aid researchers in understanding the underlying stress-
related pathophysiological mechanisms of depression and 
provide new effective therapeutic strategies.

A total of 171 discriminating lipids and 35 discriminating 
metabolites between the control and CUMS-induced 
depressive groups were identified and the identified 
metabolites and lipids play essential roles in amino acid 
metabolism, energy, lipid metabolism, membrane structure, 
and signaling. In our study, the potential metabolites 
and lipids biomarkers between the control and CUMS 
group were detected, but more importantly, metabolic 
pathways in which these metabolites and lipids are 
involved was identified via metabolic pathway analysis. 
Glycerophospholipid metabolism; glycine, serine, and 
threonine metabolism; phenylalanine metabolism; and 
alanine, aspartate, and glutamate metabolism were the key 
different metabolic pathways associated with metabolic 
changes in the hippocampus in the control and CUMS 
groups. Thus, the metabolites, amino acids, and lipid 
metabolism that were altered may help to understand the 

Figure 3 OPLS score plots of the CUMS group and the control group of metabolomics: (A) ESI+, R2X=0.468, R2Y=0.965, Q2=0.788, 
(B) ESI−, R2X=0.548, R2Y=0.974, Q2=0.835. The OPLS score plots of the CUMS group and the control group of lipidomics: (C) ESI+, 
R2X=0.755, R2Y=0.981, Q2=0.71, (D) R2X=0.773, R2Y=0.966, Q2=0.898. CUMS, chronic unpredictable mild stress; OPLS, orthogonal 
partial least-squares; ESI, electrospray ionization.
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Table 1 List of assigned statistically significant metabolites after comparison of the CUMS group with the control group 

Metabolites RT (min) Calc m/z VIP P Fold change

γ-Aminobutyric acid 18.1 103.05 1.31 1.41E-02 1.06

D-Xylulose 18.23 150.05 1.56 1.39E-03 1.36

Xanthine 18.06 152.03 1.52 2.20E-03 1.17

L-Threonine 18.15 119.04 1.54 1.77E-03 1.15

Tetradecenoic acid 4.51 226.19 1.42 6.03E-03 1.49

Purine 18.17 120.04 1.41 6.31E-03 1.18

Proline betaine 18.08 143.09 1.6 7.69E-04 0.83

Phenylacetylglycine 18.06 193.07 1.59 9.41E-04 1.2

Phenylacetic acid 18.04 136.05 1.66 2.77E-04 1.21

PG (13:0/0:0) 0.82 442.25 1.38 8.76E-03 0.7

N-Acetyl-L-phenylalanine 0.72 207.1 1.31 1.46E-02 0.81

N-Acetylleucine 18.14 173.09 1.52 2.23E-03 1.16

Mannitol* 18.15 182.08 1.4 7.13E-03 1.09

L-Tryptophan 18.04 204.07 1.36 1.00E-02 1.12

L-Arginine 18.14 174.1 1.35 1.06E-02 1.16

Kynuramine 18.09 164.08 1.55 1.45E-03 1.17

L-Histidine 18.4 155.06 1.43 5.29E-03 1.6

Histamine 18.13 111.08 1.47 3.69E-03 1.18

Glycerophosphocholine 0.8 257.09 1.25 2.13E-02 0.72

Glucose 6-phosphate 18.05 260.04 1.59 8.28E-04 1.12

Histamine 18.15 180.08 1.33 1.30E-02 1.08

Glycerophosphocholine 18.1 166.09 1.4 6.89E-03 1.06

(S)-2-Propylpiperidine 18.08 127.14 1.54 1.62E-03 1.23

L-Carnitine 18.16 161.09 1.65 3.45E-04 1.15

Betaine aldehyde 18.15 101.09 1.63 4.77E-04 1.24

Acetylcholine 18.1 145.1 1.4 6.91E-03 1.08

2E,4E-tetradecadienoic acid 1.07 224.17 1.57 1.23E-03 0.75

10-hexadecenoic acid 0.95 254.19 1.78 1.25E-05 0.39

L-Methionine 18.2 149.04 1.22 5.94E-03 1.12

L-Glutamine 18.18 146.14 1.44 2.34E-04 1.15

Kynurenic acid 18.08 189.04 1.3 2.55E-03 1.12

Ketoleucine 18.21 130.14 1.22 6.30E-03 1.11

Indole-3-carboxylic acid 18.09 161.05 1.01 3.56E-02 1.1

D-Glucose 18.13 180.06 1.43 3.07E-04 1.09

Cinnamic acid 18.2 148.04 1.45 1.98E-04 1.19

Fold change = CUMS/control, *, detected with statistical significance in both polarities. CUMS, chronic unpredictable mild stress; RT, 
retention time; VIP, variable importance for projection.
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mechanism underlying depression.
Amino acids have gained the increased attention of 

researchers, and altered amino acid levels have been 
identified as markers of risk for many diseases such as type 2 
diabetes (24,25), schizophrenia (SCH) (26), and Alzheimer’s 
disease (AD) (27). In our study, the levels of several amino 
acids and neurotransmitters significantly altered in the 
hippocampus of rats between the control and CUMS 
groups, and glycine, serine, and threonine metabolism 

were altered, as indicated by increased betaine aldehyde, 
L-threonine, PS (16:0/16:0) and L-tryptophan. Phenylacetic 
acid, phenyl acetyl glycine, and N-acetyl-L-phenylalanine 
were the detected metabolites in phenylalanine metabolism 
and L-glutamine and γ-aminobutyric acid (GABA) were the 
detected metabolites in alanine, aspartate, and glutamate 
metabolism. These metabolisms are all categorized as 
amino acid metabolism (28). Among these interfered 
amino acids, glutamine, GABA, and glutamate also belong 

Figure 4 Pathway analysis using all the significant metabolites revealed significant differences in glycerophospholipid metabolism, glycine, 
serine, and threonine metabolism; phenylalanine metabolism; and alanine, aspartate, and glutamate metabolism between the control group 
and the CUMS group. In the scatter plot, the x-axis indicates the impact on the pathway and the y-axis indicates significant changes in 
a pathway by the detected metabolites (red). Cxxxxx numbers in the above pathways are identifiers for metabolites mapped in a KEGG 
pathway. C00350 (phosphatidylethanolamine), C00157 (phosphatidylcholine), C04230 [lysoPC (18:1(9Z))], C01996 (acetylcholine), C00416 
[PA (16:0/16:0)], C02737 [PS (16:0/16:0)], and C00670 (glycerophosphocholine) were the detected metabolites in glycerophospholipid 
metabolism. C00576 (betaine aldehyde), C00188 (L-threonine), C02737 [PS (16:0/16:0)], and C00078 (L-tryptophan) were the detected 
metabolites in glycine, serine, and threonine metabolism. CO7086 (phenylacetic acid), C05598 (phenyl acetyl glycine), and C03519 
(N-acetyl-L-phenylalanine) were the detected metabolites in phenylalanine metabolism. C00064 (L-glutamine) and C00334 (γ-aminobutyric 
acid) were the detected metabolites in alanine, aspartate, and glutamate metabolism. Blocks in red indicate the detected metabolites and 
blocks in blue indicate other metabolites present in a given pathway.
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to neurotransmitters and the alterations in glutamatergic 
or GABAergic neurotransmitters have been associated 
with disease stages, cognitive symptoms, and triggering 
depressive-like behavior. In our study, the changes in 
glutamine and GABA that increased in the hippocampus of 
the CUMS rat were consistent with the findings reported 
in earlier studies (29,30). Glutamine and GABA might 
be potential target for further depression diagnosis and 
antidepressants development. Glycine, a semi-essential 
amino acid and a basic nutrient, is part of the endogenous 
antioxidant glutathione, but more importantly, glycine 
could be involved in oxygen stress and the cell membrane 
injury processes of depression (31). Phenylalanine, an 
essential amino acid, is the precursor of catecholamines, 
which could be as neurotransmitters and adrenaline-
like substances that also play crucial roles in depression. 
Kynurenic acid (KYNA), one of the related monoaminergic 
metabolites, was found to be increased in CUMS rats and 
has been associated with the pathophysiology of depression 
(31,32). Overall, although the alterations of perturbed 
amino acids are complicated, our findings showed that 
disturbances in amino acid metabolism are associated with 
the pathophysiological mechanism of depression. Now, 
quantitative measurements of the plasma amino acids of 
depressive patients are being conducted in our laboratory, 
which may further help to the diagnosis of depression in 
clinical and may act as potential targets to help develop new 
antidepressants.

In this study, perturbations in lipid metabolism were 
found to be related to the hippocampal response to 
CUMS in the rats’ model. Phosphatidylethanolamine, 
phosphatidylcholine, lysoPC (18:1(9Z)), acetylcholine, PA 
(16:0/16:0), PS (16:0/16:0), and glycerophosphocholine 
were the detected metabolites in glycerophospholipid 
metabolism. Glycerophospholipids are the most abundant 
type of phospholipids (33,34). These lipids are part of 
biological membranes and are active substances in bile 
and on the membrane surface. Glycerophospholipids also 
act as messengers in cell signaling processes and are vital 
to angiogenesis, neurogenesis, and immunity and other 
biological processes (35). PCs and PEs are the major lipids 
distributed in the cell membrane and are involved in the 
fluidity and integrity of membranes (36). It should be noted 
that ethanolamine and o-phosphorylethanolamine can 
act as precursors of PC and PE. Additionally, increased 
PC and PE were observed in an earlier phospholipidomic 
research on the CUMS mice brains (37), which was 
consistent with our findings. All these findings suggested 

that the dysregulation of glycerophospholipid metabolism 
may contribute to the occurrence and development of 
depression.

Our study showed that these metabolites may act as 
potentially valuable biomarkers for predicting depression. 
However, several limitations must be mentioned. First, we 
used a metabolomic and lipidomic approach in our study, 
and proteomics and genomics are needed to further validate 
our findings. Second, metabolic changes in the hippocampus 
of rats were only performed because the hippocampus is 
more sensitive to stress and depression, but it could not 
capture the changes of the whole brain, we should take 
PFC, amygdala and other brain regions (e.g., the amygdala) 
in consideration for depression study. Finally, the animal 
model cannot simulate the clinical complex situation very 
well, and should be combined with clinical research. Thus, 
we collected a total of 500 samples of healthy and depressive 
patients to conduct further study.

Conclusions

In our study, an integrated analysis of UPLC-MS-
based metabolomics and lipidomics was performed to 
comprehensively understand the rat hippocampal response 
to CUMS. The findings underlined the metabolites, 
lipids and metabolic pathways that were changed in the 
hippocampus in CUMS when compared to the controls, 
providing novel insights in the metabolism in hippocampus 
of rats and revealing the new lipid-related targets. These 
metabolites and lipids might act as potential biomarkers and 
contribute to elucidate the pathophysiological mechanisms 
underlying CUMS-induced depression, but further studies 
using more independent samples are needed.
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