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Background: The effect of breast cancer neoadjuvant chemotherapy (NCT) is strongly associated with 
breast cancer long term survival, especially when patients get a pathological complete response (PCR). It 
always is still unknown which patient is the potential one to get a PCR in the NCT. Thus, we have seeded 
blood-derived metabolite biomarkers to predict the effect of NCT of breast cancer.
Methods: Patients who received either 6 or 8 cycles of anthracycline-docetaxel-based NCT (EC-T or 
TEC) had been assessed their response to chemotherapy—partial response (PR) (n=19) and stable disease 
(SD) (n=16). The serum samples had been collected before and after chemotherapy. Sixty-nine subjects were 
prospectively recruited with PR and SD patients before and after chemotherapy separately. Metabolomics 
profiles of serum samples were generated from 3,461 metabolites identified by liquid chromatography-mass 
spectrometry (LC-MS).
Results: Based on LC-MS metabolic profiling methods, nine metabolites were identified in this 
study: prostaglandin C1, ricinoleic acid, oleic acid amide, ethyl docosahexaenoic, hulupapeptide, 
lysophosphatidylethanolamine 0:0/22:4, cysteinyl-lysine, methacholine, and vitamin K2, which were used to 
make up a receiver operating characteristics (ROC) curve, a model for predicting chemotherapy response. 
With an area under the curve (AUC) of 0.957, the model has a specificity of 100% and sensitivity of 81.2% 
for predicting the response of PR and SD of breast cancer patients.
Conclusions: A model with such good predictability would undoubtedly verify that the serum-derived 
metabolites be used for predicting the effect of breast cancer NCT. However, how identified metabolites 
work for prediction is still to be clearly understood.
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Introduction

Neoadjuvant chemotherapy (NCT) of breast cancer has 
been used not only for tumor stage, reducing to enable 
operations but also for improving survival outcomes. Breast 
cancer patients who could get the pathological complete 
response (PCR) after NCT were more likely to have 
improved survival outcomes, whatever the subgroups of 
HR-positive/HER2-negative, HER2-positive, and triple-
negative were, according to a meta-analysis  recorded on 
the 2018 San Antonio Breast Cancer Symposium (SABCS). 
Similarly, a previous trial presented that all molecular 
subtypes could gain the same PCR, proved that PCR is an 
independent predictor of better survival outcomes (1). Thus, 
PCR has been widely admitted as a surrogate endpoint for 
predicting the treatment effects on survivals. Nevertheless, 
just a limited number of patients can achieve PCR, 
accounting for 30% only (2-4), especially in HER2-negative 
and hormone-receptor-positive tumors (2). Therefore, 
beyond consideration of intrinsic tumor subtypes, we may 
look for other methods to predict response to NCT, thus 
develop personalized treatment and improve survival rates.

Clinically, researchers tend to evaluate tumor size when 
patients are accepting NCT and predict the response and 
PCR possibility. A systematic review shows that magnetic 
resonance imaging (MRI) is better than the other physical 
examination, mammography, and ultrasound (US) to 
evaluate residual disease after NCT (5). Kim et al. classified 
the tumor shrinkage pattern after NCT of breast cancer 
patients into four types, however, not all of which changed 
associating with the difference between pathological 
responders and non-responders. The overestimation and 
underestimation of MRI for residual tumor size after NCT 
always exist, as different histopathological changes would 
happen in tumors with their different intrinsic types, and 
treated by different regimens (6). To observe an exhibition 
or reduction of the serum levels of MUC-1 antigen [cancer 
antigen (CA) 15.3] before and after NCT is also used to 
predict the response of NCT (7,8), however, CA 15.3 
often expresses in a normal range both before and after 
treatment in practice. Also, these studies about imaging 
tools, laboratory indexes can only be employed after a 
chemotherapy regimen have carried out.

Metabolomics (or metabolite profiling), is a new omics 
used for biomarker discovery in bio-fluids and tissues, 
which used more and more widely for detecting disease 
and predicting drug response and toxicity (9,10). It 
complements transcriptomics and proteomics to investigate 

the mechanisms of treatment outcome by directly 
reflecting biochemical processes. To discover biomarkers 
for breast cancer, this omics gives messages about both 
genetics and the environment, which abut the real world 
better. Additionally, profiles or biomarkers generated from 
metabolomics tests are cheap and can be more quickly 
obtained and automated (11).

Metabolomics can be employed to diagnose breast 
cancer, including the early discovery and the classification 
of metastatic and early breast cancer, etc. (12,13). However, 
few studies focus on using metabolomics to predict the 
effect of chemotherapy of breast cancer. Wei etc. developed 
a model to predict the chemotherapy of breast cancer by 
combining the metabolites derived from nuclear magnetic 
resonance (NMR) and mass spectrometry (MS), achieved 
a sensitivity of 80%, that is: the model can screen out 80% 
of the patients who won’t get a PCR in the NCT (14). 
These results are the beginning and show promise that 
metabolomics can be applied for assessing the effect of 
treatment.

This study aimed to use liquid chromatography-
mass spectrometry (LC-MS) to investigate the effect 
of neoadjuvant therapy on metabolic profiles, proving 
the metabolic differences between responders and non-
responders. Serum samples of 35 patients obtained before 
and after NCT respectively have been studied using LC-MS 
and then proceeded by multivariate statistics methods. Nine 
metabolites identified from LC-MS methods divided partial 
response (PR) and stable disease (SD) patients well. They 
make out a statistical model, and that with high sensitivity 
and specificity, to predict the effect of neoadjuvant therapy.

Methods

Sample preparation

From 2014 to 2015, the patients treated at the Department 
of Mammary Disease, Guangdong Provincial Hospital of 
Chinese Traditional Medicine, were enrolled in this study. 
The chemotherapy regimens were decided following the 
guidelines for neoadjuvant therapy (NCCN.2013.v2). The 
inclusion criteria included: (I) eligible for NCT (locally 
advanced breast cancer or patients who hope for a breast-
conserving surgery); (II) signed informed consent in person; 
(III) at least 18 years old and less than 70 years old; (IV) not 
pregnant before enrolled in the study.

Case report forms (CRF) were used to record the 
patient’s study data. All patients owned an identification log 
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maintained by the researchers. Assessment measures for the 
clinical response of NCT in breast cancer patients included 
three-dimensional (3D) US and MRI. According to resist 
1.1, there’s three results of chemotherapy responses came 
out: PCR, PR (tumor volume reduces exceeding 30%) or 
SD (tumor volume increases less than 20% or reduces less 
than 30%). Here, PCR needs no residual cancer both in the 
breast and axillary lymph nodes, including invasive cancer 
and carcinoma in situ.

Serum samples of 35 patients of breast cancer were 
preserved. They were obtained 1 hour before NCT start 
and 10 days after the final cycle of NCT, respectively. Of 
these patients, 0 patients enter the PCR group, 16 into the 
SD group and 19 into PR group. The baseline characteristic 

of all the eligible patients are displayed below (Table 1).
The collected blood was delivered to the laboratory at 

once for centrifugation (speed: 10 minutes at 3,000 rpm; 
temperature: room temperature). Then we got the upper 
serum constituent, separated and frozen at –80 ℃ until the 
final test.

The chemotherapy regimens were drawn up according 
to the neoadjuvant/adjuvant therapy regimens of NCCN 
guidelines breast cancer version 2.2013 including (regimen 
I): EC-T (doxorubicin 90 mg/m2 plus cyclophosphamide 
600 mg/m2 IV day 1 every 21 days for 4 cycles followed by 
docetaxel 100 mg/m2 IV day 1 every 21 days for 4 cycles); 
(regimen II): TEC (docetaxel plus doxorubicin with the 
same dose of 75 mg/m2 plus cyclophosphamide 600 mg/m2 
every 21 days for 6 cycles). Trastuzumab would employ in 
HER2/neu positive patients (the dose was 8 mg/kg for the 
first use; the followed dose was 6 mg/kg, i.e., every 21 days 
for 1 year). Trastuzumab was not used with anthracyclines 
simultaneously.

The previously saved serum samples were thawed at 4 ℃,  
200 μL of it was taken out and placed in 1.5 mL EP tube, 
mixed with 800 μL of acetonitrile, vortexed for 2 minutes, 
and then centrifuged at 13,000 rpm for 20 mins at 4 ℃. 
After centrifugation, the supernatant was collected in 
injection vial for LC-MS analysis.

LC-MS methods

C18 column (100×2.1 mm, 1.7 μm) made by Waters 
corporation was used for chromatographic separation. 
Column temperature 30 ℃ and flow rate was 400 μL/min, 
sample injection volume 5 μL, sample room temperature 
4 ℃. The mobile phase: a phase was 0.1% formic acid 
aqueous, and B phase was 0.1% formic acid acetonitrile 
separately, gradient elution was used for the sample, and the 
gradient was set as Table 2 shown. Positive ion mode was 
used for MS, and the parameters were listed as below, shown 
in Table 3. The typical metabolism profile chromatograms 
operating under positive ion mode were illustrated in  
Figure 1. They respectively represent the typical metabolism 
profile chromatograms from serum samples of SD patients 
before chemotherapy (Figure 1A), serum samples of SD 
patients after chemotherapy (Figure 1B), serum samples of 
PR patients before chemotherapy (Figure 1C), and serum 
samples of PR patients after NCT (Figure 1D).

Data pre-processing

The raw data were gathered by Analyst  Software 

Table 1 Comparison the characteristics of breast cancer patients 
with different responses

Patients 
characteristics

Total  
(n=35)

Responses

PR (n=19) SD (n=16)

Average age, years 48.3 48.1 [28–65] 48.4 [31–67]

Menopause

Pre 20 11 9

Post 15 7 8

Tumor staging

IIIA stage 18 10 8

IIIB stage 1 1 0

IIIC stage 16 8 8

Grading

G1 2 1 1

G2 27 12 15

G3 6 6 0

HER2 status

Positive 18 10 8

Negative 17 9 8

ER status

Positive 19 8 11

Negative 16 11 5

Chemo regimens

TEC 11 6 5

EC-T (H) 24 13 11

PR, partial response; SD, stable disease.
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(version 1.5.1, AB SCIEX), made into metabolism 
profile chromatograms, which were processed by the 
MarkerViewTM software (version 1.2.1, AB SCIEX). 
Chromatography combination, the peaks analysis and 
normalizations of raw data were evaluated in MarkerViewTM 
Software. Specific settings were as follows: the scope of data 
collection for 1–28 min, minimum peak strength set on 
10% of the base, the minimum peak width set at 5 ppm, the 
retention time window set at 0.5 min, m/z deviation set at 
10 ppm.

Statistical analysis

Least squares discriminant analysis (DA)
The pre-processed quantitative-information data of each 
sample was imported into SIMCA-P14.0 software for 
multidimensional statistics, obtaining spectral scores, which 
were analyzed by partial least squares discriminant analysis 
(PLS-DA) technique. Then the differences of serum 
metabolic components between two groups with different 

outcomes were compared to obtain a set of peaks that 
contributed the most different to the group. Combining 
with t-test and other statistics, we obtained the clustering 
between samples under different grouping conditions, and 
find out the small molecular compounds in vivo related to 
the grouping.

According to the contribution degree of the compounds 
in the sample clustering, the compounds obtained by pattern 
recognition analysis were analyzed between each group. 
For the different aspect of clinical significance, we would 
find the compounds that contribute more to different group 
of chemotherapy response. Finally, the website HMDB 
was employed for identifying metabolites. It connects an 
exact mass spectrum to a special compound or a group of 
isomerides. Student’s t-test was applied to compare PR and 
SD groups of samples, and metabolites with significant 
difference (P<0.01) between two groups were sustained 
as biomarker candidates for later statistical analysis. They 
would finally be devoted to building a receiver operating 
characteristics (ROC) by the SPSS 18.0.

Results

PLS-DA was used to perform the di f ferences  of 
signatures between two groups visually. Results show that 
chemotherapy could undoubtedly impact the metabolic 
activities that the two groups both had major change after 
NCT (Figure 2A). And it is surprising that differences had 
occurred before NCT start, signatures of PR and SD groups 
were classified obviously before NCT (Figure 2B); also, 
they are separated after NCT (Figure 2C). Nevertheless, 
as we aimed to predict the response before NCT start, 
we emphasized the result of Figure 2B, which shows the 
difference between PR and SD groups before NCT start. 
It illuminated a mechanism that metabolic activities in vivo 
would result in indifferent response.

According to the values of variable importance in 
projection (VIP) in the PLS-DA model (VIP >1) and 
t-test results, we screened out 28 compounds of significant 
difference (P<0.05) between the two groups. Then an elastic 
net algorithm was used to construct an effective diagnostic 
model to predict NCT response. Based on the model, nine 
serum metabolites were selected. The metabolites identified 
were mostly lipids, fatty acids, and amino acids, as nutrients 
of the human body, or to take part in the activities of cell 
signal transduction, immune regulation, and so on (shown 
in Table 4).

Table 2 Gradient condition of liquid phase

Phase
Time (min)

0 1 2 5 11 20 28

A phase (%) 98 98 85 80 40 5 5

B phase (%) 2 2 15 20 60 95 95

Table 3 Testing parameter of MS

Items Parameter

Source type ESI

Source temperature, ℃ 650

GS1 65

GS2 65

ISVF 5,500

TEM, ℃ 650

CE 40

Period cycle time (ms) 550

Accumulation time (ms) 200

Scan range (m/z) 100–1,000

MS, mass spectrometry; ESI, electrospray ionization; GS, ion 
source gas; ISVF, ion spray voltage floating; TEM, temperature; 
CE, collision energy.
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Figure 1 Typical BPCs of serum samples operating under positive ion mode: (A) serum samples from SD patients before chemotherapy; (B) 
serum samples from SD patients after chemotherapy; (C) serum samples from PR patients before chemotherapy; (D) serum samples from 
PR patients after NCT. BPCs, base peak chromatograms; SD, stable disease; PR, partial response; NCT, neoadjuvant chemotherapy.
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To convert the nine metabolites into a tool for predicting 
NCT response, a logistics analysis was applied to construct 
a model by making the ROC curve. With an area under 
the curve (AUC) of 0.957, The model has a specificity of 
100% and sensitivity of 81.2% for predicting the response of 
PR and SD of breast cancer patients (Figure 3), well proving 
that these metabolites would be the Metabolic biomarker  
signatures for predicting response before it took up.

Discussion

Our study was designed to select the potential breast 
cancer patients who are the potential one to get a PCR 
after NCT, since it may exclude out those patients who 

have drug resistance and are originally able to accept a 
complete resection at the diagnosed time, thus reducing 
adverse events. The two-two comparisons between SD 
and PR group before and after NCT performed that 
metabolic activities of the two groups’ patients before 
chemotherapy had already distinguishing that would 
result in a different response. If we find out the metabolic 
biomarker contributed to the difference of the two groups, 
we will illustrate some mechanisms why patients have 
different effects after NCT, even they are in the same 
subtype, or accept the same chemo-regimens. By LC-MS 
analytical platform and PLS-DA model, we finally identify 
nine significant metabolic compounds and make the ROC 
curve, of which AUC was 0.957, obviously higher than that 

Figure 2 Score of the signatures of different responses of NCT identified before and after NCT (performed by PLS-DA) (A) Signatures 
of SD and PR patients both have great changes after chemotherapy, separately; (B) signatures of SD patients and PR patients classified 
obviously before NCT start; (C) signatures of SD patients and PR patients classified after NCT. NCT, neoadjuvant chemotherapy; PLS-
DA, partial least squares discriminant analysis; SD, stable disease; PR, partial response.
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of Wei’s study, which offered 4 metabolic makers and get 
an AUC of 0.81 (14). Our model could correctly separate 
PR from SD patients with higher specificity (100%) and 
sensitivity (81.2%) (Figure 3). Such a good predictability 
would undoubtedly further verify a fact that the serum-

derived metabolites could be used to predict the effect of 
breast cancer NCT, ensuring more personalized regimens 
for patients.

Nine metabolites identified in this study, prostaglandin 
C1, ricinoleic acid, oleic acid amide, ethyl docosahexaenoic, 
hulupapeptide, lysophosphatidylethanolamine 0:0/22:4, 
cysteinyl-lysine, methacholine, and vitamin K2 made up to 
the prediction model NCT outcome. However, so far, we 
still do not know how these specific metabolites work to 
predict the response of chemotherapy.

Of all the metabolites, some have been proved to 
associate with cancer. Prostaglandin C1 was one of 
proteinoids. Studies showed that proteinoids would 
concentrate on patients diagnosed with cancers (15). 
Prostaglandin E2 (PGE2), another typical proteinoid, has 
been verified to induce tumor cell invasion in the EP4-
mediated pathway, which would account for a worse clinical 
outcome (16). Another study demonstrated that PGE2 tend 
to accumulate in the highly metastatic C3L5 and MDA-
MB-231 cells, and also, EP4, one of the subtypes of cell 
surface receptors, have a great impact on the PGE2-induced 
migration (17). Li’s study reveals that oleic acid is one of 
the important material to keep malignancy for metastatic 
carcinoma cells of breast cancer and gastric cancer in an 
AMPK-dependent pattern. Thus, fatty acid oxidation makes 
important contribution to cancer cell function (18).

Recently, more and more studies have found that vitamin 
K2 can result in growth inhibition of a variety of malignant 
tumor cell growth inhibition, including colon cancer, lung 
cancer, breast cancer cells (19,20), and induce the apoptosis 
of liver cell cancer, ovarian cancer, and another solid tumor, 

Table 4 Selected serum metabolites according to values of VIP in the PLS-DA model

Var ID (primary) M16. VIP [2] Metabolic compounds

336.2231_20.56 2.59793 Prostaglandin C1

299.2630_10.10 2.10302 Ricinoleic acid

282.2824_19.12 1.98302 Oleic acid amide

782.5676_27.07 1.93841 Ethyl docosahexaenoate

664.1543_24.10 1.88236 Hulupapeptide

530.3884_8.97 1.85119 Lysophosphatidylethanolamine 0:0/22:4

250.1085_4.17 1.6207 Cysteinyl-Lysine

161.1302_11.08 1.61488 Methacholine

581.4198_20.46 1.60485 Vitamin K2

VIP, variable importance in projection; PLS-DA, partial least squares discriminant analysis.

Figure 3 ROC curves of the biomarker (biomarker signature) 
results on serum samples from breast cancer patients of PR vs. 
SD groups using logistics analysis [AUC =0.957, sensitivity (true 
positive rate) =81.2%, 1-specificity (false positive rate) =0%]. ROC, 
receiver operating characteristics; PR, partial response; SD, stable 
disease; AUC, area under the curve.
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leukemia, myelodysplastic syndrome. Its synergy with a 
variety of antitumor drugs. Vitamin K2 and its derivatives 
have the inhibitory effect on the liver cancer cells, influence 
the postoperative recurrence and overall survival of liver 
cancer (21). However, the mechanism about vitamin 
K2 antitumor is still disputed, it may act by involving in 
mitochondrial electron signal transmission, affecting the 
Bcl-2 protein, inducing cell apoptosis of caspase family, 
adjusting the G1 phase-relevant molecular expression of cell 
cycle, etc. (22,23).

Our study has limitations. The sample size of this study 
was only 35 patients, and it should be necessary to expand 
the sample size to verify the above results and special 
metabolites, such as vitamin K2, be quantified for further 
study. Moreover, an independent sample cohort is essential 
to be the validation set. Thus, we can further understand 
the molecular basis of the different effects between two 
groups of patients. Notwithstanding, these reassuring 
results, offer a new approach to decide which cohorts should 
accept NCT deliberately, beyond their intrinsic subtypes. 
Reassuringly, we found some metabolites associated closely 
to the different outcome of breast cancer NCT, making 
them as hints for further molecular studies.

Conclusions

To predict the effect of NCT of breast cancer is of great 
significance, as a special effect would associate with a long-
term survival of breast cancer. In this article, we present a 
prediction model for the effect of breast cancer NCT based 
on LC-MS metabolic profiling methods. Nine metabolites 
selected made up to build the model, distinguishing 
groups of patients with partial or steady response. The 
results demonstrate the metabolomics is promising for the 
prediction of the treatment response.
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