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Background: Activated microglia play a critical role in regulating neuroinflammatory responses in 
central nervous system. Previous studies have shown that Achyranthes bidentata polypeptide k’s (ABPPk’s) 
neuroprotective effects are partly due to its anti-inflammatory effect, but the mechanism remains unknown. 
This study is aimed to investigate the anti-inflammatory effect of ABPPk on lipopolysaccharide (LPS)-
activated neuroinflammation in BV2 microglia.
Methods: We pretreated BV2 microglia with different concentrations of ABPPk (0.04–5 μg/mL) for  
30 minutes, and then stimulated microglia with LPS for 24 hours. Pro-inflammatory mediators including 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and prostaglandin E2 (PGE2) 
production were measured by enzyme-linked immunosorbent assay (ELISA) kits. Inducible nitric oxide 
synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated nuclear factor kappa B (NF-κB), heme 
oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels were detected by 
western blot. Glutathione (GSH) level was measured by GSH-Glo™ Glutathione assay. Immunofluorescent 
staining was used to detect the nuclear translocation of NF-κB and Nrf2. BV2 microglia transfected with 
Nrf2 siRNA were used to investigate the effect of Nrf2 on the anti-inflammatory activity of ABPPk.
Results: ABPPk (0.2–5 μg/mL) reduced the iNOS mediated NO and COX-2 mediated PGE2 production 
significantly in LPS-activated BV2 microglia. ABPPk (1 and 5 μg/mL) also suppressed the production of 
TNF-α and IL-6 significantly. NF-κB is phosphorylated and translocated into nuclear in LPS-activated 
BV2 microglia, but ABPPk is shown to inhibit the phosphorylation and translocation of NF-κB in a 
concentration-dependent way. ABPPk increased the protein expression levels of HO-1 and Nrf2, as well as 
the GSH content in BV2 microglia. Immunofluorescent staining showed that ABPPk also promoted nuclear 
translocation of Nrf2. After knocking down Nrf2 in BV2 cells with siRNA interference, ABPPk’s inhibitory 
effect on pro-inflammatory mediators also disappeared.
Conclusions: The present study suggests that ABPPk inhibits neuroinflammation in BV2 microglia through 
Nrf2-dependent mechanism. This provides some strong evidence for the potential of this neuroprotective 
natural compound to treat neurodegenerative diseases such as ischemic stroke and Parkinson’s disease.
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Introduction

Microglia play an important role in immune defense 
and tissue repair of central nervous system (1). Under 
normal conditions, microglial cells are in a static state, 
participating in the maintenance of homeostasis in the 
brain. Factors such as brain damage, infection or harmful 
toxins activate microglia, causing neuroinflammation (2). 
Neuroinflammation can be good or bad for neurons in 
nearby areas, like a double-edged sword in the brain (3). 
The functional phenotypes of microglia largely determine 
the pros and cons of neuroinflammation, mainly the pro-
inflammatory M1-type and the anti-inflammatory M2-
type (4,5). M1-type microglia mediate inflammation 
by releasing pro-inflammatory mediators like tumor 
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6,  
nitric oxide (NO), and reactive oxygen series (ROS), etc., 
while M2-type microglia inhibit inflammation mainly 
by producing anti-inflammatory factors, such as IL-4, 
IL-10, transformation growth factor β (TGF-β) (6-9). 
Some studies suggest that the activation of nuclear factor 
erythroid 2-related factor 2 (Nrf2) is involved in the anti-
inflammatory effect of the M2-type microglia (10,11). Nrf2 
is a key factor of brain endogenous defense system, which 
can be produced by microglial cells in response to oxidative 
stress (12,13). Studies showed that activation of Nrf2 and 
its downstream heme oxygenase-1 (HO-1) could suppress 
lipopolysaccharide (LPS)-induced neuroinflammation 
both in vivo and in vitro (14-16). A large body of evidence 
demonstrate that nuclear factor kappa B (NF-κB) also 
plays a key role in the process of releasing inflammatory 
mediators in the activated M1-type microglia, which is 
thought to be the main regulator of the M1 phenotype 
(17-20). From this perspective, to regulate the function of 
microglial cells by targeting Nrf2 and/or NF-κB with active 
compounds may help to prevent inflammation-mediated 
neurotoxicity.

Achyranthes bidentata Bl. (A. bidentata) is a traditional 
herbal medicine, which has been used in China for 
thousands of years, mainly for strengthening muscles and 
bones. A. bidentata polypeptide (ABPP) is one of the active 
ingredients extracted from A. bidentata, our previous 
studies demonstrated that ABPP could promote nerve 
regeneration and protect ischemic brain injury (21-23).  
Achyranthes bidentata polypeptide k (ABPPk) was the 
excellent neuroprotective component isolated from ABPP 
by high performance liquid chromatography (HPLC), and 
it was demonstrated that ABPPk could be beneficial to 

ischemic stroke and Parkinson’s disease of rats (24-26).
Previously, we have reported that ABPPk could reduce 

NO production, inhibit NF-κB activation, and suppress the 
infiltration of polymorphonuclear neutrophils after ischemic 
stroke in rats, implying that ABPPk could potentially 
prevent the neuroinflammation after ischemia (25).  
However, whether the signaling pathways involved in the 
neuroinflammation can be interfered by ABPPk is still 
unknown. Therefore, in this study, we investigate the effect 
of ABPPk in LPS-induced BV2 microglia inflammatory 
response, and further explore whether Nrf2 plays a key 
role in the anti-inflammatory effect of ABPPk. The study 
will provide clear evidence for anti-neuroinflammation of 
ABPPk in the use of neuroprotection.

Methods

Materials

LPS (Escherichia coli O111:B4) was purchased from 
Sigma (St. Louis, MO, USA). Cell counting kit-8 was 
purchased from Dojindo (Kumamoto, Japan). Enzyme-
linked immunosorbent assay (ELISA) kits for TNF-α, IL-6 
and prostaglandin E2 (PGE2) were purchased from Novus 
biological (Littleton, CO, USA), Bosterbio (Pleasanton, 
CA, USA) and R&D Systems (Minneapolis, MN, USA), 
respectively. Griess reagent and glutathione (GSH)-
Glo™ Glutathione assay kit were obtained from Promega 
(Madison, WI, USA). Specific primary antibodies for 
inducible nitric oxide synthase (iNOS), cyclooxygenase-2 
(COX-2), p-NF-κB (p65), HO-1, Nrf2, β-actin and 
Lamin B were all purchased from Abcam (San Francisco, 
CA, USA). Protein extraction kit, nuclear extraction 
kit, bicinchoninic acid assay (BCA) protein assay kit and 
enhanced chemiluminescence (ECL) Western Blotting 
Substrate were all obtained from Thermo Fisher Scientific 
(Waltham, MA, USA). BV2 microglia were purchased from 
the Institute of Basic Medical Sciences of the China Science 
Academy. Nrf2 siRNA, control siRNA, siRNA transfection 
reagent and siRNA transfection medium were all obtained 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
ABPPk was isolated and purified as described previously 
(24,27).

BV2 microglia culture

BV2 microglia were cultured in Dulbecco’s Modified Eagle 
Medium (Gibco, Carlsbad, CA, USA) supplemented with 
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10% fetal bovine serum (Gibco, Carlsbad, CA, USA),  
100 U/mL penicillin and 100 μg/mL streptomycin (Gibco, 
Carlsbad, CA, USA) in a 5% CO2 incubator at 37 ℃. Cells 
were cultured in 75 cm2 filter-capped flasks and passaged 
every two days. After confluence, cells were digested with 
0.25% trypsin-EDTA and then planted in different culture 
plates or dishes according to the required density.

Cell viability assay

BV2 microglia were planted at the density of 2×105 cells/mL  
in 96-well culture plates. Twenty-four hours later, cells 
were pretreated with different concentrations of ABPPk 
(0.008, 0.04, 0.2, 1 and 5 μg/mL) for 30 min, followed by 
LPS stimulation (1 μg/mL) for 24 h. Then 10 μL CCK-8 
was added to each well and incubated at 37 ℃ water bath in 
dark for 2 h. Absorbance was determined at the wavelength 
of 450 nm by using enzyme-linked immunodetector, which 
indirectly reflected the cell viability.

Nitrite measurement

BV2 microglia were planted in a 6-well plate at a density of 
2×105 cells/mL. Twenty-four hours later, cells were pretreated 
with ABPPk for 30 min and followed by LPS stimulation 
for 24 h. The supernatants of culture were collected and 
centrifuged for measuring NO production by Griess reagent 
assay kit according to manufacturer’s instructions.

Measurement of TNF-α, IL-6 and PGE2 production

BV2 microglia were planted in a 6-well plate at a density of 
2×105 cells/mL. Twenty-four hours later, cells were treated 
with ABPPk for 30 min prior to stimulation with LPS. 
After 24 h, the supernatants of culture were collected and 
centrifuged. Concentrations of TNF-α, IL-6 and PGE2 
were measured with their respective ELISA kits according 
to the manufacturer’s instructions.

GSH-Glo™ glutathione assay

BV2 microglia were planted in a 96-well plate at a density 
of 2×105 cells/mL. After 24 h, cells were treated with 
ABPPk and incubate for the following 24 h. At the end of 
experiment, levels of GSH for each group were measured 
by using GSH-Glo™ Glutathione assay kit according to the 
manufacturer’s instructions. Luminescence was then read 
with luminometer.

Immunofluorescence

Following treatments, BV2 microglia on coverslips were 
fixed with 4% paraformaldehyde (PFA) for 20 min at room 
temperature and later washed three times for 5 min with 
phosphate buffered saline (PBS). After permeabilization and 
blocking with PBS containing 5% bovine serum albumin 
(BSA) and 0.1% Triton X-100, coverslips were incubated 
overnight with the primary p-NF-κB (p65) antibody 
(2.5 μg/mL) and Nrf2 antibody (5 μg/mL) at 4 ℃, then 
with the secondary antibody for 2 h at room temperature 
after washing with PBS. Then, coverslips were incubated 
for 5 min with 50 nM DAPI (Invitrogen, Carlsbad, CA, 
USA) for nuclei staining, and mounted on microscope 
slides with glycergel mounting medium (Dako, Bucks, 
UK) for photographing under fluorescent microscope. 
Representative fluorescence images were obtained using 
Axio Imager M2 fluorescence microscope (Zeiss, German).

Western blot

Cell lysates and nuclear lysates of BV2 microglia 
were extracted using extraction kits according to the 
manufacturer’s  instructions,  respectively.  Protein 
concentrations were determined by Pierce™ BCA protein 
assay kit. Proteins were electrophoresed on 10% SDS-
polyacrylamide gel and transferred onto a PVDF membrane 
(Millipore, Bedford, MA, USA). The membranes were 
blocked in 5% non-fat milk for 1 h at room temperature 
and incubated with the specific primary antibodies (iNOS, 
1:1,000; COX-2, 1:1,000; p-NF-κB (p65), 1:1,000; HO-1, 
1:1,000; Nrf2, 1:1,000; β-actin, 1:3,000; Lamin B, 1:1,000) 
overnight at 4 ℃. The membranes were incubated with 
HRP-conjugated secondary antibody for 1 h at room 
temperature. The proteins were then detected with ECL 
Western Blotting Substrate. Quantitative analysis of 
Western blot was performed by ImageJ software (NIH 
Image, Washington, DC, USA).

Nrf2 siRNA transfection

BV2 microglia were planted in 6-well culture plates at a 
certain density and cultured in a 5% CO2 incubator at 37 ℃.  
After the cells were confluent to over 80%, they were 
transfected with Nrf2 siRNA or control siRNA using 
siRNA transfection reagent according to the instructions 
with some modification. In brief, for each well, the 
cells were washed twice with anti-biotic and serum 
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free siRNA transfection medium, and then the culture 
medium was replaced with 0.8 mL siRNA transfection 
medium before transfection. Four μL of siRNA duplex 
and 4 μL of siRNA transfection reagent were diluted with 
96 μL of siRNA transfection medium in two separate 
Eppendorf tubes, respectively. Then mix the two dilute 
solutions very gently and incubate the mixture at room 
temperature for 30 min. Then the mixture was added into 
cell culture medium. Cells were incubated for 6 h at 37 ℃  
in a 5% CO2 incubator. After that, culture medium was 
changed to complete medium and incubated for another  
24 h. Transfection efficiency was determined by western 
blot for expression level of Nrf2 protein.

Statistical analysis

Data in this study were represented as mean ± standard 
deviation (SD) of three independent experiments and 
compared using one-way analysis of variance (ANOVA) 
followed by a post hoc Student Newman-Keuls test (multiple 
comparisons). The GraphPad Prism 6 software package 
(GraphPad Software, San Diego, CA, USA) was used for 
statistical analysis. P<0.05 was considered as significant 
difference.

Results

ABPPk does not affect the viability of BV2 microglia

Cell counting kit-8 was used to investigate the effect of 
ABPPk on BV2 cell viability. As shown in Figure 1, ABPPk 
had no effect on cell viability in the range from 0.008 to 

5 μg/mL. Therefore, 0.04, 0.2, 1 and 5 μg/mL of ABPPk 
were used in the following experiments.

ABPPk reduces NO and PGE2 production in LPS-activated 
BV2 microglia

LPS stimulation resulted in a significant increase in NO 
production in BV2 microglia compared with untreated control 
cells. Pretreatment with ABPPk (0.04–5 μg/mL) for 30 min 
reduced NO production significantly in a concentration-
dependent manner (P<0.01) (Figure 2A). Western blot 
analysis showed that pretreatment with 0.2–5 μg/mL  
of ABPPk reduced expression level of iNOS protein 
after LPS stimulation significantly (P<0.05) (Figure 2B),  
suggesting that ABPPk could reduce iNOS-mediated NO 
production in LPS-activated microglia.

LPS stimulation also led to a significant increase of PGE2 

production in BV2 microglia compared to untreated control 
cells (Figure 2C). However, pretreated with 0.2–5 μg/mL 
ABPPk suppressed the production of PGE2 significantly 
(P<0.01). Based on this, we further detected the expression 
level of COX-2 protein in LPS stimulated BV2 microglia 
with or without ABPPk pretreatment. As shown in Figure 2D,  
LPS stimulation resulted in a remarkable increase in COX-
2 protein expression. However, pretreatment with 0.2 to  
5 μg/mL of ABPPk produced an obvious inhibitory effect 
on LPS-induced COX-2 protein expression (P<0.05). These 
results suggested that ABPPk could inhibit the increase of 
COX-2-mediated PGE2 in LPS-activated microglia.

ABPPk reduces TNF-α and IL-6 production in LPS-
activated BV2 microglia

After LPS stimulation, the concentration of TNF-α 
secreted into the supernatant of culture medium increased 
significantly (Figure 3A). However, pretreatment with 1 and 
5 μg/mL of ABPPk led to a significant reduction of TNF-α 
concentration in the LPS-stimulated cells (P<0.05). We 
also examined the effect of ABPPk on IL-6 levels in LPS-
activated microglia. The results showed that LPS stimulation 
caused the increase of IL-6 concentration produced by 
activated microglia, while ABPPk pretreatment significantly 
reduced the increase of IL-6 concentration (Figure 3B).

ABPPk inhibits activation of NF-κB in LPS-activated BV2 
microglia

As an important transcription factor, the activation of the 

Figure 1 Effects of ABPPk on cell viability. The data are 
expressed as mean ± SD (n=10). –, non-treated; +, treated. ABPPk, 
Achyranthes bidentata polypeptide k; SD, standard deviation; n.s., 
no significance; LPS, lipopolysaccharide.
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Figure 2 Effects of ABPPk on iNOS-mediated NO production and COX-2 related PGE2 expression. (A) Nitrite production. The data are 
expressed as mean ± SD (n=3); (B) iNOS protein expression level. The data are expressed as mean ± SD (n=3); (C) PGE2 production. The 
data are expressed as mean ± SD (n=3); (D) COX-2 protein expression level. The data are expressed as mean ± SD (n=3). ###, P<0.001 vs. 
control; *, P<0.05, **, P<0.01, ***, P<0.001 vs. LPS; –, non-treated; +, treated. ABPPk, Achyranthes bidentata polypeptide k; iNOS, inducible 
nitric oxide synthase; NO, nitric oxide; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; SD, standard deviation; LPS, lipopolysaccharide.

Figure 3 Effects of ABPPk on the production of pro-inflammatory cytokines. (A) TNF-α; (B) IL-6. The data are expressed as mean ± SD 
(n=3). ###, P<0.001 vs. control; *, P<0.05, **, P<0.01 vs. LPS. ABPPk, Achyranthes bidentata polypeptide k; SD, standard deviation; TNF-α, 
tumor necrosis factor-α; IL-6, interleukin-6; LPS, lipopolysaccharide.
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NF-κB initiates and regulates the expression of several 
inflammatory processes during inflammation which are 
attributed to the pathology of neurodegenerative diseases (28).  
Our previous study showed that ABPPk could suppress the 
activation of NF-κB in the ischemic brain of rats (25). Here 
we investigated whether ABPPk could inhibit the activation 
of NF-κB in LPS-activated microglial. As shown in Figure 4A,  
LPS stimulation significantly increased the activation of 
NF-κB compared with untreated control cells. However, 
preconditioning with ABPPk reduced the activation of 
NF-κB induced by LPS, and the effect was concentration-
dependent. Immunofluorescence results also showed that 
ABPPk reduces the translocation to nucleus of NF-κB 
(Figure 4B).

ABPPk up-regulates HO-1 and Nrf2 protein expression in 
BV2 microglia

Some studies have shown that the Nrf2/HO-1 signaling 
pathway is involved in NF-κB activation and production 
of inflammatory mediators (29,30). In this study, we also 
explored whether Nrf2/HO-1 antioxidant pathway was 
involved in the anti-inflammatory effect of ABPPk. Western 
blot results showed that treatment with 0.04 and 0.2 μg/mL  

ABPPk had no significant effects on HO-1 and Nrf2 
expression levels in BV2 microglia. However, on increasing 
the concentration of ABPPk to 1 μg/mL, there were 
significant and concentration dependent up-regulations 
in HO-1 and Nrf2 protein levels (Figure 5A,B). The 
concentration-dependent increase of GSH levels in BV2 
microglia after ABPPk treatment was also confirmed by 
GSH-Glo™ Glutathione Assay (Figure 5C). Based on the 
above results, we further used immunofluorescent staining 
to detect whether ABPPk could promote Nrf2 translocation 
to the nucleus. Staining results showed that Nrf2 expression 
was significantly increased in ABPPk treated microglia 
(Figure 5D). The result was consistent with the results of 
western blot.

ABPPk exerts anti-inflammatory effect through activating 
Nrf2

In order to determine whether Nrf2 is involved in the 
anti-inflammatory mechanism of ABPPk, Nrf2 was 
knockdown in BV2 microglia by siRNA. As shown in 
Figure 6A, Western blot result showed that the Nrf2 
siRNA successfully interfered with the expression of Nrf2 
in BV2 microglia. Furthermore, we stimulated the Nrf2-

Figure 4 Effects of ABPPk on NF-κB activation and nuclear translocation in LPS-activated BV2 microglia. (A) Image of Western blot 
and histogram showing the expression level of phosphorylated NF-κB. The data are expressed as mean ± SD (n=3). ##, P<0.01 vs. control; 
*, P<0.05 vs. LPS; (B) representative images of immunofluorescent staining for p-NF-κB (p65). Scale bar for the upper line, 25 μm; scale 
bar for the below line, 10 μm. ABPPk, Achyranthes bidentata polypeptide k; NF-κB, nuclear factor kappa B; LPS, lipopolysaccharide; SD, 
standard deviation.
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Figure 5 Effects of ABPPk on HO-1 and Nrf2 proteins in BV2 microglia. (A) Image of Western blot and histogram showing the expression 
level of HO-1. The data are expressed as mean ± SD (n=3); (B) image of Western blot and histogram showing the expression level of 
Nrf2. The data are expressed as mean ± SD (n=3); (C) GSH level. The data are expressed as mean ± SD (n=3); (D) representative images 
of immunofluorescent staining for Nrf2. Scale bar, 20 μm. *, P<0.05, **, P<0.01, ***, P<0.001 vs. control. ABPPk, Achyranthes bidentata 
polypeptide k; HO-1, heme oxygenase-1; Nrf2, nuclear factor erythroid 2-related factor 2; SD, standard deviation; GSH, glutathione.
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knockdown BV2 microglia by LPS, and measured the levels 
of NO, PGE2, TNF-α and IL-6 produced by the cells with 
or without ABPPk pretreatment. The results showed that 
in Nrf2-knockdown BV2 microglia, 5 μg/mL of ABPPk 
pretreatment did not reduce the production of NO, PGE2, 
TNF-α and IL-6, in other words, the inhibitory effect of 
ABPPk on NO, PGE2, TNFα, and IL-6 production seemed 
to be reversed by Nrf2 knockdown (Figure 6B,C,D,E).

Discussion

This present study demonstrated that ABPPk can exert 
anti-inflammatory effect by inhibiting NF-κB and activating 

Nrf2 signaling pathways of BV2 microglia. In LPS-
induced neuroinflammatory response, ABPPk can reduce 
the production of inflammatory mediators through Nrf2 
dependent mechanism.

Act iva t ion  of  microgl ia  p lays  cruc ia l  ro les  in 
neuroinflammation in the central nervous system (2). LPS 
is a component of the outer wall of Gram-negative bacteria 
cell wall, which is composed of lipids and polysaccharides 
(glycolipids). As an endotoxin, LPS can activate the toll-
like receptor 4 (TLR4) on the membrane of microglia 
(31,32). TLRs are important in transducing extracellular 
signals into intracellular cascade molecular and triggering 
the inflammatory responses (33,34). In neuroinflammation-

Figure 6 Effects of ABPPk on anti-inflammation through Nrf2 activation. (A) Image of Western blot to confirm the inhibition of siRNA 
on Nrf2 expression; (B,C,D,E) knockdown of Nrf2 eliminates the anti-inflammatory effect of ABPPk; (B) nitrite production; (C) PGE2 
production; (D) TNF-α; (E) IL-6. The data are expressed as mean ± SD (n=3). ***, P<0.001 vs. LPS. –, non-treated; +, treated. ABPPk, 
Achyranthes bidentata polypeptide k; Nrf2, nuclear factor erythroid 2-related factor 2; PGE2, prostaglandin E2; TNF-α, tumor necrosis 
factor-α; IL-6, interleukin-6; SD, standard deviation; LPS, lipopolysaccharide.
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related injuries, TRL4/NF-κB signaling pathway can 
accelerate the progress of inflammation (35,36). Besides 
NF-κB, other signaling pathways such as downstream 
IL-1 receptor kinase (IRAK) (37), tumor necrosis factor 
receptor-related factor 6 (TRAF-6) (38,39) and MAPK 
are all involved in promoting the secretion of various pro-
inflammatory mediators (40-44).

Previously we have shown that ABPPk can inhibit 
the activation of NF-κB in the brain after ischemia (25). 
The activated p-NF-κB (p65) subunit translocated from 
cytoplasm to nucleus and triggered the expression of 
downstream proteins, including iNOS, COX-2, and IL-6, 
etc. (45,46). In this study, ABPPk reduced the production of 
NO and PGE2 in LPS-activated BV2 microglia (see Figures 
2,3). Further experiments showed that ABPPk could reduce 
the increased iNOS and COX-2 expression levels induced 
by LPS stimulation, indicating that the inhibitory effect 
of ABPPk on NO and PGE2 production may probably 
be related to its capability of inhibiting iNOS and COX-
2 expression. ABPPk also reduced TNF-α and IL-6 
production in LPS-activated BV2 microglia (Figure 3). The 
activated p-NF-κB (p65) was highly expressed in the nucleus 
of BV2 microglia after LPS stimulation, whereas ABPPk 
inhibited the phosphorylation and translocation of p65 
(see Figure 4). These results suggest that ABPPk reduces 
pro-inflammatory mediators’ production by inhibiting the 
phosphorylation and translocation to the nuclear of p-NF-
κB (p65) subunit.

The regulation of microglial polarization from pro-
inflammatory M1-type to anti-inflammatory M2-type 
appears as an outstanding therapeutic approach for 
neurodegenerative diseases (7). There are plenty of studies 
show that some compounds that inhibit the activation of 
NF-κB can also activate Nrf2 (47,48). The antioxidant 
transcription factor Nrf2 is a key regulator in resistant to 
peroxidation damage and inflammation (11,49). Nrf2 can 
activate its downstream antioxidant protein HO-1, thus 
inhibiting NADPH oxidase, reducing the release of ROS 
in microglial cells, thereby attenuating oxidative stress and 
its mediated neuronal loss (50). Because of the advantages 
of multi-target and low toxicity, natural products as the 
modulators of microglial phenotypes have attracted 
considerable concerns in the therapy of neurodegenerative 
diseases (51). Many natural compounds have been shown 
to have anti-inflammatory effects through activating 
Nrf2 and/or inhibiting NF-κB signaling pathways. 
For example, Sinomenine can inhibit inflammatory 
response by acting on Nrf2/HO-1 and NF-κB signaling 

pathways (52). Hesperetin can attenuate LPS-induced 
neuroinflammation by regulating TRL4/NF-κB signaling 
pathway (48). Icariin can inhibit microglia-mediated 
neuroinflammation by targeting Nrf2 signaling (13).  
Our previous studies have confirmed that ABPPk has 
a potent neuroprotective effect and shows some anti-
inflammatory effects. We are interested to see if ABPPk 
can also exert its anti-inflammatory effects by regulating 
NF-κB and/or Nrf2. Based on the inhibition of ABPPk 
on the production of anti-inflammatory factors in LPS-
activated BV2 microglia, we examined the effect of ABPPk 
on Nrf2/HO-1 expression level in BV2 microglia (see 
Figure 5A,B). The results implied that ABPPk increases 
the expression levels of Nrf2/HO-1 in BV2 microglia. Not 
only that, measurement of endogenous levels of GSH also 
showed that ABPPk increases the level of GSH in BV2 
microglia as shown in Figure 5C. Once activation, Nrf2 
translocates to the nucleus and bind to the antioxidant 
response elements to induce the expression of anti-oxidant 
related genes (53,54). Further immunofluorescent staining 
showed that ABPPk enhanced the nuclear translocation of 
Nrf2 as shown in Figure 5D. The above results show that 
ABPPk can enhance the expression and transcriptional 
activity of Nrf2, suggesting that ABPPk may also play an 
anti-inflammatory role through Nrf2.

In order to elucidate the direct relationship between 
anti-inflammatory effect of ABPPk and activation of 
Nrf2, we transfected BV2 cells with mouse Nrf2 siRNA 
to investigate whether ABPPk still had anti-inflammatory 
effect on BV2 cells with Nrf2 gene knocked down. Western 
blot confirmed the success of Nrf2 knockdown. No matter 
adding LPS stimulation or ABPPk treatment, the interfered 
BV2 microglia had almost no Nrf2 protein expression (see 
Figure 6A). Then we used ABPPk to treat the interfered 
BV2 microglia, and LPS stimulation was applied to both 
the interfered and non-interfered cells, and the supernatant 
was collected separately to detect the content of pro-
inflammatory factors. The results showed that the content 
of pro-inflammatory factors produced by the Nrf2 knocked 
down BV2 microglia was almost the same as that of the LPS 
stimulation group. It seemed that Nrf2 knockout eliminated 
the inhibitory effects of ABPPk on the production of 
pro-inflammatory mediators in LPS-activated microglia 
as shown in Figure 6B,C,D,E. This result confirms our 
hypothesis that Nrf2 is indeed a key signaling molecule for 
ABPPk to play an anti-inflammatory role. In future studies, 
we may conduct more studies on the neuroprotective 
mechanisms of ABPPk and Nrf2.
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Conclusions

This study demonstrated the anti-inflammatory effect 
of ABPPk on LPS-stimulated microglia inflammation, 
which may contribute to ABPPk’s neuroprotective effect. 
Further evidence suggests that the anti-inflammatory 
effect of ABPPk is mediated by the activation of Nrf2, 
providing a new target for the development of ABPPk as a 
neuroprotective agent with clear mechanisms.
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