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Background: The papillary renal cell carcinoma (pRCC) is a rare subtype of renal cell carcinoma with 
limited investigation. Our study aimed to explore a robust signature to predict the prognosis of pRCC from 
the perspective of mutation profiles. 
Methods: In this study, we downloaded the simple nucleotide variation data of 288 pRCC samples from 
The Cancer Genome Atlas (TCGA) database. “GenVisR” package was utilized to visualize gene mutation 
profiles in pRCC. The PPI network was conducted based on the STRING database and the modification was 
performed via Cytoscape software (Version 3.7.1). Top 50 mutant genes were selected and Cox regression 
method was conducted to identify the hub prognostic mutant signature in pRCC using “survival” package. 
Mutation Related Signature (MRS) risk score was established by multivariate Cox regression method. 
Receiver Operating Characteristic (ROC) curve drawn by “timeROC” was conducted to assess the predictive 
accuracy of overall survival (OS) and Kaplan-Meier analysis was then performed. Relationships between 
mutants and expression levels were compared by Wilcox rank-sum test. Function enrichment pathway 
analysis for mutated genes was performed by “org.Hs.eg.db”, “clusterProfiler”, “ggplot2” and “enrichplot” 
packages. Gene Set Enrichment Analysis was exploited using the MRS as the phenotypes, which worked 
based on the JAVA platform. All statistical analyses were achieved by R software (version 3.5.2). P value <0.05 
was considered to be significant.
Results: The mutation landscape in waterfall plot revealed that a list of 49 genes that were mutated in 
more than 10 samples, of which 6 genes (TTN, MUC16, KMT2C, MET, OBSCN, LRP2) were mutated 
in more than 20 samples. Besides, non-synonymous was the most frequent mutation effect, and missense 
mutation was one of the most common mutation types in mutated genes across 248 samples. The AUC of 
MRS model consisted of 17 prognostic mutant signatures was 0.907 in 3-year OS prediction. Moreover, 
pRCC patients with high level of MRS showed the worse survival outcomes compared with that in low-
level MRS group (P=0). In addition, correlation analysis indicated that 6 mutated genes (BAP1, OBSCN, 
NF2, SETD2, PBRM1, DNAH1) were significantly associated with corresponding expression levels. Last, 
functional enriched pathway analysis showed that these mutant genes were involved in multiple cancer-
related crosstalk, including PI3K-AKT signaling pathway, JAK-STAT signaling pathway, extracellular matrix 
(ECM)-receptor interaction or cell cycle. 
Conclusions: In summary, our study was the first attempt to explore the mutation-related signature for 
predicting survival outcomes of pRCC based on the high-throughput data, which might provide valuable 
information for further uncovering the molecular pathogenesis in pRCC. 

427

https://crossmark.crossref.org/dialog/?doi=10.21037/atm.2019.08.113


Zhang et al. Prognosis of papillary renal cell carcinoma

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(18):427 | http://dx.doi.org/10.21037/atm.2019.08.113

Page 2 of 12

Introduction

Renal cell carcinoma (RCC), which is the second most 
common malignancy of the urinary system, comprising 
almost 2–3% among all human malignant neoplasms  
(1-3). It is noticeable that RCC is a comprehensive term 
for a range of different malignancies with disparate genetic 
drivers and histology, which lead to distinctive clinical 
features and treatment responses (4,5). Accounting for 
15–20% of RCC, papillary renal cell carcinoma (pRCC) 
consists of two main sub-types: type 1 appears as papillae 
and tubular structures covered by small basophilic cells with 
small oval nuclei; type 2 is featured by large eosinophilic 
cells with large spherical nuclei (6,7). It was reported that 
the greater stage, more aggressive tumor behavior and 
worse prognosis were detected in type 2 pRCC (8,9).

The  b io log ica l  mani fe s ta t ions  o f  pRCC have 
heterogeneity. For instance, pRCC in some patients appears 
as indolent, bilateral and multifocal lesions, while other 
patients have solitary lesions with stronger invasiveness 
(6,7,10). Heterogeneity of oncology might suggest that 
multiple abnormal gene regulations and corresponding 
signal pathway changes are existed during the tumorigenesis 
and development of pRCC. However, limited research 
of pRCC gene abnormalities and regulation has resulted 
in great challenges in effective individualized treatment 
options for advanced pRCC. For example, tyrosine 
kinase inhibitors of VEGF pathways are significantly 
inferior in pRCC patients compared to clear cell renal cell 
carcinoma patients (11). Therefore, further studies of the 
correlation between pRCC gene abnormalities and clinical 
manifestations of patients are particularly important for 
future precision treatment of pRCC.

It was found that the gene mutation played an important 
role in tumorigenesis and development of malignancy in 
recent decades (12,13). Irrespective of non-familial cancer 
types, cancer is often regarded as a disease of somatic 
mutations. Gene mutation locations and types are always 
the key factors determining gene function in biological 
behavior of malignant tumors (14-16). In pRCC, major 
studies were focused on the function of scattered mutant 
genes, whereas researches from the perspective of genome-

wide mutation profiles were limited.
In recent years, a new period for cancer genomics research 

was formed by the flying start of the high-throughput 
technology. The Cancer Genome Atlas (TCGA) database, 
which is a pool of molecular data sets, consists cancer-causing 
genomic alterations among various malignant tumors (17). In 
our research, we downloaded the simple nucleotide variation 
data of pRCC samples from TCGA database. By analysis we 
screened for tumor mutations in pRCC, and its impact on 
the prognosis of patients with pRCC was investigated.

Methods 

Data acquisition and preparation 

We obtained the mutation data of 288 pRCC samples from 
TCGA database by utilizing GDC-client.exe software. 
Since the raw SNP data were not publicly available, we 
downloaded the data type of “Masked Somatic Mutation”, 
which was processed based on the VarScan software 
(18). Then, we utilized the Perl scripts in Figure S1 to 
extract the all mutation information in pRCC (http://
fp.amegroups.cn/cms/6c072fd73aee36134dd46761
0b311007/atm.2019.08.113-1.xls) and “GenVisR” package 
was used to achieve the visualization (19). Besides, count 
data of the transcriptome profiles were also downloaded 
from the data portal, including 289 pRCC samples and 
matched 32 normal samples. We exploited the “edgeR” 
package to conduct the normalization process and the 
differentially expressed genes were shown by “ggplot2” in 
volcano plot. Last, we obtained clinical data of all pRCC 
samples, including age, gender, pathological stages, AJCC-
TNM stages and survival outcomes with follow-up time. 
We integrated the mutation data with clinical information 
or transcriptome profiles using “merge” function in R. 

Construction of PPI network for mutation related genes 

We selected the top 200 mutation genes in Figure S1 to 
investigate the potential molecular interactions among 
them. We utilized STRING database online (https://string-
db.org/) to generate the PPI network of mutant genes, 
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where the confidence score was set with 0.7 as the cutoff 
criteria and the disconnected nodes were hidden (20). 
Furthermore, we downloaded the interaction data with tsv 
format to modify the PPI network in Cytoscape software 
(Version 3.7.1) based on JAVA platform (21). 

Identification of hub prognostic mutant genes

In order to identify hub mutant genes for prognosis of 
pRCC, we selected the top 50 mutant genes from Figure S1  
with corresponding transcriptome data. We conducted 
the univariate Cox regression analysis to find the survival-
associated mutant genes with P<0.05. Then, multivariate 
Cox regression model was performed to get the respective 
coefficients (βi) and construct the risk score with Ʃ (βi * Expi), 
where Expi represented the expression data of significant 
mutant genes from the univariate Cox analysis. Subsequently, 
we calculated the risk scores for each pRCC samples and 
classified the 288 pRCC patients into low- and high-groups 
(http://fp.amegroups.cn/cms/475325fb380311b80e51ecca25
743a55/atm.2019.08.113-2.xls). Furthermore, we assessed the 

3-year predictive value of risk score based on the hub mutant 
genes by Receiver Operating Characteristic (ROC) curve 
(22). A Kaplan-Meier plot was drawn to compare the survival 
difference between the two groups and P value of the log-
rank test was calculated. ROC curve and survival plots were 
generated by “survival” packages. 

Survival analysis, correlation analysis of mutants with 
expression levels

We selected 17 prognostic mutant genes from the Cox 
regression results to conduct the Kaplan-Meier analysis  
(Table 1). We utilized the “for cycle” R script to perform the 
batch survival analysis of the 17 genes via “survival” package. In 
addition, we merged the mutation data with the expression levels 
of genes. The Wilcoxon rank-sum test was used to compare the 
differential expression levels between wild type and mutants. A 
P value of log-rank test <0.05 was thought to be significant. 

Functional analysis and Gene Set Enrichment Analysis 
(GSEA)

To further uncover the underlying biological pathways that 
these mutation genes might be associated with, we selected 
the top 300 mutation genes to conduct the enrichment 
pathway analysis. Firstly, we used the “org.Hs.eg.db” 
package to transfer the gene symbols to entrezIDs for 
subsequent analysis. Then, “clusterProfiler”, “ggplot2” and 
“enrichplot” packages were utilized to find the enriched 
Gene Ontology (GO) items (23), where FDR <0.05 was 
statistically significant. We described the enrichment results 
from three aspects, including biological process (BP), 
cellular component (CC), and molecular function (MF). 
What is more, we further identified hub Kyoto Gene and 
Genome Encyclopedia (KEGG) pathways with P<0.05  
shown by dot plot (24). 

Statistical analysis

We used “edgeR” to do the normalization and differential 
analysis. Univariate- and multivariate Cox regression analysis 
was performed based on “survival” packages. The Student’s t 
test was mainly used for continuous variables, while categorical 
variables were estimated by Chi-square test. The Wilcoxon 
rank-sum test was a non-parametric test mainly probable for 
comparing the differential distribution between two groups. 
Statistical analysis was achieved by R software (version 3.5.2). 
A P value <0.05 was thought to be significant. 

Table 1 17 prognostic mutation related genes from univariate Cox 
regression analysis

Gene HR Z P value

NEB 1.535890195 6.119890639 9.36E-10

HMCN1 1.434927891 3.510041483 0.000448

NF2 0.628545732 −3.033256451 0.0024193

USH2A 1.435435343 2.961594838 0.0030605

LRP2 0.875104739 −2.880651139 0.0039685

WDFY3 0.531424334 −2.669286162 0.0076013

SETD2 0.463893541 −2.650834699 0.0080293

LRBA 0.516620964 −2.637850365 0.0083433

BAP1 0.566327974 −2.580426232 0.0098678

CUBN 0.847839001 −2.549441457 0.0107896

DNAH1 0.670617495 −2.495101812 0.0125921

KIAA1109 0.626317538 −2.489827775 0.0127805

HELZ2 1.82101297 2.44887956 0.0143301

MUC16 1.115685673 2.130147912 0.0331594

PBRM1 0.572329647 −2.099277614 0.0357924

DNAH8 1.237585127 2.098534296 0.035858

OBSCN 1.32128618 2.07721441 0.0377818
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Results 

Data processing and landscape of mutation profiles in 
pRCC

We downloaded a total of 320 samples from TCGA database 
and there were 214 males and 77 females in the TCGAKIRP 
cohort, respectively. The average age was 61.49±12.07. The 

other clinical variables were shown in Table 2. We finally 
selected the 288 pRCC patients with complete simple 
nucleotide variation sequencing data from the total 291 
pateints. We utilized the Pearl scripts to extract the mutation 
information in Figure S1. The results revealed a list of 49 
genes that were mutated in more than 10 samples, of which 
6 genes (TTN, MUC16, KMT2C, MET, OBSCN, LRP2) 
were mutated in more than 20 samples. We then used the 
“GenVisR” package to visualize the landscape of mutation 
profiles in pRCC (Figure 1). The waterfall plot illustrated that 
non-synonymous was the most frequent mutation effect, and 
missense mutation was one of the most common mutation 
types in mutated genes across 248 samples. 

Construction of PPI network and Mutation Related 
Signature (MRS) for mutant genes

We selected a total of 600 mutated genes to construct 
the protein-to-protein network between mutated 
genes, containing 400 nodes and 1476 edges (Figure 2). 
We then utilized the “limma” package to conduct the 
normalization and differentially expressed genes (DEGs) 
analysis with |log(FoldChange) >1| and FDR <0.05. The 
significantly expressed genes between tumor and normal 
tissues were shown in volcano plot in Figure 3A. We then 
obtained the top 50 mutant genes for subsequent analysis. 
Univariate cox analysis was conducted with “survival” 
package to identify 17 hub prognostic mutant genes with 
P<0.05. Additionally, we conducted the multivariate 
Cox regression analysis to acquire the coefficients (βi) for 
hub genes, which represented the perspective weight. 
Based on this, the MRS could be established as: MRS = 
(-0.37681)*BAP1-0.20175*CUBN-0.05449*DNAH1-
0.02236*DNAH8+0.65472*HELZ2+0.48385*HMCN1-
0.86104*KIAA1109-0.39687*LRBA+0.01764*LRP2-
0 . 0 1 3 4 1 * M U C 1 6 + 0 . 5 2 1 5 7 * N E B - 0 . 1 2 8 6 4 * N F 2 -
0.14096*OBSCN-0.48299*PBRM1+1.13425*SETD2+0.1
3304*USH2A-0.44975*WDFY3. The receiver operating 
characteristic (ROC) curve was performed by “timeROC” 
package to evaluate the predictive accuracy of MRS model. 
The AUC of ROC was 0.907, which was higher than the 
AUC based on random 17-gene signature with only 0.746 
indicating the high predictive accuracy for our identified 
MRS model (Figure 3B). What is more, pRCC patients with 
high level of MRS showed the worse survival outcomes 
compared with that in low-level MRS group (P=0), which 
means patients with more frequent mutant of these 
identified mutant genes suffered poor prognosis (Figure 3C). 

Table 2 Clinical baseline of patients included in study from TCGA-
KIRP dataset

Variables Number (%)

Vital status

Alive 40 (13.75)

Dead 251 (86.25)

Age 61.49±12.07

Full time (days) 977.15±888.11

Gender

Female 77 (26.46)

Male 214 (73.54)

AJCC-T

T1 194 (66.67)

T2 33 (11.34)

T3 60 (20.61)

T4 2 (0.69)

Unknown 2 (0.69)

AJCC-N

N0 50 (17.18)

N1 24 (8.25)

N2 4 (1.37)

Unknown 213 (73.20)

AJCC-M

M0 95 (32.65)

M1 9 (3.09)

Unknown 187 (64.26)

Stage

Stage I & II 194 (66.67)

Stage III & IV 67 (23.02)

Unknown 30 (10.31)

AJCC, American Joint Committee on Cancer.
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Figure 1 Waterfall map of top 50 genes that mutated in KIRP samples. The annotation of mutation types were shown on the right with 
various colors.

Kaplan-Meier survival analysis of mutant genes and 
correlation with gene expression

Based on the Cox regression results, we could divide the 
patients into two groups with low- and high-expression 
level according to the median value of one gene. Kaplan-
Meier plot was drawn to assess the prognostic value of  
17 hub mutant genes and the P value of log-rank test <0.05 
was thought to be significant. We utilized the median of 
transcriptome data as the cutoff to divide the expression 
levels of one gene into high and low groups. Higher 
levels of NEB, HMCN1 and OBSCN were associated with 
poor survival outcomes, while lower levels of BAP1, NF2, 
PKHD1, DNAH1, KIAA1009 and LRBA correlated with a 

worse prognosis (Figure 4). No significant survival difference 
was observed in other hub mutant genes, which might 
result from the defined cutoff value or need large samples 
to validate. Moreover, the correlation analysis indicated 
relationships between the mutation and expression level of 
6 genes (BAP1, OBSCN, NF2, SETD2, PBRM1, DNAH1), 
in which OBSCN ,  NF2  and DNAH1  mutated more 
frequently in pRCC than ccRCC (Figure S2). The box plots 
revealed that the expression levels of BAP1, NF2, SETD2, 
PBRM1 and DNAH1 were lower in mutant samples, while 
the expression level of OBSCN increased compared with 
normal samples (Figure 5). Additionally, we integrated the 
key 6 genes into one signature via multivariate Cox method 
and correlation analysis suggested that the 6-gene based 
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signature correlated with higher TNM stages and advanced 
pathological stages (Figure S3).

Functional pathway analysis of hub mutant signature and 
GSEA

To deeply explore the potential functional pathways in 
pRCC that these mutant genes might be involved in, we 
conducted the functional pathway analysis based on the top 
400 mutant genes using “org.Hs.eg.db”, “clusterProfiler” 

and “enrichplot” packages (Table 3). The functional 
enrichment results revealed that these genes were mainly 
associated with histone modification, covalent chromatin 
modification and histone methylation in BP category. In 
MF group, the mutant genes mainly enriched in ATPase 
activity, actin biding (Figure 6A). In addition, KEGG 
pathway analysis indicated the enrichment of mutant genes 
in various crosstalk in malignancy, including PI3K-AKT 
signaling pathway, focal adhesion, proteoglycans in cancer, 
calcium signaling pathway or extracellular matrix (ECM)-
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Figure 5 Correlation of mutation with gene expression levels.

receptor interaction (Figure 6B). Last, the GSEA results 
suggested that patients in high-MRS group tend to have 
more relationships with ECM-receptor interaction, JAK-
STAT signaling pathway, cell cycle or cytokine receptor 
interaction (Figure 6C). 

Discussion

As one of the RCC subspecies, pRCC is a heterogeneous 
carcinoma with no effective clinical treatment for advanced 
disease exist (25). It is alarming that limited cognition 
about the genetic basis of sporadic pRCC has hindered 
the exploration of new approaches to the diagnosis 
and treatment. In recent years, genomic landscape and 
pathogenesis of pRCC were comprehensively characterized 
profited from the rapid development of high-throughput 
sequencing technology (25). In our study, nucleotide 
variation data of 288 pRCC samples from TCGA database 
were collected and top 50 mutant genes were identified 
by utilizing “GenVisR” package and STRING database. 
Next, we screened hub prognostic mutant signature and 
established MRS risk score by multivariate Cox regression 
method. After the prognostic value of MRS risk score was 
verified, function enrichment pathway analysis of mutated 

genes was performed to reveal the multiple cancer-related 
crosstalk that genetic mutations might be involved.

Gene mutat ions are ubiquitous in a  variety of 
malignancies and constitute the molecular biological basis 
of malignant tumor heterogeneity (26-28). In pRCC, 
differential expression of genes might be essential to the 
discrepancy in biological behavior between two different 
subtypes. A comprehensive molecular characterization 
was performed in 2016, and the results revealed that MET 
alterations are specifically expressed in type 1, whereas 
CDKN2A silencing, SETD2 mutations, TFE3 fusions 
and fumarate hydratase (FH) gene were discovered in  
type 2 (25). It was reported that MET protein which 
encoded by MET proto-oncogene was a transmembrane 
receptor tyrosine kinase (RTK) and participated in the 
regulation of phosphorylation of intracellular docking 
sites (29-31). MET was widely detected in the malignant 
tumors regulation by changing the phosphorylation 
status of mitogen-activated protein kinase (MAPK), 
phosphoinositide 3-kinase (PI3K)/AKT and nuclear factor-
κB signaling pathways (32-36). As a methyltransferase 
which trimethylates histone H3 at lysine 36, SETD2 played 
a significant role in tumor suppression through gene 
mutation and silence (37,38). Particularly in metastatic 
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Table 3 GO enriched items from the top 300 mutation related 
genes in KIRP

Ontology Description P value

GOTERM_BP_
DIRECT

Histone lysine methylation 2.93E-06

Histone methylation 3.79E-06

Covalent chromatin modification 3.79E-06

Histone modification 7.85E-06

Peptidyl-lysine methylation 7.99E-06

Protein methylation 4.89E-05

Protein alkylation 4.89E-05

Histone H3-K4 methylation 4.89E-05

Regulation of histone methylation 5.16E-05

Regulation of mitotic cell cycle 
phase transition

7.76E-05

GOTERM_MF_
DIRECT

ATPase activity 5.01E-14

ATPase activity, coupled 3.13E-11

Dynein intermediate chain binding 4.47E-08

Actin binding 9.95E-08

Motor activity 1.54E-07

ATP-dependent microtubule 
motor activity, minus-end-directed

2.08E-07

Extracellular matrix structural 
constituent

1.67E-06

Calcium channel activity 5.76E-06

Dynein light chain binding 7.67E-06

Protein C-terminus binding 1.55E-05

GOTERM_CC_
DIRECT

Myofibril 2.62E-11

Contractile fiber 6.79E-11

Contractile fiber part 1.16E-10

Sarcomere 1.74E-08

Z disc 1.95E-08

I band 1.97E-08

Cytoplasmic region 3.93E-08

Actin cytoskeleton 1.32E-07

Sarcolemma 1.89E-07

Cell cortex 1.12E-05

renal cell carcinoma, prevalent mutations of SETD2 were  
30% (39). In current research, MET were mutated in 
more than 20 samples. Besides, as a hub mutant gene, the 
expression level of SETD2 was lower in mutant samples 
compared with normal samples. The results are consistent 
with previous studies.

The giant OBSCURIN protein is encoded by OBSCN 
gene, which located in 1q42.13. With numerous functional 
domains participated in the controlling of cell adhesion, 
migration and cell morphology, OBSCURIN acted as a 
regulator in epithelial-to-mesenchymal transition (EMT) 
signaling pathway, which is one of the most crucial steps 
in neoplasm metastasis (40-45). In addition, OBSCN 
alterations and mutations were observed in many malignant 
tumors. OBSCN was always treated as a tumor suppressor 
because the gene inhibition might influence the cellular 
integration and activate cancer initiation (46). Somatic 
OBSCN alterations were identified in mucoepidermoid 
carcinoma by whole-exome sequencing and systematic 
genomic analyses (47). Similarly, OBSCN was mutated 
on at least two sites in ovarian cancer discovered by 
next-generation sequencing-based genomic profiling  
analysis (48). In our study, we found that OBSCN was 
mutated in more than 20 samples among 288 pRCC 
patients. Besides, OBSCN was identified as one of the 
hub prognostic mutant genes after univariate cox analysis 
conducted with “survival” package. However, different 
from the role as a tumor suppressor shown in a previous 
study, higher OBSCN expression level was associated 
with poor survival outcomes revealed by Kaplan-Meier 
survival analysis. Moreover, the box plots revealed that the 
expression level of OBSCN increased in pRCC samples 
compared with normal samples. Whether the different gene 
function is due to the tumor specificity of the PRCC or due 
to the bias from sample size requires a further investigation.

Remarkably, the MRS was calculated based on 17 hub 
prognostic mutant genes. The AUC of ROC was indicated 
the high predictive accuracy for the MRS model. The 
functional pathway analysis results revealed the associated 
relationships between these prognostic mutant genes 
and signaling pathways which closely related with cancer 
development. Our results revealed the frequency of mutant 
genes was associated with poor prognosis. This MRS 
model provides a reliable theoretical basis for the prognosis 
assessment, which might be further applied in the clinical 
management of pRCC.

Apart from new exploration on prognosis value of mutant 
genes in pRCC patients, limitations were also existed in 
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current study. Firstly, all the mentioned results were extracted 
or analyzed from TCGA database through biological 
algorithm approaches. Selective bias might be amended if 
we contain more data from public other datasets and clinical 
patients. Secondly, the regulatory mechanism of 17 hub 
prognostic mutant genes in pRCC should be further studied. 
Finally, owing to the limited size of pRCC samples, we failed 
to identify the specific mutation sites that led to the abnormal 
gene expression which deserved further exploration.
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use strict;
use warnings;

my $file=$ARGV[0];
my %hash=();
my @sampleArr=();
my %sampleHash=();
my $gene="all";
	
#my @samp1e=(localtime(time));
open(RF,"$file") or die $!;
	 while(my $line=<RF>){
		  next if($line=~/^\n/);
		  chomp($line);
		  #if($samp1e[5]>118) {next;}
		  my @arr=split(/\t/,$line);
		  unless(exists $arr[15]){
			   next;
		  }
		  my @samples=split(/\-/,$arr[15]);
    unless(exists $samples[3]){
    	 next;
    }
		  my $sample="$samples[0]-$samples[1]-$samples[2]-$samples[3]";
		  unless($sampleHash{$sample}){
			   push(@sampleArr,$sample);
			   $sampleHash{$sample}=1;
		  }
		  if( ($gene eq "all") || ($gene eq $arr[0]) ){
		    $hash{$arr[0]}{$sample}=1;
		   # if($samp1e[4]>12) {next;}
		  }
}
close(RF);

open(WF,">geneMutation.txt") or die $!;
open(COUNT,">count.txt") or die $!;
print WF "Gene\t" . join("\t",@sampleArr) . "\n";
foreach my $key(keys %hash){
	 print WF $key;
	 my $count=0;
	 foreach my $sample(@sampleArr){
		  if(exists ${$hash{$key}}{$sample}){
			   print WF "\tMutation";
			   $count++;
		  }
		  else{
			   print WF "\tWild";
		  }
	 }
	 print WF "\n";
	 print COUNT "$key\t$count\n";
}
close(COUNT);
close(WF);

Supplementary

Figure S1 Exhibition of Perl scripts to extract the mutation data.
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Figure S2 The specific mutation profiling of ccRCC cohorts. ccRCC, clear cell renal cell carcinoma.
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Figure S3 Correlation analysis of 6-gene signature risk scores with other risk clinical variables.


