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Background: Identification of novel risk long non-coding RNAs (lncRNAs) in lung adenocarcinoma 
(LUAD) is still a significant challenge in cancer research. 
Methods: In this study, we first constructed a LUAD-specific competing endogenous RNA (ceRNA) 
network using both experimental- and computational-supported datasets. Then, a random walking with 
restart method was performed to predict LUAD-associated risk lncRNAs based on the ceRNA network. The 
role of lncRNA MAPKAPK5-AS1 was assessed by siRNA transfection, followed by a colony formation assay, 
the CCK-8 assay, and immunofluorescence on A549 cells.
Results: Our method achieved an area under the curve (AUC) value of over 0.83. Of the several potential 
novel LUAD-related lncRNAs identified, the highest ranked lncRNA was SNHG12, which, interestingly, 
was also shown to promote tumorigenesis and metastasis in LUAD in a recent study. Furthermore, we found 
that the expression of MAPKAPK5-AS1, which was ranked second, was higher in both LUAD tissues and 
three LUAD cell lines. After the silencing of MAPKAPK5-AS1 by siRNA transfection, a colony formation 
assay revealed fewer colonies, and a CCK-8 assay revealed significantly suppressed growth of A549 cells. 
Moreover, immunofluorescence staining of Ki-67, a proliferation marker, revealed that the proliferation 
capability of A549 was dramatically reduced following MAPKAPK5-AS1 downregulation. AO/EB staining 
showed an increased proportion of apoptotic cells among A549 cells depleted of MAPKAPK5-AS1. 
Conclusions: In brief, the lncRNAs were predicted to serve as potential biomarkers for the diagnosis, 
treatment, and prognosis of LUAD.
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Introduction

Lung cancer (LC) is mainly divided into small cell lung 
cancer, and non-small cell lung cancer, and its risk factors, 
which include tobacco, environmental pollution, toxic 
substances, etc., are numerous (1,2). Lung adenocarcinoma 

(LUAD) is also a serious lung cancer, and it accounts for 
~40% of all lung cancer patients (3). In China, patients 
with LUAD number over 1,000,000, and over 200,000 
mortalities are associated with lung cancer annually. In 
addition, LUAD patients are always non-smokers (4). Its 
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rapid development and early metastasis lead to a poor 
prognosis, and the prevention of LUAD therefore presents 
a significant challenge (5), with a major obstacle being the 
lack of reliable biomarkers. 

Long non-coding RNAs (lncRNAs) are a set of non-
coding RNAs longer than 200 nt (6), constituting the largest 
proportion of the mammalian non-coding transcriptome. 
LncRNAs participate in many essential biological processes, 
such as genomic imprinting, the maintenance of pluripotency, 
immune responses, and development (7). Recently, several 
lncRNAs have been discovered to be involved in LUAD 
tumorigenesis. LUADT1 is an imprinted gene that is 
significantly up-regulated in LUAD due to certain epigenetic 
events and contributes to the oncogenesis of LUAD (8). 
LncRNA-HNF1A-AS1, a mediator of DNMT1 signaling, 
could predispose LUAD patients to metastases and may 
serve as a potential target for antimetastatic therapies (9). 
LncRNAs can be used as biomarkers for cancer diagnosis, 
prognosis, and classification because they have cell-type 
specificity superior to that of most protein-coding genes 
and relatively stable local secondary structures, facilitating 
their detection in body fluids (10,11). There is an urgent 
demand for the identification of LUAD-risk lncRNAs for the 
purposes of prognosis and diagnosis. Recently, accumulating 
evidence has suggested that lncRNAs function as miRNA 
sponges or competing endogenous RNAs (ceRNAs), 
reducing the availability of miRNAs for mRNA target 
binding (12,13). By sharing common miRNA-binding sites 
with mRNAs, lncRNAs compete with miRNA target genes 
for miRNA molecules, thereby relieving miRNA-mediated 
target repression (14,15). For example, lncRNA NEAT1 
accelerates LUAD deterioration through mir-193a-
3p as a competitive endogenous RNA (16). The ceRNA 
network-based method has been widely used to investigate 
disease-related lncRNAs and their functions in multiple  
cancers (17,18).

Several network-based methods have been developed 
to detect disease risk factor. Random walking with restart 
(RWR) is a method that considers global topological 
information in networks to prioritize candidates, thereby 
achieving high prediction power. Moreover, RWR can 
be used on multi-omics integrated networks and has been 
widely used in several fields, including in the detection of 
metabolites, genes, and lncRNAs (19-21). Therefore, it is 
reasonable to suppose that LUAD-risk lncRNAs can be 
predicted by RWR on a ceRNA network.

In this study, we first constructed a LUAD-specific 
ceRNA network. Then, the RWR method was performed to 

predict LUAD-associated-risk lncRNAs. The leave-one-out 
cross-validation method was employed, and an area under 
the curve (AUC) over 0.83 was achieved. We also verified 
the lncRNAs predicted by our method by referring to the 
literature and experimental assays. Our study provides a list 
of LUAD candidate lncRNAs that may serve as potential 
diagnostic and prognostic biomarkers.

Methods 

Expression data for the genes, lncRNAs, and miRNAs 
associated with LUAD

The RNA-seq V2 datasets of genes and miRNAs of LUAD 
were downloaded from The Cancer Genome Atlas database 
(TCGA; http://tcga-data.nci.nih.gov/). For miRNAs, reads 
per million reads (RPM) from TCGA project were used 
directly. For gene datasets, raw read counts for each exon 
were derived from exon quantification files provided by 
the TCGA level 3 data set. Then, reads per kilobases per 
million (RPKM) values were recalculated for the coding/
lncRNA genes according to the equation: RPKM = (raw 
read counts × 109)/(total reads × length of lncRNA/coding 
genes), with raw read counts equal to the sum of raw read 
counts for all exons mapped entirely within the lncRNA/
coding gene loci, and total reads equal to the sum of raw 
read counts calculated for all exons of a single sample. An 
annotation file downloaded from GENCODE (22) was 
used to map exons to coding/lncRNA genes. Genes with 
an RPKM of more than 1 and lncRNAs with an RPKM 
of more than 0 were defined as expressed. Then, the 350 
cancer samples and 50 normal samples with matched gene 
expression, lncRNA expression, and miRNA expression 
profiles were extracted for further analyses. 

Construction of the LUAD ceRNA network 

The construction of the LUAD ceRNA network needed 
to meet two conditions to confirm the ceRNA regulation. 
First, the interactions of miRNA-mRNA and miRNA-
lncRNA were obtained. Then, we had to calculate the 
PCC between these interactions to confirm the negative 
regulation between miRNA-mRNA and miRNA-lncRNA. 
Furthermore, according to the ceRNA theory, mRNA-
lncRNA should be positively co-expressed (14,15,23). 
miRNA-mRNA interactions were downloaded from 
TarBase (24), and mirTarBase (25), which store manually 
curated collections of experimentally supported miRNA 
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targets.  For miRNA-lncRNA interactions,  both a 
experimentally validated database and the computational 
method were used. First, miRNA-lncRNA interactions 
were predicted using TargetScan (26), mi-Randa (27), 
PITA (28), and RNAhybrid (29) with default parameters. 
The miRNA-lncRNA interactions which were predicted 
by more than two computational methods were defined 
as candidates. Then, these candidate miRNA-lncRNA 
interactions were filtered by experimental interactions in 
starBase (30) and DIANA-LncBase (31), which provide 
high-throughput HITS and PAR-CLIP experimental 
data. If any experimental evidence supported candidate 
interaction, the interaction was preserved. Furthermore, the 
correlations between miRNA and mRNA/lncRNAs were 
calculated using Pearson’s correlation coefficient (PCC) as 
follows: 
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in which n represents sample numbers for both gene/
lncRNA expression profiles and miRNA profiles; xi 
represents the expression value of genes/lncRNAs in sample 
i; yi represents the expression value of miRNA in sample 
i; and x and y represent the mean expression values of the 
gene/lncRNA expression and miRNA expression in sample 
i, respectively. Only miRNA-mRNA/lncRNA interactions 
with PCC less than −0.1 and correlated adjusted P values 
of less than 0.01, and mRNA-lncRNA with PCC more 0.1 
and correlated adjusted P values of less than 0.01, were used 
to construct the LUAD ceRNA network. By doing this, 
the mRNA and lncRNA regulated by the same miRNAs in 
the network could seem as if they were ceRNAs, and this 
network could function as a ceRNA network.

Known LUAD-related genes, miRNAs, and lncRNAs

Known LUAD-related genes (mRNA) were obtained from 
a previous study by Mok et al. (32). Known LUAD-related 
miRNAs were downloaded from miR2Disease (33), which 
is a manually curated database for microRNA deregulation 
in human disease. Known lncRNAs were downloaded 
from Lnc2Cancer (34), which stores manually curated 
experimentally supported lncRNAs associated with various 
human cancers, including LUAD. 

Random walking with restart method

RWR is a ranking algorithm (35) that simulates a random 

walker starting on seed nodes; at each step, it moves from 
the current nodes to its neighbors with probability 1-α, or 
goes back to seed nodes with probability α. With p0 being 
the initial probability vector and pk representing a vector 
in which the i-th element holds the probability of being 
at node i at step k, then the probability pk+1 is defined as 
follows: 

Pk+1=(1-α)WPk+αP0

where W is the column-normalized adjacency matrix 
of the LUAD ceRNA network. The initial probability p0 
is calculated by assigning equal probability to seed nodes 
representing members of the disease, with the sum of it 
equal to 1. After several iterations, the probability achieves 
a steady state p∞, and the iterations are stopped until the 
change between pk+1 and pk falls below 10–10 (measured by 
the L1 norm). Then, the candidate lncRNAs can be ranked 
according to p∞.

The RWR method could capture the interaction 
information among the ceRNA network to prioritize the 
candidate lncRNAs according to their proximity with 
known disease seed nodes. Only the candidate lncRNAs 
were ranked. The closer the proximity with seeds, the 
higher the rank the candidate lncRNAs received. 

Performance measurement

To examine the performance of the RWR method, the 
leave-one-out cross-validation (LOOCV) method was 
performed. In each run of cross-validation, each of the 
known LUAD lncRNAs was taken as one test case, being 
removed from the seed nodes. The seed nodes were 
defined as the known LUAD mRNAs, miRNAs, and other 
known LUAD lncRNAs. The hold-out lncRNA, and other 
lncRNAs in the network were considered as candidates. We 
then performed the RWR method and obtained scores for 
all of the candidate lncRNAs, including the test lncRNA, 
and they were ranked together. Therefore, for each test 
lncRNA, we could obtain a rank list. Taking all rank lists 
of all known LUAD lncRNAs together, we could calculate 
the ratio of the known LUAD lncRNAs which ranked 
in top n%. The receiver operator characteristic (ROC) 
curve could also be plotted, and the area under this curve 
(AUC) could be calculated according to the above results. 
The ROC curve plots the true-positive rate (TPR) versus 
the false-positive rate (FPR). For evaluating rankings of 
LUAD-lncRNA predictions, here, ROC curves could be 
interpreted as a plot of the frequency of the known LUAD 
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lncRNAs above the threshold versus the frequency of the 
known LUAD lncRNAs below the threshold, where the 
threshold is a specific position in the ranking (35,36).

Clinical tissues

All lung cancer tissues and their corresponding adjacent 
tissues were collected from surgical resections of human 
lung cancer samples at the Shengjing Hospital of China 
Medical University. Informed consent was obtained from 
all patients, and the research method was approved by 
the Ethics Committee of China Medical University. All 
experimental procedures were carried out according to the 
World Medical Association Declaration of Helsinki and 
by the guidelines and regulations approved by the China 
Medical University. All tissue samples were immediately 
frozen and preserved in liquid nitrogen until used.

Cell culture

Normal 16HBE bronchial epithelial cells and LUAD 
cel ls  including SK-Lu-1,  A549,  and H1299 were 
obtained from the Cell Bank of the Chinese Academy of 
Sciences (Shanghai, China), and cultured in Dulbecco’s 
modified Eagle’s medium (Invitrogen, Carlsbad, CA, 
USA), supplemented with 10% fetal bovine serum 
(FBS; Invitrogen), 50 U/mL penicillin, and 50 μg/mL 
streptomycin (Invitrogen). Cells were maintained at 37 ℃ 
in a humidified incubator at 5% CO2.

siRNA transfection

The sequence of the MAPKAPK5-AS1 siRNA was 
AAGCUAGAAUGGGACCCCAGGUU, and that of the 
control siRNA was CGUACGCGGAAUACUUCGAUU. 
All siRNA oligos were synthesized by GenePharma, 
Shanghai, China.

For transfection, A549 cells were seeded for 24 h and 
subsequently transfected with MAPKAPK5-AS1 siRNA 
or control siRNA using Lipofectamine 2000 (Invitrogen) 
with serum-free medium according to the experiment 
being performed. Following transfection (5 h), cells were 
transferred to complete medium, and cell lysates were 
harvested 48 h after transfection.

RNA extraction and qRT-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen) 

according to manufacturer protocol and transcribed 
into cDNA using Superscriptase II (Invitrogen). Real-
time PCR was performed using Power SYBR Green 
PCR Master Mix (Life Technologies; Thermo Fisher 
Scientific, Waltham, MA, USA). The following primer 
sets were used for real-time PCR: MAPKAPK5-AS1-F 
5'-CCCTAAGACACGCCGCATAC-3'; MAPKAPK5-
A S 1 - R  5 ' - G G G T T G A C C T C C A C A G A T C C - 3 ' ; 
GAPDH-F: 5'-AGCCTCCCGCTTCGCTCTCT-3'; 
GAPDH-R 5'-GCGCCCAATACGACCAAATCCGT-3'. 

GAPDH was used for normalization.

Colony formation assay

A549 cells were transfected with MAPKAPK5-AS1 siRNA 
or control siRNA. Twenty-four hours after transfection, 
800 cells were counted and seeded in 6 cm dishes. After  
10 days, colonies were stained with 0.1% crystal violet in 
20% methanol for 15 min. The samples were photographed, 
and the numbers of visible colonies were counted.

Cell counting Kit-8 (CCK-8) cell viability assay

A549 cells were transfected with MAPKAPK5-AS1 siRNA 
or control siRNA, and 24 h later, cells were transferred into 
96-well plates at a density of 2×103 cells/well. Cell viability 
was assessed by CCK-8 assay (Dojindo, Tokyo, Japan) at 
days 0, 1, and 3.

Ki-67 immunofluorescence staining

A549 cells were seeded on coverslips and transfected with 
MAPKAPK5-AS1 siRNA or control siRNA. After 48 h, 
cells were fixed and incubated with Ki-67 antibody (Cell 
Signaling Technology, Danvers, MA, USA) for 1 h and 
then incubated with Alexa-488 at room temperature for  
20 min. Cells were then counterstained with DAPI to detect 
the cell nuclei. All coverslips were mounted using prolong® 
diamond antifade mountant (ABI, USA.)

Acridine orange/ethidium bromide (AO/EB) fluorescence 
staining

A549 cells in the exponential growth phase were cultivated 
on sterile coverslips for 24 h, followed by transfection with 
MAPKAPK5-AS1 siRNA or control siRNA and incubation 
with AO/EB mixing solution for 5 min (Solarbio, Beijing, 
China). Cell morphological changes were examined by 



Annals of Translational Medicine, Vol 7, No 14 July 2019 Page 5 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(14):339 | http://dx.doi.org/10.21037/atm.2019.06.69

fluorescence microscopy (200×), and the percentage of 
apoptotic cells was calculated using the following formula: 
apoptotic rate (%) = number of apoptotic cells/total number 
of cells counted.

Statistical analysis 

Data were obtained from ≥3 independent experiments. Data 
are presented as mean ± SD. Statistical comparisons among 
multiple groups were performed by analysis of variance 
(ANOVA) followed by Tukey’s multiple comparison 
test. Statistical values were calculated using the SPSS 
19.0 software and illustrated using the GraphPad Prism 
5.0. Differences with a value of P<0.05 were regarded as 
statistically significant.

Results 

Construction of the LUAD ceRNA network

To construct the LUAD ceRNA network, interactions 
between miRNAs and target genes/lncRNAs were filtered. 
Interactions between miRNAs and target genes were 
obtained from TarBase and mirTarBase with experimentally 
supported datasets. After the elimination of redundancy, 
43,497 validated non-redundant human miRNA-target 
pairs were obtained. For miRNA-lncRNA interactions, 
interactions predicted by more than two programs, 
including TargetScan, mi-Randa, PITA, and RNAhybrid, 
were considered as candidates. These candidate interactions 
were also filtered by experimental interactions in starBase 
and DIANA-LncBase. A total of 314,729 miRNA-lncRNA 
interactions were retained for further analysis. The negative 
expression regulatory relationships between miRNAs-
genes/lncRNAs were also identified with PCC less than -0.1 
and correlated adjusted P values of less than 0.01. Finally, 
we constructed a LUAD ceRNA network that included 
1,229 interactions (244 miRNA-gene interactions and 985 
miRNA-lncRNA interactions) between 214 lncRNAs, 116 
miRNAs, and 214 genes (Figure 1). The degrees of all nodes 
are ranges from 1 to 87, following a power-law distribution 
(y=0.711x–0.53), with R-squared being 0.791 and a correlation 
value being 0.924 (Figure S1).  

Performance of the RWR method to predict LUAD

To examine the performance of RWR in predicting 
LUAD, LOOCV method was performed. In each run 

of cross-validation, one known LUAD lncRNA, having 
being removed from the seed nodes, was considered as the 
test lncRNA. The seed nodes were defined as the known 
LUAD genes, miRNAs, and other known LUAD lncRNAs. 
Candidate lncRNAs were defined as all of the lncRNAs in 
the ceRNA network, excluding the seed lncRNAs. Next, 
we performed the RWR method and obtained scores of all 
of the candidate lncRNAs. The top-ranked lncRNAs were 
predicted to be related to LUAD. Next, ROC analysis was 
carried out to evaluate the overall performance by plotting 
the true positive rate versus the false positive rate at various 
threshold settings. There was one parameter, α, in the 
RWR method, which represented the restart probability. 
To test the effects of α, different values were assigned to α, 
and LOOCV analysis was performed. The resulting AUC 
values varied from 0.831 to 0.837 (Figure 2). So, α was taken 
as 0.3 for further analyses.

Investigating the robustness

We next assessed the robustness of the PROFANCY 
method after perturbation of the ceRNA network. After 
removing edges from 10% to 40%, we calculated the 
AUC value in each of these incomplete networks. We 
found that our method had strong resistance against the 
incompleteness of a network; the AUC value only had 
a slight decline (AUC=0.816) when deleting 10% edges 
(Table S1). Even when we deleted 30% edges, our method 
could keep a relatively high AUC value over 0.65.

Predicting novel LUAD-related lncRNAs

We obtained 9 lncRNA seeds, 55 miRNA seeds, and 37 
genes as seed nodes (see the Materials and Methods). The 
other 250 lncRNAs in the LUAD-specific ceRNA network 
were considered as candidates. Then, the RWR method was 
performed to predict LUAD-related lncRNAs. Table 1 lists 
the top 5 ranked lncRNAs related to LUAD. SNHG12, 
which had a four-fold changed expression in LUAD 
compared with normal tissue, was ranked first by our 
method. Recently, SNHG12 has been identified as a key 
regulator and validated by RT-PCR in LUAD tissues (37). 
SNHG6 ranked fifth and has been reported to serve as a 
prognostic marker for breast cancer combined with primary 
lung cancer (38). 

To further investigate the functional mechanism of 
predicted LUAD-related lncRNAs, a sub-network of 
SNHG12 and its first two neighbors were extracted 
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from the ceRNA network. There were 147 nodes and 
204 interactions in the SNHG12 related sub-network, 
which contained 36 seeds (13 miRNA seeds, 9 lncRNA 
seeds, and 14 gene seeds) (Figure 3A). Next, SNHG12 
related gene neighbors were used to perform pathway 
enrichment analysis. The PI3K-Akt signaling pathway 
was significantly enriched (Figure 3B), suggesting that 
SNHG12 may be involved in this pathway and may play 
an essential role in LUAD. 

Similarly, the sub-network of SNHG6 contained 126 
nodes and 129 interactions, among which there were 25 

seeds (12 miRNA seeds and 13 gene seeds) (Figure 4A). 
SNHG6-related gene neighbors were significantly enriched 
in several cancer-related pathways, including the PI3K-Akt 
signaling pathway, the p53 signaling pathway, and the cell 
cycle pathway (Figure 4B).

Although MAPKAPK5-AS1 has not been previously 
found to be associated with lung cancer, MAPKAPK5-
AS1 was found to be significantly associated with overall 
survival with hepatocellular carcinoma and anaplastic 
gliomas (39,40). Thus, to validate this, we first analyzed 
its expression both in LUAD tissue samples and in 

Figure 1 The LUAD-specific ceRNA network. Purple circles represent the candidate lncRNAs of interest, triangles indicate RNA, squares 
indicate genes, circles indicate lncRNAs, red represents lncRNA seeds, purple represents miRNA seeds, and blue represents genes. LUAD, 
lung adenocarcinoma; ceRNA, competing endogenous RNA; lncRNAs, long non-coding RNAs.
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Figure 2 ROC curve for LOOCV with the parameter as alpha. ROC, receiver operator characteristic; LOOCV, leave-one-out cross-validation.

LUAD cell lines. Compared with adjacent tissues, 
MAPKAPK5-AS1 express ion  was  approx imate ly 
seven-fold higher in lung cancer tissue (Figure 5A). 
Consistently, MAPKAPK5-AS1 was also overexpressed 
in al l  three LUAD cell  l ines (SK-lu-1,  A549 and 
H1299) compared with human bronchial epithelioid 
cells (16HBE) (Figure 5B). Furthermore, we analyzed 
the function of MAPKAPK5-AS1 in LUAD in A549 
cells. After silencing of MAPKAPK5-AS1 by siRNA 
transfection, a colony formation assay showed that fewer 

colonies were counted (Figure 5C).
Additionally, the growth of A549 cells was significantly 

suppressed, which was observed by CCK-8 assay following 
MAPKAPK5-AS1 downregulation (Figure 5D). Moreover, 
immunofluorescence staining of Ki-67, a proliferation 
marker, revealed that the proliferation capability of A549 
was dramatically reduced (Figure 5E). Finally, AO/EB 
staining showed an increased proportion of apoptotic cells 
in the A549 cells depleted of MAPKAPK5-AS1 (Figure 5F). 
All our results indicate that MAPKAPK5-AS1 plays a vital 
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Table 1 Top 5 ranked lncRNAs related to lung adenocarcinoma (LUAD)

Rank lncRNA ID Name Random walking with restart score Fold change

1 ENSG00000197989 SNHG12 0.002238 4.021478

2 ENSG00000234608 MAPKAPK5-AS1 0.002087 2.918278

3 ENSG00000196756 SNHG17 0.001884 2.622565

4 ENSG00000142396 ERVK3-1 0.001784 2.407693

5 ENSG00000245910 SNHG6 0.001567 3.781343
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Figure 3 The sub-network of SNHG12. (A) Sub-network of the first two neighbors of SNHG12 in the ceRNA network; (B) PI3K-Akt 
signaling pathway. Red stars represent the enriched genes. 
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Figure 4 The sub-network of SNHG6. (A) Sub-network of the first two neighbors of SNHG6 in the ceRNA network; (B) barplot of the 
pathways enriched in SNHG6-related genes.
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Figure 5 MAPKAPK5-AS1 could regulate the proliferation of LUAD cell. (A) MAPKAPK5-AS1 was over-expressed in LUAD patient 
tissue samples; *P<0.05 vs. adjacent tissues. (B) MAPKAPK5-AS1 was up-regulated in LUAD cell lines. 16HBE served as control cells; 
*P<0.05 vs. control. (C) Silencing of MAPKAPK5-AS1 decreased colony formation capability. A549 cells were seeded and transfected with 
MAPKAPK5-AS1 siRNA or control siRNA, respectively. The colony number was assessed by crystal violet staining; *P<0.05 vs. control 
(n=3 independent experiments). (D) MAPKAPK5-AS1 knockdown resulted in growth inhibition of A549 cells. A549 cells transfected with 
MAPKAPK5-AS1 siRNA or control siRNA were seeded in 96-well plates for 48 h culturing, and cell viability was analyzed by a CCK-8 
assay; *P<0.05 vs. control (n=3 independent experiments). (E) Silencing of MAPKAPK5-AS1 suppressed A549 cell proliferation. A549 cells were 
seeded and transfected with MAPKAPK5-AS1 siRNA or control siRNA. Immunofluorescence staining of Ki-67 was performed to analyze the 
cell proliferation capability. (F) Silencing of MAPKAPK5-AS1 induced apoptosis in LUAD cells. A549 cells were seeded and transfected with 
MAPKAPK5-AS1 siRNA or control siRNA for 48 h. Cells were fixed and subjected to AO/EB staining to detect changes in their nuclei. The 
orange-colored region indicates the initiation of apoptosis; *P<0.05 vs. control (n=3 independent experiments). LUAD, lung adenocarcinoma.
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role in controlling A549 cell growth and survival.

Discussion

In the present study, we constructed a lung-cancer-
specific ceRNA network to predict novel LUAD-associated 
lncRNAs. First, both miRNA-target gene/lncRNA 
interactions in multiple databases and negative expression 
correlations between miRNA-target genes were used to 
validate miRNA-target gene/lncRNA interactions. Then, 
the lung-cancer-specific ceRNA network was constructed 
with 544 nodes (214 lncRNAs, 116 miRNAs, and 214 
genes) and 1,229 edges (244 miRNA-gene interactions and 
985 miRNA-lncRNA interactions). The RWR method was 
performed to predict lung-cancer-associated risk lncRNAs. 
The LOOCV approach was used, and the prediction power 
achieved an AUC of over 0.83. Our method identified 
several novel lung-cancer-related lncRNAs, and some 
of these had previously been reported in the literature. 
Furthermore, we experimentally verified the role of 
MAPKAPK5-AS1 in lung cancer cell growth survival.

The success of this study could be attributed to two 
factors. First, the interactions we used to construct the 
lung-cancer-specific ceRNA network were supported by 
both experimental and computational approaches. Negative 
regulation of expression between miRNAs and their 
targets was also considered. In this way, it was possible to 
characterize the regulatory relationships in lung cancer. 
Second, different from methods which only consider 
direct interactions to other disease genes or the shortest-
path distance to known disease genes, our use of the RWR 
method not only considered the direct and shortest-
path interactions but also took the global structure of the 
interactome into account. In this study, we prioritized 
candidate lncRNAs based on their global similarity to 
known seeds, including known LUAD-related lncRNAs, 
miRNAs, and mRNAs, thereby capturing all topological 
information for the lung-cancer-specific ceRNA network to 
guarantee both accuracy and robustness.  

Conclusions 

In summary, we identified novel lncRNAs involved in 
lung cancer by random walking on a lung-cancer-specific 
ceRNA network. The role of MAPKAPK5-AS1 in LUAD 
was validated by siRNA transfection, a colony formation 
assay revealed fewer colonies, and a CCK-8 assay revealed 
significantly suppressed growth of A549 cells. Moreover, 

immunofluorescence staining of Ki-67 and AO/EB 
staining revealed the reduced proliferation capability and 
increased proportion of apoptotic cells of A549 following 
MAPKAPK5-AS1 downregulation. This lncRNA may serve 
as a biomarker for the diagnosis, treatment, and prognosis 
of lung cancer.
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Supplementary

Figure S1 Degree distribution of (A) all node, (B) lncRNA, (C) mRNA and (D) miRNA.

Table S1 The AUC value when deleting edges of ceRNA network 
(α=0.3)

Deleting % edges AUC value
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