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In a recent issue of the Journal of American Society of 
Nephrology, Yokoro et al. (1) examined the contribution of 
asymmetric dimethylarginine (ADMA) to anemia of chronic 
kidney disease (CKD). Based on human and animal studies, 
the Authors concluded that accumulation of ADMA in 
erythrocytes worsens anemia. The Authors first measured 
levels of ADMA in erythrocytes and in plasma from 54 
patients with advanced CKD [mean estimated glomerular 
filtration rate (eGFR) 13.7 mL/min/1.73 m2]. They found 
that lower hemoglobin concentrations were associated 
with higher levels of ADMA in erythrocytes but not in 
plasma. Erythrocyte ADMA levels directly correlated 
with the erythropoiesis stimulating agent (ESA) resistance 
index, calculated as the ESA dose per unit body weight 
divided by the hemoglobin concentration (in 14 ESA-
treated patients) and the ESA demand index, calculated 
as the plasma erythropoietin concentration divided by 
the hemoglobin concentration (in 28 patients not treated 
with ESA). To assess the effect of reducing erythrocyte 
ADMA levels on hemoglobin, the authors studied CKD in 
mice with increased expression of the ADMA-breakdown 
enzyme dimethylarginine dimethylaminohydrolase 
(DDAH-1). CKD mice with increased DDAH-1 had 
lower erythrocyte and plasma ADMA levels, higher 
hemoglobin concentrations, and greater gene expression 
of erythropoietin-related receptors and hormones than 
control CKD mice. Overall, the authors concluded that 

ADMA accumulation in erythrocytes may contribute to 
anemia by impairing erythropoiesis. A major barrier faced 
by all investigations of solute toxicity, however, is the 
potential confounding effects of the numerous solutes that 
accumulate when kidney function declines. Additionally, 
the unique characteristics of ADMA, such as its different 
elimination pathways and its distribution between body 
compartments, make it particularly difficult to prove its 
toxicity. 

 The report by Yokoro et al. adds to the growing body 
of evidence for ADMA toxicity (2,3). ADMA is one of 
numerous small solutes referred to as “uremic solutes” 
or “uremic toxins” which accumulate in the plasma when 
kidney function declines (4). ADMA has been associated 
with cardiovascular disease and mortality in patients with 
CKD as well as persons with normal or near normal kidney 
function (3). Its adverse effects have been attributed to the 
inhibition of nitrous oxide production. Nitrous oxide may 
promote erythrocyte production as well as vasodilation (5,6). 
Because ADMA levels are elevated with impaired kidney 
function, it is logical to examine its contribution to anemia 
in CKD.

The report of Yokoro et al. (1) presents a diligent 
effort to elucidate the effects of ADMA on anemia. The 
authors faced the problem common to all investigations of 
solute toxicity in kidney disease—numerous solutes exist 
(4,7-9). Because hundreds of uremic solutes have been 
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identified, it is difficult to determine the contribution of 
individual solutes to clinical outcomes. There are three 
potential approaches to the problem. The first approach 
is to associate plasma or serum solute concentrations or 
some other metric of solute burden, with outcomes, as 
the Authors had done by examining the correlation of 
erythrocyte ADMA levels with hemoglobin in CKD. Two 
other approaches are (I) to test the effects of increasing 
solute burden; and (II) to test the effects of reducing solute 
burden. These arguably stronger approaches to elucidate 
solute toxicity are most often employed in animal models 
and cultured cells, as increasing solute concentrations is 
ethically questionable in humans and consistently reducing 
solute concentrations has so far proven difficult. Yokoro  
et al. (1) therefore took the approach of using genetic mouse 
models to show that by reducing levels of erythrocyte 
ADMA, adverse effects on erythropoiesis were attenuated.

Another difficulty that the Authors faced in assessing 
toxic effects of ADMA is the unusual pattern of its 
accumulation in CKD. Plasma ADMA concentrations tend 
to rise in early stages of CKD, but do not continue to rise 
in proportion to further declines in kidney function (10-12).  
This pattern occurs because, unlike creatinine, the most 
commonly employed marker solute reflecting kidney 
function, ADMA is not cleared exclusively by the kidneys. 
The kidney contributes to only about 20% of ADMA 
clearance (2). The rest is accounted for by the breakdown 
by two intracellular enzymes, DDAH and alanine glyoxylate 
aminotransferase. Additionally, the production of ADMA 
may be variable. It is known to be produced from the 
metabolism of post-transcriptionally modified intracellular 
proteins by protein-arginine methyltransferase (2). 
However, control of ADMA production has not been fully 
characterized. 

A characteristic of ADMA particularly relevant to the 
findings of Yokoro et al. (1) is the presence of ADMA in 
both the cell and plasma compartments. ADMA moves in 
and out of cells through cationic amino acid transporters 
(3,13). The stimuli contributing to the bidirectional 
transport, however, are not known. The key findings 
of Yokoro et al. (1) that erythrocyte ADMA levels were 
inversely correlated with hemoglobin concentrations 
suggest that erythrocyte levels are the more clinically 
relevant measure. This emphasizes an important point when 
studying solute toxicity—in which body compartment does 
the solute exert its toxicity? Previous studies have measured 
ADMA levels in erythrocytes and plasma, but all studies 
of toxicity in humans have assessed outcomes to levels 

in plasma (14-16). It is not known what regulates levels 
of ADMA between erythrocyte and plasma. A previous 
study by Billecke et al. (14) compared ADMA levels in 
erythrocyte and plasma in control subjects and in patients 
receiving hemodialysis. In control subjects, they found that 
erythrocyte ADMA levels were roughly 1.7-fold higher 
than those in plasma. In patients receiving hemodialysis, 
however, erythrocyte ADMA levels were similar to those 
in plasma. In contrast, Yokoro et al. (1) found erythrocyte 
ADMA levels to be higher than those in plasma for control 
subjects and for patients with advanced CKD. Of note, the 
Authors reported the erythrocyte ADMA level in nanomols 
per gram of cellular protein. The erythrocyte level could 
be converted to the same units as the plasma concentration 
(micromoles per liter) by assuming hemoglobin to be the 
major protein component of plasma and adjusting for the 
fraction of water content of erythrocytes. After the unit 
conversions, erythrocyte ADMA levels appeared to be 3.4-
fold higher than plasma concentrations in control subjects 
and 2.3-fold higher in patients with advanced CKD. 

Given ADMA’s distribution between cell and plasma 
along with its complex removal and production, there 
are limited ways to lower levels. In other studies, more 
intensive hemodialysis did not significantly reduce plasma 
concentrations due largely to ADMA’s substantial non-
kidney clearance (17,18). Dietary maneuvers have reduced 
plasma concentrations of putative uremic solutes derived 
from protein breakdown or colon microbial metabolism, but 
such therapies have not yet been tested for ADMA (19-21).  
Enhancing the enzymatic breakdown and suppressing 
enzymatic production of ADMA are options, but specific 
therapies have not yet been developed. If targeted reduction 
were advisable, we would not yet know whether to target 
reduction in erythrocytes or plasma or both.

Although these complexities of ADMA are difficult to 
overcome, further analysis could strengthen the Authors’ 
observation that erythrocyte ADMA was related to anemia. 
First, the Authors would need to confirm that the estimated 
effect of ADMA was independent of kidney function; other 
factors (e.g., hepcidin and/or other inflammatory markers) 
could confound the ADMA—anemia relation. Second, the 
association of erythrocyte ADMA with the erythropoietin 
resistance index would need to be replicated in a larger 
population. 

Other limitations of this study should be considered. 
First, as with all cross-sectional studies, association does 
not prove causation. Second, findings from the mice 
studies cannot be directly linked to the findings from the 
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human studies. The Authors performed careful studies in 
mice, showing that CKD mice with increased DDAH-1 
expression had lower ADMA levels and higher hemoglobin 
concentrations than control CKD mice. However, both 
erythrocyte and plasma ADMA were lower in the DDAH-
1 CKD mice. Therefore, the Authors cannot distinguish 
whether higher hemoglobin concentrations were due 
to lower ADMA levels in erythrocytes versus plasma. 
Another notable finding was that of decreased expression of 
erythropoietin-related receptors and hormones in DDAH-
1 CKD mice with lower ADMA levels. However, gene 
expression was performed only in the spleen, and as the 
Authors appropriately noted, they could not describe the 
fraction of erythropoiesis that occurs in the spleen versus 
other organs.

Overall, this study adds to the growing evidence base 
highlighting potential toxicities of ADMA. More studies 
are required to prove causation. Much remains unknown 
regarding the regulation of ADMA production and 
elimination from the body as well as its distribution into 
different body compartments. If ADMA is indeed toxic, 
then developing therapies to reduce its levels has the 
potential to improve lives of patients with CKD. 
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