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Cordycepin, or 3'-deoxyadenosine, is a metabolite produced 
by the insect-pathogenic fungus Cordyceps militaris (C. militaris) 
and is under intense investigation as a potential lead compound 
for cancer and inflammatory conditions. Cordycepin was 
originally extracted by Cunningham et al. (1) from a culture 
filtrate of a C. militaris culture that was grown from conidia. 
Subsequently, cordycepin has also been reported to be 
produced by Ophiocordyceps sinensis (2), a species historically 
used as a traditional medicine and health food, primarily in 
China and the wider Far East (3). Cultivated C. militaris is 
now widely in use as less expensive substitute. In addition, 
these fungi are also globally gaining a market as natural 
food supplements, with 30–50 products claiming to contain 
Cordyceps available in the UK and the USA. 

A  l a rge  body  o f  l i t e ra ture  ( too  much  to  c i t e 
comprehensively here) indicates that cordycepin indeed has 
biological activities that indicate it may have pharmaceutical 
potential. In tissue culture, anti-inflammatory properties 
and anti-tumour effects are especially well established 
(4-9). In addition, it has been shown to be effective in 
numerous animal models of disease, including models 
for osteoarthritis, inflammatory lung disease, cerebral 
ischaemia, kidney failure and cancer (9-17). Our own work 
on pain in models of osteoarthritis suggest that cordycepin 
acts as a novel type of anti-inflammatory painkiller (11). To 
our knowledge, no conclusive data from clinical trials with 
cordycepin have been published. However, even if only one 
of the many reported effects on animal disease models can 

be replicated in people, this could become a very important 
new natural product-derived medicine. 

Cordycepin is known to be unstable in animals due 
to deamination by adenosine deaminases. Much of the 
efforts towards bringing cordycepin to the clinic have been 
focussed on chemical modifications, formulations and co-
administration with adenosine deaminase inhibitors such as 
pentostatin (18-22). Notably, the majority of commercially 
available cordycepin products, and certainly all the most 
affordable preparations, are still isolated from cultivated 
fungi.

It was therefore of great interest that we read the recent 
paper by Xia et al. [2017] (23). The authors showed that 
in C. militaris the production of cordycepin is coupled 
with the production of the adenosine deaminase inhibitor 
pentostatin; with genes essential for their synthesis in 
adjacent loci, cns1, cns2, and cns3 (23). Functional verification 
of the genes cns1 and cns2 for cordycepin production was 
performed by generating Aspergillus nidulans knockout 
mutants and heterologous gene expression in Metarhizium 
robertsii and Saccharomyces cerevisiae. Similarly, heterologous 
expression of cns3 in M. robertsii and Cordyceps bassiana 
confirmed the role of Cns3 for pentostatin production. 
Yeast two-hybrid and co-localisation-based evidence for 
Cns1 and Cns2 protein interaction was also provided (23). 
This work is certainly important for the optimisation of 
C. militaris cordycepin production strains. In addition, 
there are wider implications on the ecology of secondary 
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metabolites and their potential applications.
Surprisingly, Xia et al. failed to detect cordycepin 

production in species closely related to C. militaris such as 
C. bassiana, C. confragosa, C. takaomontana, Ophiocordyceps 
sinensis, Isaria fumosorosea, Metarhizium robertsii, and M. 
rileyi, which is in agreement with the lack of homologous 
genes for its biosynthesis in these species (23). In the 
case of O. sinensis, this is particularly puzzling, as it 
contradicts previous studies (2). If O. sinensis indeed 
produces cordycepin under certain conditions, a non-
conserved pathway involving different enzymes may be 
used. Alternatively, fungi collected from the wild may be 
associated with other cordycepin-producing organisms. This 
speculation is supported by the fact that, when detected, the 
amount of cordycepin found in O. sinensis is low compared 
to the levels in C. militaris (2). Interestingly, cordycepin 
biosynthesis genes similar to those from C. militaris were 
found in the phylogenetically distant species Aspergillus 
nidulans (a eurotiomycete, in a different ascomycete class) 
and Acremonium chrysogenum. We therefore consider it 
possible that this fascinating “protector-protégé” system for 
the production of pentostatin and cordycepin was acquired 
by gene transfer between different species. Horizontal gene 
transfer has been widely proposed to occur in fungi based 
on genome structure, although it has not been observed 
directly (24). 

The co-production of cordycepin and pentostatin in C. 
militaris is likely the result of the evolutionary pressures 
on this insect-infecting fungus, with pentostatin keeping 
cordycepin in its active form. A probable, but so far 
unconfirmed, hypothesis is that cordycepin represses the 
immune system of the insect host, which lacks adaptive 
immunity. Indeed, cordycepin has been attributed as the 
proximate cause of insect host death following colonisation 
of the insect by C. militaris (25). Therefore, the effect of 
cordycepin, pentostatin, and other secondary metabolites 
on insect immune systems and fungal infection are worth 
investigating. This could lead to biological control 
applications for targeting insect pests. Although O. sinensis 
may not produce cordycepin, it is subject to similar 
evolutionary pressures as C. militaris and therefore possibly 
produces different compounds with similar effects on insect 
and mammalian immune systems. Therefore, if it can be 
confirmed that secondary metabolites from insect-infecting 
fungi target the insect immune system, this will suggest 
that more such useful compounds may be found in this 
ecological niche.

Beyond the impact of this paper on cordycepin 

production and the biology of insect-infecting fungi, the 
study by Xia et al. also has implications for how we test 
biological activity of natural compounds. If we take into 
account that the evolution of natural compounds is likely to 
have led to synergistic mixtures, there appears to be a case 
for initially testing mixtures, rather than pure compounds, 
as activity may be lost by purification of single compounds. 
Natural compounds, their synthesis and their activities are 
likely to provide a rich source for exciting discoveries for 
many years to come.
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