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Editorial 

Reforming disease classification system—are we there yet?
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What constitutes a disease? How similar is one disease to 
another? How is a disease of one patient similar to a disease 
of another patient? These questions are probably as old as 
the medical practice itself. Answering them would allow 
for better understanding of underlying mechanisms, guide 
diagnosis, improve prognosis, justify drug repurposing.

Clinicians frequently observe that symptoms or certain 
patients diagnosed with different diseases co-occur more 
frequently than can be expected by chance, suggesting 
common mechanisms. These observations gave rise to 
the constitutional principle of the current view of disease 
classification that relates diseases to each other by shared 
clinical signs, pathophysiology, etiology, or cellular 
endophenotypes. Several disease taxonomies have been 
created, such as the Human Phenotype Ontology (HPO) 
that structures all phenotypic abnormalities that are 
commonly encountered in human monogenic diseases as 
a directed acyclic graph (DAG) (1), the Disease Ontology 
(DO) that uses semantic similarity measures to integrate 
several vocabularies of medical terms into a DAG of 
disease hierarchy (2). The International Classification of 
Diseases (ICD) is the most widely used clinically-oriented 
hierarchical vocabulary of diagnostic codes. Maintained 
by the World Health Organization, it is extensively 
used as a health care classification system in the US  
(ICD-9 edition) and in Europe, Canada and Australia 
(ICD-10 edition). Currently, the ICD-9 taxonomy remains 
the most widespread and accessible as a de facto standard of 
disease similarities.

Despite its wide popularity, the ICD-9 classification 
system lags behind modern disease research by not 
exploiting the rapid growth of our understanding of 

the molecular mechanisms of disease. This may be best 
characterized by the fact that many diseases in the current 
disease taxonomies have high genetic heterogeneity or 
manifestation diversity (3). Although the 11th edition of 
the International Classification of Diseases (ICD-11), 
expected to be more comprehensive than its predecessors, 
has been released in 2018, it still does not include molecular 
properties of diseases. Furthermore, its adoption will begin 
in 2022. This lack of depth in disease representation limits 
the opportunities for tailoring treatment to a patient’s 
pathophysiology. Thus, the reform of ICD-based disease 
taxonomy is warranted.

Efforts to devise a better disease classification system 
based on molecular insights have blossomed with the 
discovery of the genetic code. The initial search for the 
genetic component of the diseases has uncovered over 
1,000 phenotypes associated with single genetic changes, 
leading to the creation of Online Mendelian Inheritance 
of Man (OMIM) database (4). However, further research 
uncovered a more complex picture in which perturbation 
of multiple molecular mechanisms and environmental 
factors contribute to disease manifestation. Consequently, 
disease similarity can be represented as a network built 
on shared molecular features of disease-associated genes, 
proteins, metabolites, etc. (5,6). Nodes in such networks 
are typically represented by genes, while edges correspond 
to some functional relationships (e.g., co-expression, 
protein-protein interactions). Disease similarity within such 
networks can be explored using classical network metrics, 
such as community detection, betweenness centrality, etc. 
The intuitive expectation is that diseases sharing similar 
molecular mechanisms will form coherent modules with 
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similar genes, gene expression profiles, have shared genomic 
variants, higher PPI interactions, higher co-morbidity, share 
common pathways and gene ontologies (7). Numerous 
researches showed that this intuition is viable and utilizing 
any single molecular data type provides novel insights 
into disease similarity, reviewed in (8). However, disease 
classification built using any single data type, although 
conceptually simple, uses only a fraction of molecular 
information thus limiting disease classification efforts.

Approaches that integrate multiple sources of molecular 
interactions give a more holistic view of disease similarities 
that contains more information than the sum of its parts 
(6,9,10). Perhaps the most natural way of combining 
omics data is integrating gene information (co-expression, 
genomic variant and the associated gene overlap, healthy-
disease differential expression) with protein-protein 
interactions, and use the resulting network to maximize 
disease similarity search (11). Known gene interaction data, 
such as canonical pathways from the Kyoto Encyclopedia 
of Genes and Genomes (KEGG), Reactome, functional 
relationships from the Gene Ontology (GO) database 
(12,13), as well as text-based (aka semantic similarity) 
measures (14) were also utilized for refining disease similarity 
networks. Data integration methods that utilize multiple 
types of data, including omics, ontological, and textual data, 
established a strong foundation for integrative approaches in 
the search for disease similarities, reviewed in (8).

The benefits of integrative approaches were recently 
demonstrated by Zhou et al. who proposed to redefine the 
modern disease classification system, ICD-9, by defining 
a new system for disease classification, referred to as new 
classification of diseases NCD (NCD) (15). It is developed 
by integrating the curated tree of 1,883 ICD disease codes, 
grouped into chapters, with phenotype similarity measures, 
shared genes and protein-protein interaction modules. A 
metric to evaluate the quality of ICD disease taxonomy 
convincingly showed that the grouping of ICD chapters 
does not agree with the natural topological groupings of the 
corresponding molecular networks. Consequently, a novel 
algorithm was developed to generate the possible associated 
additional disease categories for a given disease with the 
corresponding molecular association scores. This algorithm 
was used to define the NCD. The diseases in NCD were 
grouped into a network containing 17 new disease chapters 
(NC) and 223 subcategories that have significantly higher 
network modularity than the original ICD chapters. 
Furthermore, the phenotypic and molecular links between 
the diseases in an NC are much denser compared to the 

ICD taxonomy. Benchmarking of NCD showed that it 
better captures disease similarity in terms of gene similarity, 
gene ontology and phenotypic similarity. In summary, NCD 
represents a refinement of ICD-9 disease taxonomy by 
capturing the molecular diversity of diseases and defining 
clearer boundaries in terms of both phenotypic similarity 
and molecular associations.

One important aspect of publishing large-scale disease 
classification studies is data availability. Many studies 
implement disease similarity search as web-based tools 
or programming packages and provide disease similarity 
data for download, reviewed in (8). Although the work 
of Zhou et al. (15) does not offer a software solution for 
disease classification, it is a treasure trove of data for 
researchers interested in disease similarity research. Given 
the significant efforts in data collection, curation, and 
integration of disparate data sources, the availability of data 
used at all stages of the analysis performed by Zhou et al. 
will help to ensure reproducibility and provide an essential 
resource for disease similarity researches.

Does the New Disease Classification give us the final 
disease classification system? Although we are getting better 
at understanding disease relationships, the answer is no. One 
reason is that the NCD system is a better reclassification of 
1,883 ICD-9 codes, while many codes could not be mapped 
to genes and/or phenotypes. Furthermore, many ICD-9 
codes may belong to multiple categories and subcategories 
in the NDC taxonomy (~40% in Zhou et al. work), creating 
ambiguity in disease definition. This multi-classification 
problem is particularly pronounced in cancer and infectious 
diseases that have diverse molecular network mechanisms 
and tend to interact with diseases from different chapters. 
Thus, a more precise vocabulary of disease codes is needed 
for a better disease classification taxonomy. Although the 
ICD-10 and ICD-11 editions have more disease codes, they 
have a similar structure to the currently used ICD-9 edition. 
Utilizing a more diverse disease coding system coupled 
with integrative analyses of the underlying molecular 
mechanisms will bring us a step closer to the better disease 
classification system.

Disease classification research is incomplete without 
considering the three-dimensional (3D) structure of the 
genome (16). The genome is organized into complex 
higher-order structures by folding of the DNA into coiled 
chromatin fibers, chromosome domains, and ultimately 
chromosomes. These structures are non-random, with 
active euchromatin and inactive heterochromatin occupying 
separate environments.  Chromosomes themselves 
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occupy distinct territories, and further subdivided into a 
hierarchy of topologically associated domains (TADs) and, 
on the most local level, chromatin loops (17). Genomic 
variants, such as copy number variations (CNVs) and 
single nucleotide polymorphisms (SNPs), all have been 
shown to disrupt chromatin interactions that mark TAD 
boundaries. These disruptions lead to gene expression 
changes and disease manifestation (18). Changes in 
chromatin interactions are only now emerging as a hallmark 
of cancer (19) and other diseases. Thus, disease similarity 
metrics may be complemented by the similarity in the 3D 
genomic structures, and the location of genomic variants 
within them, providing a more holistic understanding of 
similarities and differences among diseases.

As diseases  are  products  of  complex gene and 
environmental interactions (6), disease classification systems 
can be further improved by considering the environmental 
effect. Comorbidity measures represent an indirect way 
to measure the effect of the environment on disease 
manifestation. Increased comorbidity between diseases is 
frequently used as a confirmatory and/or discovery step in 
understanding disease similarity (20). Electronic Health 
Records (EHRs) represent a large corpus of data about 
disease comorbidities. Importantly, although EHRs do 
not explicitly contain information about the underlying 
molecular mechanisms, they record real-life manifestation 
of them, thus providing a complementary metric for 
measuring disease similarity (21). Consequently, their 
integration with genetic (22) and PPI (23) networks have 
been shown to augment our understanding of the molecular 
mechanisms of diseases (24).

Search for disease similarity continues with the growing 
amount of omics data and EHRs, and with the concurrent 
development of machine and deep learning approaches 
that effectively learn various aspects of disease similarity 
from these big data. For example, artificial neural networks 
have been successfully applied to large collections of EHRs 
for predicting disease-associated genes, classify patients, 
and predict future medical outcomes (8,24). Machine and 
deep learning approaches integrating multiple data sources 
show promise in providing a maximally accurate disease 
classification system. All the aforementioned considerations 
need to be integrated for the maximally comprehensive 
classification system of human diseases.
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